JP2001176924A - Semiconductor device, bonding method, electronic equipment and bonding material - Google Patents

Semiconductor device, bonding method, electronic equipment and bonding material

Info

Publication number
JP2001176924A
JP2001176924A JP35649299A JP35649299A JP2001176924A JP 2001176924 A JP2001176924 A JP 2001176924A JP 35649299 A JP35649299 A JP 35649299A JP 35649299 A JP35649299 A JP 35649299A JP 2001176924 A JP2001176924 A JP 2001176924A
Authority
JP
Japan
Prior art keywords
bonding
microcapsules
bonding material
semiconductor device
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35649299A
Other languages
Japanese (ja)
Inventor
Akira Makabe
明 間ケ部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP35649299A priority Critical patent/JP2001176924A/en
Publication of JP2001176924A publication Critical patent/JP2001176924A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81232Applying energy for connecting using an autocatalytic reaction, e.g. exothermic brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor

Abstract

PROBLEM TO BE SOLVED: To provide a bonding material which can suitably bond semiconductor devices in a multi-chip package, a bonding method of semiconductor devices, a semiconductor device and electronic equipment. SOLUTION: In a bonding material 20, micro-capsules 30, 32 of sealing material are arranged in paste-like thermosetting resin 22 comprising conductive particles 24. A first reaction heat generating material 26 and a second reaction heat generating material 28 are enclosed in microcapsules 30, 32 respectively. The thermosetting resin 22 which shows adhesion on setting by heating, and the conductive particles 24 which ensures electrical conduction on coming into contact with an electrode, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の接合
方法、半導体装置、電子機器、接合対象物を接合する接
合材料に係り、特に複数の半導体チップを1つのパッケ
ージ内に実装するマルチチップパッケージ(Multi
Chip Package)の半導体装置の接合方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding method for a semiconductor device, a semiconductor device, an electronic device, and a bonding material for bonding an object to be bonded, and more particularly to a multi-chip package for mounting a plurality of semiconductor chips in one package. (Multi
(Chip Package).

【0002】[0002]

【従来の技術】従来、半導体装置の接合方式の一つに、
半導体チップの能動面が基板の面と対向して戴置される
フェイスダウンボンディング方式がある。このようなフ
ェイスダウンボンディング方式においては、半導体チッ
プの電極と基板の電極とを直接接合することにより実装
面積を小さくすることができるため、この方式による半
導体装置の接合が行われる。この方式で、半導体チップ
と基板とを接合する場合には、熱硬化性樹脂を基材とし
た接合材料が好ましく用いられている。このような接合
材料としては、ペースト状の熱硬化性樹脂の内部に導電
粒子を有したACP(Anisotropic Con
ductive Paste)、フィルム状の熱硬化性
樹脂の内部に導電粒子を有したACF(Anisotr
opicConductive Film)、ペースト
状の熱硬化性樹脂の内部に導電粒子を有さないNCP
(Non Conductive Paste)があ
る。いずれも、基材となる熱硬化性樹脂を加熱すること
で接合力を発揮する点においては共通している。以下
に、ACPの接合材料を用いた半導体装置の接合方法に
ついて説明する。
2. Description of the Related Art Conventionally, one of bonding methods of a semiconductor device is as follows.
There is a face-down bonding method in which an active surface of a semiconductor chip is placed facing a surface of a substrate. In such a face-down bonding method, since the mounting area can be reduced by directly bonding the electrodes of the semiconductor chip and the electrodes of the substrate, the semiconductor device is bonded by this method. When a semiconductor chip and a substrate are joined by this method, a joining material using a thermosetting resin as a base material is preferably used. As such a bonding material, ACP (Anisotropic Con) having conductive particles inside a paste-like thermosetting resin is used.
ACF (Anisotr) having conductive particles inside a film-like thermosetting resin.
opiConductive Film), NCP having no conductive particles inside a paste-like thermosetting resin
(Non Conductive Paste). All of them have in common that a thermosetting resin serving as a base material exhibits a bonding force by heating. Hereinafter, a method for bonding a semiconductor device using a bonding material of ACP will be described.

【0003】図8は、従来における接合材料1を用いた
半導体装置の接合方法を示す工程説明図である。図8
(a)に示したように、基板4上に接合材料1を配置す
る。そして、半導体チップ6を、基板4に向けて下降さ
せるのである。半導体チップ6の背面には、加熱加圧ツ
ール8が連結されており、当該加熱加圧ツール8により
半導体チップ6の下降を行わせる。
FIG. 8 is a process explanatory view showing a conventional method of bonding a semiconductor device using the bonding material 1. As shown in FIG. FIG.
As shown in (a), the bonding material 1 is arranged on the substrate 4. Then, the semiconductor chip 6 is lowered toward the substrate 4. A heating and pressing tool 8 is connected to the back surface of the semiconductor chip 6, and the semiconductor chip 6 is lowered by the heating and pressing tool 8.

【0004】そして、半導体チップ6を基板4側に下降
させて、図8(b)に示すように接合材料1を介して互
いの電極7,5を対向配置させる。このとき、熱硬化性
樹脂2中の導電粒子3が電極5,7間に挟まれることに
より、基板4と半導体チップ6との導通を確保する。
Then, the semiconductor chip 6 is lowered to the substrate 4 side, and the electrodes 7 and 5 are arranged to face each other via the bonding material 1 as shown in FIG. At this time, the conductive particles 3 in the thermosetting resin 2 are sandwiched between the electrodes 5 and 7, thereby ensuring conduction between the substrate 4 and the semiconductor chip 6.

【0005】従来においては、半導体チップ6を基板4
上に配置した後に、接合材料1の加熱を行う。従来にお
いては、接合材料1の加熱を前記加熱加圧ツール8によ
り半導体チップ6を介して行っていた。これにより、半
導体チップ6を介して前記熱硬化性樹脂2が加熱され、
前記熱硬化性樹脂2が硬化される。このように熱硬化性
樹脂2が硬化することにより基板4と半導体チップ6と
が接合され、半導体装置が形成されるのである。
Conventionally, a semiconductor chip 6 is mounted on a substrate 4
After being arranged on the upper side, the bonding material 1 is heated. Conventionally, the heating of the bonding material 1 has been performed through the semiconductor chip 6 by the heating and pressing tool 8. Thereby, the thermosetting resin 2 is heated via the semiconductor chip 6,
The thermosetting resin 2 is cured. By curing the thermosetting resin 2 in this way, the substrate 4 and the semiconductor chip 6 are joined, and a semiconductor device is formed.

【0006】また、ACFやNCPの接合材料を用いて
半導体装置の接合を行う場合においても、ACPと同様
に半導体チップ6を介して熱硬化性樹脂の加熱を行い、
半導体装置の接合を行うのである。
[0006] Also, when a semiconductor device is joined using an ACF or NCP joining material, the thermosetting resin is heated via the semiconductor chip 6 in the same manner as in the case of the ACP.
The joining of the semiconductor device is performed.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来において
は以下のような問題があった。
However, there have been the following problems in the prior art.

【0008】従来においては、基材となる熱硬化性樹脂
2の加熱を、接合対象物である半導体チップ6を介して
行っていた。このため、加熱時に半導体チップ6に熱ス
トレスがかかってしまい、半導体チップ6中に悪影響を
与えるおそれがあった。また、熱硬化性樹脂2にて接合
する基板4にも余剰な熱が伝わり、基板4が変形するお
それがあった。特に、基板がポリイミド等の材質で形成
されている場合には熱変形のおそれが顕著であった。
Conventionally, the thermosetting resin 2 serving as a base material has been heated via a semiconductor chip 6 to be joined. Therefore, thermal stress is applied to the semiconductor chip 6 at the time of heating, which may adversely affect the semiconductor chip 6. Further, excess heat is also transmitted to the substrate 4 joined by the thermosetting resin 2, and the substrate 4 may be deformed. In particular, when the substrate was formed of a material such as polyimide, the risk of thermal deformation was remarkable.

【0009】そして特に、マルチチップパッケージの半
導体装置の半導体チップ6と基板4を接合する場合にお
いては、熱硬化性樹脂2の加熱を行うために何枚もの半
導体チップを介することとなる。このため、熱硬化性樹
脂2への加熱に必要な熱量が、一枚の半導体チップを介
する場合に比べて大きく増大することになり、接合対象
物である半導体チップや基板等への影響が非常に大きく
なり、接合された半導体装置の性能を確保が困難であっ
た。また、エネルギーコストも大きくなってしまうた
め、マルチチップパッケージにおける半導体装置の接合
方法としては、新たな接合方法が強く望まれていた。
In particular, when the semiconductor chip 6 and the substrate 4 of the semiconductor device of the multi-chip package are joined, many semiconductor chips are interposed in order to heat the thermosetting resin 2. For this reason, the amount of heat required for heating the thermosetting resin 2 is greatly increased as compared with the case where a single semiconductor chip is interposed, and the influence on the semiconductor chip, the substrate, and the like to be joined is extremely low. And it has been difficult to ensure the performance of the joined semiconductor device. In addition, a new joining method has been strongly desired as a joining method of a semiconductor device in a multi-chip package because the energy cost increases.

【0010】また、半導体装置に限らず接合材料として
も、接合面に熱による悪影響を与えない接合材料が望ま
れていた。
[0010] In addition to the semiconductor device, a bonding material that does not adversely affect the bonding surface due to heat has been desired as a bonding material.

【0011】本発明の目的は、接合材料を直接加熱させ
ることにより、接合対象物への熱による悪影響を防止す
ることができる半導体装置の接合方法、半導体装置、電
子機器を提供することである。
An object of the present invention is to provide a bonding method of a semiconductor device, a semiconductor device, and an electronic apparatus which can prevent an adverse effect due to heat on an object to be bonded by directly heating a bonding material.

【0012】特にマルチチップパッケージの半導体装置
を好適に接合することができる半導体装置の接合方法、
半導体装置、電子機器を提供することである。
In particular, a semiconductor device bonding method capable of suitably bonding a multi-chip package semiconductor device,
It is to provide a semiconductor device and an electronic device.

【0013】また、本発明の他の目的は、接合対象物に
熱による悪影響を与えない接合材料を提供することであ
る。
Another object of the present invention is to provide a bonding material which does not adversely affect a bonding object by heat.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る半導体装置の接合方法においては、熱
硬化性樹脂を基材とする接合材料に、反応発熱材をマイ
クロカプセルにて封止して前記接合材料に混入し、前記
マイクロカプセルの混入した接合材料を接合対象物にて
押圧させることにより、前記マイクロカプセルを圧潰す
る構成とした。上記構成においては、接合材料中にて発
熱させることにより、半導体チップや基板といった接合
対象物に熱ストレスを与えるおそれを無くすことができ
る。このため、接合対象物の熱による性能劣化を防止す
ることができる。特に、従来においては実現が難しかっ
た、マルチチップパッケージの半導体装置の接合を好適
に行うことができる。なお、接合対象物としては、半導
体チップ同士や基板同士でも好適に用いることができ
る。
In order to achieve the above object, in a method of bonding a semiconductor device according to the present invention, a bonding material having a thermosetting resin as a base material and a reaction heating material in the form of microcapsules are used. The microcapsules are crushed by being sealed and mixed into the bonding material, and pressing the bonding material mixed with the microcapsules against the bonding object. In the above configuration, by causing heat to be generated in the bonding material, it is possible to eliminate the possibility of applying thermal stress to a bonding target such as a semiconductor chip or a substrate. For this reason, it is possible to prevent performance degradation due to heat of the joining object. In particular, it is possible to suitably perform bonding of a semiconductor device of a multi-chip package, which has conventionally been difficult to realize. In addition, as an object to be joined, semiconductor chips or substrates can be preferably used.

【0015】また、熱硬化性樹脂を基材とする接合材料
に、反応発熱材をマイクロカプセルにて封止して前記接
合材料表面に配し、前記マイクロカプセルの混入した接
合材料を接合対象物にて押圧させることにより、前記マ
イクロカプセルを圧潰する構成とした。上記構成におい
ては、従来の接合材料を用いて接合材料中にて発熱させ
ることにより、半導体チップや基板といった接合対象物
に熱ストレスを与えるおそれを無くすことができる。こ
のため、接合対象物の熱による性能劣化を防止すること
ができる。特に、従来においては実現が難しかった、マ
ルチチップパッケージの半導体装置の接合を好適に行う
ことができる。
[0015] Further, a reaction heating material is sealed with a microcapsule in a bonding material having a thermosetting resin as a base material and disposed on the surface of the bonding material. By pressing the microcapsules, the microcapsules are crushed. In the above-described configuration, by generating heat in the bonding material using the conventional bonding material, it is possible to eliminate the possibility of applying thermal stress to a bonding target such as a semiconductor chip or a substrate. For this reason, it is possible to prevent performance degradation due to heat of the joining object. In particular, it is possible to suitably perform bonding of a semiconductor device of a multi-chip package, which has conventionally been difficult to realize.

【0016】また、前記接合材料に導電粒子を備えると
ともに、前記マイクロカプセルの大きさは前記導電粒子
よりも大きいものとしてもよい。導電粒子により接合対
象物の導通を図ることができるとともに、導電粒子を挟
み込むときにマイクロカプセルを圧潰することができ
る。
Further, the bonding material may include conductive particles, and the size of the microcapsules may be larger than the conductive particles. The conductive particles can conduct the object to be joined, and can crush the microcapsules when sandwiching the conductive particles.

【0017】また、前記マイクロカプセルの大きさは前
記接合対象物の接合距離よりも大きくした構成とした。
上記構成においては、接合対象物を近接する工程におい
てマイクロカプセルを確実に圧潰させて、接合材料の加
熱を確実に行わせることができる。
Further, the size of the microcapsule is set to be larger than the joining distance of the joining object.
In the above configuration, the microcapsules can be reliably crushed in the step of bringing the joining object close to each other, and the joining material can be reliably heated.

【0018】また、前記反応発熱材は、前記接合材料の
基材と反応する材料とした構成とした。上記構成におい
ては、マイクロカプセルを圧潰することにより、周囲の
基材と反応させることができるため、接合力を確実に発
揮させることができる。
Further, the reaction heating material is made of a material that reacts with the base material of the bonding material. In the above configuration, the microcapsules can be reacted with the surrounding base material by crushing the microcapsules, so that the bonding force can be reliably exhibited.

【0019】また、前記反応発熱材を複数種類とし、当
該複数種類の反応発熱材が互いに反応する材料とした構
成とした。上記構成においては、発熱反応が起きる材料
であればよいので、用途に応じて反応材料の選定を容易
にすることができる。
Further, a plurality of types of the reaction exothermic materials are used, and the plurality of types of the reaction exothermic materials are made of materials that react with each other. In the above configuration, any material that causes an exothermic reaction may be used, so that the selection of the reaction material according to the application can be facilitated.

【0020】また、前記複数種類の反応発熱材を一対と
してユニットカプセル中に封止した構成とした。上記構
成においては、ユニットカプセルの圧潰時に一対の反応
発熱材の発熱効率を高めることができ、熱硬化性樹脂の
接着力を強化することができる。
Further, the plural kinds of reaction heating materials are sealed in a unit capsule as a pair. In the above configuration, the heat generation efficiency of the pair of reaction heating materials can be increased when the unit capsule is crushed, and the adhesive force of the thermosetting resin can be enhanced.

【0021】本発明に係る半導体装置においては、本発
明に係る接合方法により接合した構成とした。このた
め、半導体チップや基板といった接合対象物の性能が保
持され、良質な半導体装置を得ることができる。
The semiconductor device according to the present invention has a configuration in which the semiconductor device is joined by the joining method according to the present invention. For this reason, the performance of an object to be joined such as a semiconductor chip and a substrate is maintained, and a high-quality semiconductor device can be obtained.

【0022】本発明に係る電子機器においては、本発明
に係る半導体装置を搭載した構成とした。上記構成にお
いては、良質な半導体装置を搭載しているため、高性能
な電子機器とすることができる。
The electronic device according to the present invention has a configuration in which the semiconductor device according to the present invention is mounted. In the above structure, a high-quality semiconductor device is mounted, so that a high-performance electronic device can be obtained.

【0023】本発明に係る接合材料においては、熱硬化
性樹脂を基材とする接合材料に、反応発熱材をマイクロ
カプセルにて封止して前記接合材料に混入し、前記マイ
クロカプセルを接合対象物の押圧により圧潰可能に形成
した構成とした。上記構成においては、上記構成におい
ては、接合材料中にて発熱させることにより、半導体チ
ップや基板といった接合対象物に熱ストレスを与えるお
それを無くすことができる。このため、接合対象物の熱
による性能劣化を防止することができる。
In the bonding material according to the present invention, a reaction heating material is encapsulated in a bonding material having a thermosetting resin as a base material with microcapsules and mixed with the bonding material. It was configured to be crushable by pressing an object. In the above configuration, by generating heat in the bonding material, it is possible to eliminate the possibility of applying thermal stress to a bonding target such as a semiconductor chip or a substrate. For this reason, it is possible to prevent performance degradation due to heat of the joining object.

【0024】また、熱硬化性樹脂を基材とする接合材料
に、反応発熱材をマイクロカプセルにて封止して前記接
合材料表面に配し、前記マイクロカプセルを接合対象物
の押圧により圧潰可能に形成した構成とした。上記構成
においては、従来のACF,ACP、NCPにおいて直
接加熱を行うことができるため、接合対象物に熱による
悪影響を与えることなく接合を行うことができる。
In addition, a reaction heating material is sealed in a bonding material having a thermosetting resin as a base material with microcapsules and disposed on the surface of the bonding material, and the microcapsules can be crushed by pressing an object to be bonded. The structure was formed as follows. In the above configuration, since the conventional ACF, ACP, and NCP can be directly heated, the joining can be performed without adversely affecting the object to be joined by heat.

【0025】また、前記接合材料に導電粒子を備えると
ともに、前記マイクロカプセルの大きさは前記導電粒子
よりも大きいものとした構成とした。上記構成において
は、導電粒子により接合対象物の導通を図ることができ
るとともに、導電粒子を挟み込むときにマイクロカプセ
ルを圧潰することができる。
Further, the bonding material is provided with conductive particles, and the size of the microcapsules is larger than the conductive particles. In the above configuration, conduction of the object to be joined can be achieved by the conductive particles, and the microcapsules can be crushed when the conductive particles are sandwiched.

【0026】また、前記マイクロカプセルの大きさは前
記接合対象物の接合距離よりも大きくした構成とした。
上記構成においては、マイクロカプセルを圧潰すること
により、確実に発熱反応を起こすことができる。上記構
成においては、接合工程時にマイクロカプセルを確実に
圧潰することができ、接合面全体に接合力を与えること
ができる。
Further, the size of the microcapsule is set to be larger than the joining distance of the joining object.
In the above configuration, an exothermic reaction can be reliably caused by crushing the microcapsules. In the above configuration, the microcapsules can be reliably crushed at the time of the joining step, and a joining force can be given to the entire joining surface.

【0027】また、前記反応発熱材は、前記接合材料の
基材と反応する材料とした構成とした。上記構成におい
ては、接合対象物を近接する工程においてマイクロカプ
セルを確実に圧潰させて、接合材料の加熱を確実に行わ
せることができる。
The reaction heating material is made of a material that reacts with the base material of the bonding material. In the above configuration, the microcapsules can be reliably crushed in the step of bringing the joining object close to each other, and the joining material can be reliably heated.

【0028】また、前記反応発熱材を複数種類とし、当
該複数種類の反応発熱材が互いに反応する材料とした構
成とした。上記構成においては、発熱反応が起きる材料
であればよいので、用途に応じて反応材料の選定を容易
にすることができる。
Further, a plurality of types of the reaction exothermic materials are used, and the plurality of types of the reaction exothermic materials are made of materials which react with each other. In the above configuration, any material that causes an exothermic reaction may be used, so that the selection of the reaction material according to the application can be facilitated.

【0029】また、前記複数種類の反応発熱材を一対と
してユニットカプセル中に封止した構成とした。上記構
成においては、ユニットカプセルの圧潰時に一対の反応
発熱材の発熱効率を高めることができ、熱硬化性樹脂の
接着力を強化することができる。
Further, the plurality of types of reaction heating materials are sealed in a unit capsule as a pair. In the above configuration, the heat generation efficiency of the pair of reaction heating materials can be increased when the unit capsule is crushed, and the adhesive force of the thermosetting resin can be enhanced.

【0030】[0030]

【発明の実施の形態】本発明の半導体装置の接合方法、
半導体装置、電子機器、接合材料の実施形態について図
面に従って詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for bonding a semiconductor device according to the present invention,
Embodiments of a semiconductor device, an electronic device, and a bonding material will be described in detail with reference to the drawings.

【0031】図1、図2は本実施形態における接合材料
及び半導体装置の接合方法を示す工程説明図である。本
実施形態においては、半導体チップ38と基板34とを
接合対象として接合材料20にて接合し、半導体装置1
100とする場合について説明する。また、本実施形態
においては、前記半導体チップ38はマルチチップパッ
ケージにおける最下層の半導体チップの場合について説
明する。
FIGS. 1 and 2 are process explanatory views showing a bonding material and a method of bonding a semiconductor device in this embodiment. In the present embodiment, the semiconductor device 38 is bonded to the semiconductor chip 38 and the substrate 34 with the bonding material 20 as a bonding target.
The case of 100 will be described. In this embodiment, the case where the semiconductor chip 38 is the lowermost semiconductor chip in a multi-chip package will be described.

【0032】本実施形態における接合材料20につい
て、図1(a)を用いて説明する。本実施形態における
接合材料20は、ペースト状の熱硬化性樹脂22を基材
としている。前記接合材料20は、熱硬化性樹脂22中
に導電粒子24を有したACP21中に、反応発熱材2
6を封止したマイクロカプセル30と,反応発熱材28
を封止したマイクロカプセル32とを配置したものであ
る(以下、必要に応じて第1反応発熱材26、第2反応
発熱材28、第1マイクロカプセル30、第2マイクロ
カプセル32、と呼ぶ)。
The bonding material 20 according to the present embodiment will be described with reference to FIG. The bonding material 20 in the present embodiment has a paste-like thermosetting resin 22 as a base material. The bonding material 20 includes a reaction heating material 2 in an ACP 21 having conductive particles 24 in a thermosetting resin 22.
6 and the reaction heating material 28
(Hereinafter referred to as a first reaction heating material 26, a second reaction heating material 28, a first microcapsule 30, and a second microcapsule 32 as necessary). .

【0033】本実施形態においては、熱硬化性樹脂22
中に2種類の第1反応発熱材26,第2反応発熱材28
を配置し、当該2種類の第1反応発熱材26,第2反応
発熱材28が反応する材料としている。このような第1
反応発熱材26、第2反応発熱材28の材料としては、
酸とアルカリの組み合わせが一般的であるが、これに限
られるものではない。
In this embodiment, the thermosetting resin 22
Inside, two types of first reaction heating material 26 and second reaction heating material 28
Are arranged so that the two types of first reaction heating material 26 and second reaction heating material 28 react with each other. Such first
As a material of the reaction heating material 26 and the second reaction heating material 28,
Combinations of acids and alkalis are common, but are not limited thereto.

【0034】そして、本実施形態においては、第1マイ
クロカプセル30の粒径A,第2マイクロカプセル32
の粒径Bを、接合する接合面間の距離(基板34表面と
半導体チップ38の能動面との距離)Rよりも大きく形
成させている。本実施形態においては、基板34上の電
極36の高さは約20μmであり、半導体チップ38上
の電極40の高さは約15〜18μmである。このた
め、接合面間の距離Rは、導電粒子の径(3μm)を含
めても約40μm程度である。これに対して、本実施形
態におけるマイクロカプセル30,32の粒径A,B
は、接合面間の距離R(約40μm)よりも大きい約5
0μmとしている。これにより、接合面同士(本実施形
態においては半導体チップ38と基板34)を近接させ
る際に、接合面にマイクロカプセル30,32を確実に
押圧して圧潰させることができる。従って、接合工程中
に接合材料20の加熱を行うことができる。このため、
従来のように接合材料の加熱工程を設けたり、加熱ツー
ルを用いる必要がなくなるのである。
In the present embodiment, the particle diameter A of the first microcapsules 30 and the second microcapsules 32
Is larger than the distance R between the joining surfaces to be joined (the distance between the surface of the substrate 34 and the active surface of the semiconductor chip 38). In this embodiment, the height of the electrode 36 on the substrate 34 is about 20 μm, and the height of the electrode 40 on the semiconductor chip 38 is about 15 to 18 μm. Therefore, the distance R between the joining surfaces is about 40 μm including the diameter of the conductive particles (3 μm). On the other hand, the particle diameters A and B of the microcapsules 30 and 32 in the present embodiment.
Is about 5 which is larger than the distance R between the joining surfaces (about 40 μm).
It is 0 μm. Accordingly, when the bonding surfaces (the semiconductor chip 38 and the substrate 34 in the present embodiment) are brought close to each other, the microcapsules 30 and 32 can be reliably pressed against the bonding surface and crushed. Therefore, the bonding material 20 can be heated during the bonding process. For this reason,
This eliminates the need to provide a heating step of the bonding material and to use a heating tool as in the related art.

【0035】なお、前記熱硬化性樹脂22としては、エ
ポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂を
好ましく用いることができる。また、前記導電粒子24
としてはNi、はんだ等の金属粒子や、粒子、単繊維の
カーボンが好ましい。また、導電粒子24としては、ス
チレン、エポキシ樹脂粒子にNi,Auメッキ処理をし
たものでもよい。また、導電粒子24の粒径は3μm程
度のものを好ましく用いることができるが、粒径はこれ
に限られるものではなく、用途に応じて変更することが
できる。
As the thermosetting resin 22, an epoxy resin, a polyurethane resin, or an acrylic resin can be preferably used. The conductive particles 24
Preferred are metal particles such as Ni and solder, particles, and single fiber carbon. Further, as the conductive particles 24, styrene or epoxy resin particles may be plated with Ni or Au. The conductive particles 24 preferably have a particle size of about 3 μm, but the particle size is not limited to this, and can be changed according to the application.

【0036】本実施形態における半導体装置1100の
接合方法について説明する。図1(a)に示すように、
基板34上に接合材料20を配置する。そして、半導体
チップ38を、当該半導体チップ38の電極40が基板
電極36と対向するように、図示しない下降手段により
基板34に向けて下降させる。
A method of joining the semiconductor device 1100 according to the present embodiment will be described. As shown in FIG.
The bonding material 20 is disposed on the substrate 34. Then, the semiconductor chip 38 is lowered toward the substrate 34 by lowering means (not shown) such that the electrodes 40 of the semiconductor chip 38 face the substrate electrodes 36.

【0037】上記したように、マイクロカプセル30,
32の粒径A,Bは、接合面間の距離Rよりも大きく形
成されている。このため、図1(b)に示すように、前
記半導体チップ38は、基板34に接触する前にマイク
ロカプセル30,32に接触する。
As described above, the microcapsules 30,
The particle diameters A and B of 32 are formed larger than the distance R between the joining surfaces. Therefore, as shown in FIG. 1B, the semiconductor chip 38 contacts the microcapsules 30 and 32 before contacting the substrate 34.

【0038】本実施形態においては、半導体チップ38
をさらに基板34側に下降させることにより、図1
(c)に示すようにマイクロカプセル30,32を圧潰
することができる。このため、マイクロカプセル30,
32中の第1反応発熱材26,第2発熱反応材28が熱
硬化性樹脂22中に確実に流出させることができる。
In this embodiment, the semiconductor chip 38
1 is further lowered to the substrate 34 side,
The microcapsules 30, 32 can be crushed as shown in FIG. For this reason, the microcapsules 30,
The first reaction exothermic material 26 and the second exothermic reaction material 28 in the resin 32 can be reliably discharged into the thermosetting resin 22.

【0039】そして、図2(a)に示すように、マイク
ロカプセル30,32中から流出した第1反応発熱材2
6,第2反応発熱材28は、熱硬化性樹脂22中にて発
熱反応44を起こす。本実施形態においては、マイクロ
カプセル30,32を圧潰した後においても、さらに半
導体チップ38を基板34側に下降させるため、熱硬化
性樹脂22中の反応発熱材26,28を拡散させること
ができる。このため、確実に発熱反応を熱硬化性樹脂中
で発生させることができるようにしているのである。本
実施形態においては、発熱反応材26と、発熱反応材2
8とで、酸とアルカリの中和反応を起こすようにしてい
る。本実施形態においては、このときに半導体チップ3
8の電極40と、基板34の電極36とを導電粒子24
を介して接続させている。従って、基板34と電極36
を接続させつつ、熱硬化性樹脂22を硬化させて接合力
を発揮させることができ、半導体装置1100の製造処
理の短縮化を図ることができる。
Then, as shown in FIG. 2A, the first reaction heating material 2 flowing out of the microcapsules 30 and 32
6. The second reaction heating material 28 causes an exothermic reaction 44 in the thermosetting resin 22. In the present embodiment, even after the microcapsules 30 and 32 are crushed, the reaction heating materials 26 and 28 in the thermosetting resin 22 can be diffused in order to further lower the semiconductor chip 38 toward the substrate 34. . Therefore, the exothermic reaction can be reliably generated in the thermosetting resin. In the present embodiment, the exothermic reaction material 26 and the exothermic reaction material 2
8, the neutralization reaction between acid and alkali is caused. In this embodiment, at this time, the semiconductor chip 3
8 and the electrode 36 of the substrate 34 are connected to the conductive particles 24.
Is connected via. Therefore, the substrate 34 and the electrode 36
While connecting, the thermosetting resin 22 can be cured to exhibit a bonding force, and the manufacturing process of the semiconductor device 1100 can be shortened.

【0040】そして、図2(b)に示すように発熱反応
44のおきた周囲の熱硬化性樹脂22が加熱されるた
め、その部分の熱硬化性樹脂22が硬化して硬化領域4
6となる。硬化領域46となる際に、接合力を発揮する
のである。本実施形態においては、半導体チップ38の
電極40に挟まれた導電粒子24が伸張作用を働かせ
て、その力のバランスにより接合される面の位置が定ま
るのである。
Then, as shown in FIG. 2 (b), the surrounding thermosetting resin 22 which has undergone the exothermic reaction 44 is heated, so that the thermosetting resin 22 in that portion is hardened and the hardened area 4 is hardened.
It becomes 6. When it becomes the hardened area 46, it exerts a bonding force. In the present embodiment, the conductive particles 24 sandwiched between the electrodes 40 of the semiconductor chip 38 exert an extension action, and the position of the surface to be joined is determined by the balance of the forces.

【0041】なお、実施形態においては、反応発熱材を
有したマイクロカプセルをACP中に混入させた場合に
ついて説明したが、前記マイクロカプセルを混入させる
接合材料としてはACPに限らず、フィルム状のACF
や、導電粒子を有さないNCPでもよい。また、本実施
形態においては、反応発熱材同士にて反応させたが、反
応発熱材の材料としては基材と反応させる材料を用いて
もよい。
In the embodiment, the case where the microcapsules having the reaction heating material are mixed in the ACP has been described. However, the bonding material for mixing the microcapsules is not limited to the ACP, but may be a film-like ACF.
Alternatively, an NCP having no conductive particles may be used. Further, in the present embodiment, the reaction exothermic materials are reacted with each other, but a material that reacts with the base material may be used as a material of the reaction exothermic material.

【0042】以上説明したように、本実施形態における
半導体装置1100の接合方法においては、熱硬化性樹
脂中にて加熱するため、半導体チップ38や基板34に
熱による悪影響を与えることがない。また、特にマルチ
チップパッケージにおける半導体装置においても、接合
を好適に行うことができる。そして、従来のような加熱
加圧ツールを用いる必要がないため、接着時における周
辺機器のコンパクト化を図ることができる。また、余剰
な熱を加える必要がないため、接合に必要な装置も小型
化でき、半導体装置の接合に係るランニングコストを低
減させることができる。また、本実施形態においては、
マイクロカプセルの大きさを接合面間の距離よりも大き
くしているため、確実に接合力を発揮させることができ
る。
As described above, in the method for bonding the semiconductor device 1100 according to the present embodiment, the semiconductor chip 38 and the substrate 34 are not adversely affected by heat because they are heated in the thermosetting resin. Also, particularly in a semiconductor device in a multi-chip package, bonding can be suitably performed. In addition, since it is not necessary to use a heating and pressing tool as in the related art, it is possible to reduce the size of peripheral devices during bonding. Further, since there is no need to apply excessive heat, the size of a device required for bonding can be reduced, and the running cost of bonding the semiconductor device can be reduced. In the present embodiment,
Since the size of the microcapsules is larger than the distance between the joining surfaces, the joining force can be reliably exhibited.

【0043】図3には、本発明の実施形態に係る接合方
法により接合された半導体装置1100を示している。
回路基板34には、例えばガラスエポキシ基板等の有機
系基板を用いることが一般的である。回路基板34に
は、例えば銅からなるボンディング部が所望の回路とな
るように形成されている。そして、ボンディング部と半
導体装置1100の外部電極とを機械的に接続すること
で、それらの電気的導通を図ることができる。
FIG. 3 shows a semiconductor device 1100 joined by the joining method according to the embodiment of the present invention.
As the circuit board 34, an organic substrate such as a glass epoxy substrate is generally used. A bonding portion made of, for example, copper is formed on the circuit board 34 so as to form a desired circuit. Then, by electrically connecting the bonding portion and the external electrode of the semiconductor device 1100, electrical conduction therebetween can be achieved.

【0044】次に、本発明の第2実施形態における半導
体装置1100の接合方法について図4を用いて説明す
る。本実施形態においては、従来のACF50と別体の
マイクロカプセルを当該ACF50表面に配すること
で、接合対象物の接合を行う場合について説明する。本
実施形態においては、図5に示すような多数の電極部1
00を有する半導体チップ200を、基板34と接合す
る場合について説明する。そして、本実施形態において
は、半導体チップ200の電極部100にて接合を行う
場合について説明する。なお、第1実施形態と共通な部
材は同一符号を付してその説明を省略する。
Next, a method for bonding the semiconductor device 1100 according to the second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a case will be described in which a microcapsule separate from the conventional ACF 50 is arranged on the surface of the ACF 50 so as to join the objects to be joined. In the present embodiment, as shown in FIG.
The case where the semiconductor chip 200 having the pattern No. 00 is bonded to the substrate 34 will be described. In the present embodiment, a case in which the bonding is performed at the electrode unit 100 of the semiconductor chip 200 will be described. In addition, members common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0045】本実施形態においては、半導体チップ20
0と基板34の接合を、ACF50により行う。ACF
50は、図4(a)に示すように、フィルム状の熱硬化
性樹脂中に導電粒子24が含有されたものである。この
ような、ACF50を基板34の対応箇所に配置してお
く(なお、基板34は図4中に図示していない)。
In this embodiment, the semiconductor chip 20
0 and the substrate 34 are joined by the ACF 50. ACF
Reference numeral 50 denotes a film-like thermosetting resin containing conductive particles 24, as shown in FIG. Such an ACF 50 is arranged at a corresponding position on the substrate 34 (the substrate 34 is not shown in FIG. 4).

【0046】そして、本実施形態においては、図4
(b)に示すようにACF50の表面をマスク52にて
覆わせる。前記マスク52は開口部53を有しており、
当該開口部53は半導体チップ200の電極部100が
対向するように形成している。
In this embodiment, FIG.
The surface of the ACF 50 is covered with a mask 52 as shown in FIG. The mask 52 has an opening 53,
The opening 53 is formed so that the electrode portion 100 of the semiconductor chip 200 faces.

【0047】それから、図4(c)に示すように、反応
発熱材26,28を有したマイクロカプセル30,32
を開口部53内に配する。本実施形態においては、前記
マイクロカプセル30,32の粒径は導電粒子24より
も大きく形成している。このため、マイクロカプセル3
0,32は、導電粒子24の存在に係わらず、電極部1
00により圧潰され、接合力を発揮させることができ
る。もちろん、上記したように、マイクロカプセル3
0,32が接合間の距離よりも大きければ全域に接合力
を及ぼすことができる。
Then, as shown in FIG. 4 (c), microcapsules 30, 32 having reaction heating materials 26, 28
Are arranged in the opening 53. In the present embodiment, the microcapsules 30, 32 have a larger particle size than the conductive particles 24. Therefore, the microcapsules 3
Reference numerals 0 and 32 denote the electrode portions 1 regardless of the presence of the conductive particles 24.
It is crushed by 00 and can exert a bonding force. Of course, as described above, the microcapsules 3
If 0,32 is larger than the distance between the joints, the joining force can be exerted on the entire area.

【0048】そして、図4(d)に示すように、マスク
52をACF上から除去して、ACF50上にはマイク
ロカプセル30,32のみとする。その後、図4(e)
に示すように、半導体チップ200をACF50に向け
て下降させる。このとき、半導体チップ200の電極部
100は、ACF50のマイクロカプセル30,32に
対向して下降させるのである。そして、接合力を発揮さ
せることができる。ここから先の工程は、第1実施形態
の図1(b)以降の工程と同じように、マイクロカプセ
ル30,32を圧潰させてACF50により接合を行わ
せるのである。
Then, as shown in FIG. 4D, the mask 52 is removed from the ACF, leaving only the microcapsules 30 and 32 on the ACF 50. Then, FIG.
The semiconductor chip 200 is lowered toward the ACF 50 as shown in FIG. At this time, the electrode section 100 of the semiconductor chip 200 is lowered facing the microcapsules 30 and 32 of the ACF 50. And the joining force can be exhibited. In the subsequent steps, the microcapsules 30 and 32 are crushed and bonded by the ACF 50, as in the steps after FIG. 1B of the first embodiment.

【0049】このようにすることで、従来のACF50
を用いても、接合材料に直接加熱を行うができるため、
接合対象物に熱による悪影響を与えるおそれがない。ま
た、本実施形態のようにおいては、接合場所となる電極
100の箇所だけにマイクロカプセル30,32を配置
するので、必要箇所のみにマイクロカプセル30,32
を配置することができ、コストを低減させることができ
るのである。
By doing so, the conventional ACF 50
Can be used to directly heat the bonding material,
There is no possibility that the object to be joined is adversely affected by heat. Further, in the present embodiment, since the microcapsules 30 and 32 are arranged only at the positions of the electrodes 100 to be joined, the microcapsules 30 and 32 are arranged only at the necessary positions.
Can be arranged, and the cost can be reduced.

【0050】実施形態においては、接合材料として従来
におけるACFを用いた場合について説明したが、従来
のACPやNCPを用いる場合にも、同様に半導体装置
の接合を行うことができる。NCPを用いる場合におい
ては、上記のような電極を接合する場合は、電極により
確実に圧潰できるサイズであれば、サイズは特に限定し
なくても利点がある。確実に圧潰されて接合力を発揮さ
せることができる。
In the embodiment, the case where the conventional ACF is used as the bonding material has been described. However, when the conventional ACP or NCP is used, the semiconductor device can be similarly bonded. In the case where the NCP is used, when the electrodes are joined as described above, there is an advantage that the size is not particularly limited as long as the size can be securely crushed by the electrodes. It can be reliably crushed to exert a bonding force.

【0051】また、実施形態においては、マルチチップ
パッケージにおける半導体装置の接合方法について説明
したが、単体の半導体チップと基板との接合にも用いる
ことができ、また半導体チップ同士の接合や、他の部材
の接合にも用いることができる。
In the embodiment, the method of joining semiconductor devices in a multi-chip package has been described. However, the present invention can also be used for joining a single semiconductor chip to a substrate. It can also be used for joining members.

【0052】また、実施形態においては、対となる第1
反応発熱材26,第2反応発熱材28をそれぞれマイク
ロカプセルに封止する構成としたが、これに限らず、対
となる第1反応発熱材26,第2反応発熱材28を一組
のユニットとして、一体的にユニットカプセル中に配置
してもよい。このようにすることにより、マイクロカプ
セル中の第1反応発熱材26,第2反応発熱材28を圧
潰させれば、直ちに第1反応発熱材26,第2反応発熱
材28を反応させて、熱硬化性樹脂の加熱を行うことが
できる。また、封止材料としては、マイクロカプセルに
限られない。
Further, in the embodiment, the first
The reaction heating material 26 and the second reaction heating material 28 are each sealed in a microcapsule. However, the present invention is not limited to this, and the first reaction heating material 26 and the second reaction heating material 28 that make a pair are united as a unit. Alternatively, they may be integrally arranged in a unit capsule. By doing so, if the first reaction heating material 26 and the second reaction heating material 28 in the microcapsule are crushed, the first reaction heating material 26 and the second reaction heating material 28 are immediately reacted, and the heat is generated. Heating of the curable resin can be performed. Further, the sealing material is not limited to microcapsules.

【0053】なお、基板34の種類としては、シリコン
などを用いたリジッドな基板を好ましく用いることがで
きるが、これに限らずポリイミドなどを用いたフレキシ
ブル基板を用いてもよい。半導体チップ38は、シリコ
ン、ガリウム−砒素等で形成することができる。基板電
極36やチップ電極40としては、導電性金属である銅
などを好ましく用いることができる。
As the type of the substrate 34, a rigid substrate using silicon or the like can be preferably used, but not limited thereto, a flexible substrate using polyimide or the like may be used. The semiconductor chip 38 can be formed of silicon, gallium-arsenic, or the like. As the substrate electrode 36 and the chip electrode 40, a conductive metal such as copper can be preferably used.

【0054】また、本発明の半導体装置1100を備え
る電子機器として、図6にノート型パーソナルコンピュ
ータ1200を示している。前記ノート型パーソナルコ
ンピュータ1200は、高機能化を図った半導体装置1
100を備えているため、性能を向上させることができ
る。なお、半導体装置1100を備える電子機器として
は上記したノート型パーソナルコンピュータ1200に
限らず、例えば図7に示した携帯電話1300を好まし
く用いることができる。
FIG. 6 shows a notebook personal computer 1200 as an electronic apparatus including the semiconductor device 1100 of the present invention. The notebook personal computer 1200 is a highly functional semiconductor device 1.
100, the performance can be improved. Note that the electronic device including the semiconductor device 1100 is not limited to the notebook personal computer 1200 described above, and for example, a mobile phone 1300 illustrated in FIG. 7 can be preferably used.

【0055】[0055]

【発明の効果】本発明における半導体装置の接合方法に
おいては、接合材料にて発熱させることにより、従来の
ように熱硬化性樹脂の加熱に接合対象物を介する必要が
ない。従って、接合対象物である半導体チップや基板に
熱ストレスを与えるおそれを無くすることができる。特
に、従来においては実現が難しかった、マルチチップパ
ッケージの半導体装置の接合を好適に行うことができ
る。
According to the method for bonding semiconductor devices of the present invention, by generating heat with the bonding material, it is not necessary to heat the thermosetting resin through the bonding object as in the prior art. Therefore, it is possible to eliminate the possibility of giving a thermal stress to the semiconductor chip or the substrate to be joined. In particular, it is possible to suitably perform bonding of a semiconductor device of a multi-chip package, which has conventionally been difficult to realize.

【0056】本発明における接合材料においては、接合
材料に直接加熱を行うことができるため、接合面に悪影
響を与えるおそれを無くすることができる。また、接合
面を近接させることによりマイクロカプセルを圧潰する
ことができるため、接合工程を低減させることができ
る。
In the bonding material according to the present invention, since the bonding material can be directly heated, there is no possibility that the bonding surface is adversely affected. In addition, since the microcapsules can be crushed by bringing the bonding surfaces close to each other, the number of bonding steps can be reduced.

【0057】[0057]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における半導体装置の接合方
法を示す工程説明図である。
FIG. 1 is a process explanatory view showing a bonding method of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の実施形態における半導体装置の接合方
法を示す工程説明図である。
FIG. 2 is a process explanatory view showing a bonding method of the semiconductor device according to the embodiment of the present invention.

【図3】本発明における半導体装置の説明図である。FIG. 3 is an explanatory diagram of a semiconductor device according to the present invention.

【図4】本発明の第2実施形態における半導体装置の接
合方法を示す工程説明図である。
FIG. 4 is a process explanatory view showing a method for bonding semiconductor devices according to a second embodiment of the present invention.

【図5】LCDにおける半導体チップの上面図である。FIG. 5 is a top view of a semiconductor chip in the LCD.

【図6】本発明における半導体装置を備えたノート型パ
ーソナルコンピュータの説明図である。
FIG. 6 is an explanatory diagram of a notebook personal computer including a semiconductor device according to the present invention.

【図7】本発明における半導体装置を備えた携帯電話の
説明図である。
FIG. 7 is an explanatory diagram of a mobile phone including a semiconductor device according to the present invention.

【図8】従来における半導体装置の接合方法を示す工程
説明図である。
FIG. 8 is a process explanatory view showing a conventional semiconductor device bonding method.

【符号の説明】[Explanation of symbols]

1 ACP 2 熱硬化性樹脂 3 導電粒子 4 基板 5 基板電極 6 半導体チップ 7 チップ電極 8 加熱加圧ツール 21 ACP 22 熱硬化性樹脂 24 導電粒子 26 第1反応発熱材 28 第2反応発熱材 30 第1マイクロカプセル 32 第2マイクロカプセル 34 基板 36 基板電極 38 半導体チップ 40 チップ電極 44 発熱反応 46 硬化領域 50 ACF 52 マスク 100 電極 200 半導体チップ 1000 回路基板 1100 半導体装置 1200 ノート型パーソナルコンピュータ 1300 携帯電話 DESCRIPTION OF SYMBOLS 1 ACP 2 Thermosetting resin 3 Conductive particle 4 Substrate 5 Substrate electrode 6 Semiconductor chip 7 Chip electrode 8 Heating and pressurizing tool 21 ACP 22 Thermosetting resin 24 Conductive particle 26 First reaction heating material 28 Second reaction heating material 30 First 1 microcapsule 32 second microcapsule 34 substrate 36 substrate electrode 38 semiconductor chip 40 chip electrode 44 exothermic reaction 46 hardened region 50 ACF 52 mask 100 electrode 200 semiconductor chip 1000 circuit board 1100 semiconductor device 1200 notebook personal computer 1300 mobile phone

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂を基材とする接合材料に、
反応発熱材をマイクロカプセルにて封止して前記接合材
料に混入し、前記マイクロカプセルの混入した接合材料
を接合対象物にて押圧させることにより、前記マイクロ
カプセルを圧潰することを特徴とする半導体装置の接合
方法。
1. A bonding material comprising a thermosetting resin as a base material,
A semiconductor characterized in that the microcapsules are crushed by sealing a reaction heating material with microcapsules and mixing the bonding materials with the bonding material, and pressing the bonding material mixed with the microcapsules with an object to be bonded. Device joining method.
【請求項2】 熱硬化性樹脂を基材とする接合材料に、
反応発熱材をマイクロカプセルにて封止して前記接合材
料表面に配し、前記マイクロカプセルの混入した接合材
料を接合対象物にて押圧させることにより、前記マイク
ロカプセルを圧潰することを特徴とする半導体装置の接
合方法。
2. A bonding material comprising a thermosetting resin as a base material,
The microcapsules are crushed by sealing the reaction heat generating material with microcapsules and disposing them on the surface of the bonding material, and pressing the bonding material mixed with the microcapsules with the object to be bonded. A method for bonding a semiconductor device.
【請求項3】 前記接合材料に導電粒子を備えるととも
に、前記マイクロカプセルの大きさは前記導電粒子より
も大きいものとしたことを特徴とする請求項1または2
に記載の半導体装置の接合方法。
3. The bonding material includes conductive particles, and the size of the microcapsules is larger than that of the conductive particles.
13. The method for bonding a semiconductor device according to item 5.
【請求項4】 前記マイクロカプセルの大きさは前記接
合対象物の接合距離よりも大きくしたことを特徴とする
請求項1ないし3のいずれかに記載の半導体装置の接合
方法。
4. The method for bonding a semiconductor device according to claim 1, wherein the size of the microcapsule is larger than a bonding distance of the bonding object.
【請求項5】 前記反応発熱材は、前記接合材料の基材
と反応する材料としたことを特徴とする請求項1ないし
4のいずれかに記載の半導体装置の接合方法。
5. The bonding method for a semiconductor device according to claim 1, wherein the reaction heating material is a material that reacts with a base material of the bonding material.
【請求項6】 前記反応発熱材を複数種類とし、当該複
数種類の反応発熱材が互いに反応する材料としたことを
特徴とする請求項1ないし4のいずれかに記載の半導体
装置の接合方法。
6. The method according to claim 1, wherein a plurality of types of reaction heating materials are used, and the plurality of types of reaction heating materials react with each other.
【請求項7】 前記複数種類の反応発熱材を一対として
ユニットカプセル中に封止したことを特徴とする請求項
6に記載の半導体装置の接合方法。
7. The method according to claim 6, wherein the plurality of types of reaction heating materials are sealed in a unit capsule as a pair.
【請求項8】 請求項1ないし7に記載の半導体装置の
接合方法にて接合したことを特徴とする半導体装置。
8. A semiconductor device joined by the method for joining semiconductor devices according to claim 1.
【請求項9】 請求項8に記載の半導体装置を搭載した
ことを特徴とする電子機器。
9. An electronic apparatus comprising the semiconductor device according to claim 8.
【請求項10】 熱硬化性樹脂を基材とする接合材料
に、反応発熱材をマイクロカプセルにて封止して前記接
合材料に混入し、前記マイクロカプセルを接合対象物の
押圧により圧潰可能に形成したことを特徴とする接合材
料。
10. A bonding material having a thermosetting resin as a base material, a reaction heating material is sealed in microcapsules and mixed with the bonding material, and the microcapsules can be crushed by pressing an object to be bonded. A bonding material characterized by being formed.
【請求項11】 熱硬化性樹脂を基材とする接合材料
に、反応発熱材をマイクロカプセルにて封止して前記接
合材料表面に配し、前記マイクロカプセルを接合対象物
の押圧により圧潰可能に形成したことを特徴とする接合
材料。
11. A bonding material having a thermosetting resin as a base material, a reaction heating material is sealed with microcapsules and arranged on the surface of the bonding material, and the microcapsules can be crushed by pressing an object to be bonded. A bonding material characterized in that it is formed into a material.
【請求項12】 前記接合材料に導電粒子を備えるとと
もに、前記マイクロカプセルの大きさは前記導電粒子よ
りも大きいものとしたことを特徴とする請求項10また
は11に記載の接合材料。
12. The bonding material according to claim 10, wherein the bonding material includes conductive particles, and the size of the microcapsules is larger than the conductive particles.
【請求項13】 前記マイクロカプセルの大きさは前記
接合対象物の接合距離よりも大きくしたことを特徴とす
る請求項10または11に記載の接合材料。
13. The joining material according to claim 10, wherein the size of the microcapsule is larger than a joining distance of the joining object.
【請求項14】 前記反応発熱材は、前記接合材料の基
材と反応する材料としたことを特徴とする請求項10な
いし13のいずれかに記載の接合材料。
14. The bonding material according to claim 10, wherein the reaction heating material is a material that reacts with a base material of the bonding material.
【請求項15】 前記反応発熱材を複数種類とし、当該
複数種類の反応発熱材が互いに反応する材料としたこと
を特徴とする請求項10ないし13のいずれかに記載の
接合材料。
15. The bonding material according to claim 10, wherein a plurality of types of the reaction exothermic materials are used, and the plurality of types of reaction exothermic materials react with each other.
【請求項16】 前記複数種類の反応発熱材を一対とし
てユニットカプセル中に封止したことを特徴とする請求
項15に記載の接合材料。
16. The bonding material according to claim 15, wherein the plurality of types of reaction heating materials are sealed in a unit capsule as a pair.
JP35649299A 1999-12-15 1999-12-15 Semiconductor device, bonding method, electronic equipment and bonding material Withdrawn JP2001176924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35649299A JP2001176924A (en) 1999-12-15 1999-12-15 Semiconductor device, bonding method, electronic equipment and bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35649299A JP2001176924A (en) 1999-12-15 1999-12-15 Semiconductor device, bonding method, electronic equipment and bonding material

Publications (1)

Publication Number Publication Date
JP2001176924A true JP2001176924A (en) 2001-06-29

Family

ID=18449295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35649299A Withdrawn JP2001176924A (en) 1999-12-15 1999-12-15 Semiconductor device, bonding method, electronic equipment and bonding material

Country Status (1)

Country Link
JP (1) JP2001176924A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531420B1 (en) * 2000-10-11 2005-11-28 앰코 테크놀로지 코리아 주식회사 paste for fabricating semiconductor package
US7220785B2 (en) 2003-05-12 2007-05-22 Seiko Epson Corporation Anisotropically conductive adhesive comprising crushable microcapsules adhered to a surface of conductive particles
KR20120052378A (en) * 2009-07-30 2012-05-23 오스람 옵토 세미컨덕터스 게엠베하 Organic component and method for the production thereof
US9856404B2 (en) 2015-11-11 2018-01-02 International Business Machines Corporation Self-heating sealant or adhesive employing multi-compartment microcapsules
US9878039B1 (en) 2016-09-01 2018-01-30 International Business Machines Corporation Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction
US9896389B2 (en) 2015-11-11 2018-02-20 International Business Machines Corporation Heat-generating multi-compartment microcapsules
US10278284B2 (en) 2016-08-25 2019-04-30 International Business Machines Corporation Laminate materials with embedded heat-generating multi-compartment microcapsules
US10309692B2 (en) 2015-11-11 2019-06-04 International Business Machines Corporation Self-heating thermal interface material
US10328535B2 (en) 2016-11-07 2019-06-25 International Business Machines Corporation Self-heating solder flux material
US10357921B2 (en) 2017-05-24 2019-07-23 International Business Machines Corporation Light generating microcapsules for photo-curing
US10392452B2 (en) 2017-06-23 2019-08-27 International Business Machines Corporation Light generating microcapsules for self-healing polymer applications
US10696899B2 (en) 2017-05-09 2020-06-30 International Business Machines Corporation Light emitting shell in multi-compartment microcapsules
US10900908B2 (en) 2017-05-24 2021-01-26 International Business Machines Corporation Chemiluminescence for tamper event detection

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531420B1 (en) * 2000-10-11 2005-11-28 앰코 테크놀로지 코리아 주식회사 paste for fabricating semiconductor package
US7220785B2 (en) 2003-05-12 2007-05-22 Seiko Epson Corporation Anisotropically conductive adhesive comprising crushable microcapsules adhered to a surface of conductive particles
KR101926846B1 (en) * 2009-07-30 2019-03-07 오스람 오엘이디 게엠베하 Organic component and method for the production thereof
KR20120052378A (en) * 2009-07-30 2012-05-23 오스람 옵토 세미컨덕터스 게엠베하 Organic component and method for the production thereof
US9926471B2 (en) 2015-11-11 2018-03-27 International Business Machines Corporation Self-heating sealant or adhesive employing multi-compartment microcapsules
US9856404B2 (en) 2015-11-11 2018-01-02 International Business Machines Corporation Self-heating sealant or adhesive employing multi-compartment microcapsules
US10072185B2 (en) 2015-11-11 2018-09-11 International Business Machines Corporation Self-heating sealant or adhesive employing multi-compartment microcapsules
US11085672B2 (en) 2015-11-11 2021-08-10 International Business Machines Corporation Self-heating thermal interface material
US10309692B2 (en) 2015-11-11 2019-06-04 International Business Machines Corporation Self-heating thermal interface material
US9896389B2 (en) 2015-11-11 2018-02-20 International Business Machines Corporation Heat-generating multi-compartment microcapsules
US11140779B2 (en) 2016-08-25 2021-10-05 International Business Machines Corporation Laminate materials with embedded heat-generating multi-compartment microcapsules
US10278284B2 (en) 2016-08-25 2019-04-30 International Business Machines Corporation Laminate materials with embedded heat-generating multi-compartment microcapsules
US10548978B2 (en) 2016-09-01 2020-02-04 International Business Machines Corporation Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction
US9878039B1 (en) 2016-09-01 2018-01-30 International Business Machines Corporation Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction
US11007268B2 (en) 2016-09-01 2021-05-18 International Business Machines Corporation Microcapsule having a microcapsule shell material that is rupturable via a retro-dimerization reaction
US10328535B2 (en) 2016-11-07 2019-06-25 International Business Machines Corporation Self-heating solder flux material
US10610980B2 (en) 2016-11-07 2020-04-07 International Business Machines Corporation Self-heating solder flux material
US10696899B2 (en) 2017-05-09 2020-06-30 International Business Machines Corporation Light emitting shell in multi-compartment microcapsules
US10357921B2 (en) 2017-05-24 2019-07-23 International Business Machines Corporation Light generating microcapsules for photo-curing
US10900908B2 (en) 2017-05-24 2021-01-26 International Business Machines Corporation Chemiluminescence for tamper event detection
US10926485B2 (en) 2017-05-24 2021-02-23 International Business Machines Corporation Light generating microcapsules for photo-curing
US10703834B2 (en) 2017-06-23 2020-07-07 International Business Machines Corporation Light generating microcapsules for self-healing polymer applications
US10696761B2 (en) 2017-06-23 2020-06-30 International Business Machines Corporation Light generating microcapsules for self-healing polymer applications
US10392452B2 (en) 2017-06-23 2019-08-27 International Business Machines Corporation Light generating microcapsules for self-healing polymer applications

Similar Documents

Publication Publication Date Title
JP3927759B2 (en) Mounting electronic components on a circuit board
US6518097B1 (en) Method for fabricating wafer-level flip chip package using pre-coated anisotropic conductive adhesive
JP2002319647A (en) Method for manufacturing semiconductor device
JP2001176924A (en) Semiconductor device, bonding method, electronic equipment and bonding material
JP2001326879A (en) Display driver module and its manufacturing method
JP2906612B2 (en) Microcapsule type conductive adhesive and bonding method
JP3162068B2 (en) Semiconductor chip mounting method
JPS63151033A (en) Manufacture of semiconductor device
JP2002026071A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
KR100510518B1 (en) Semiconductor device and packaging method of the semiconductor device
JP2002299809A (en) Electronic component mounting method and equipment
JP2003045236A (en) Anisotropy conductive film and connection method of integrated circuit device
JPH05235096A (en) Method of mounting electronic component on board
JPH10270499A (en) Ic chip mounting board
JP3923248B2 (en) Method of mounting electronic component on circuit board and circuit board
JPH1167832A (en) Electronic equipment using semiconductor device and method for mounting semiconductor device
JPS63102329A (en) Semiconductor integrated circuit element mounting process
JP2817425B2 (en) Semiconductor device mounting method
JP2959215B2 (en) Electronic component and its mounting method
JP2002244146A (en) Method for internal connection of flat panel display provided with opaque substrate, and device formed by the method
JPH11330143A (en) Semiconductor device and manufacture thereof
JPH11186493A (en) Connection structure and connection method for semiconductor element
JP2001127105A (en) Manufacturing method of semiconductor device and pressing jig for bonding
JPH04317347A (en) Connecting method for integrated circuit element
TWI285947B (en) Packaging structure by using micro-capsule adhesive material and its packaging method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306