JP2001174188A - Serpentine type heat exchanger and method of manufacturing tube used therefor - Google Patents

Serpentine type heat exchanger and method of manufacturing tube used therefor

Info

Publication number
JP2001174188A
JP2001174188A JP35758299A JP35758299A JP2001174188A JP 2001174188 A JP2001174188 A JP 2001174188A JP 35758299 A JP35758299 A JP 35758299A JP 35758299 A JP35758299 A JP 35758299A JP 2001174188 A JP2001174188 A JP 2001174188A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
refrigerant passage
serpentine
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35758299A
Other languages
Japanese (ja)
Inventor
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP35758299A priority Critical patent/JP2001174188A/en
Publication of JP2001174188A publication Critical patent/JP2001174188A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments

Abstract

PROBLEM TO BE SOLVED: To promote a pressure resistance of the joint of a tube and a header tank in a serpentine type heat exchanger. SOLUTION: The serpentine heat exchanger 1 is provided with a serpentine tube 2 with a plurality of refrigerant paths formed therein, a plurality of header tank 4a, 4b jointed to predetermined positions of the tube 2 to communicate with the refrigerant paths, fins 3 interposed between opposed rectilinear parts 2a. In the heat exchanger 1, the width of joint part 10 of the tube 2 to the header tanks 4a, 4b is made smaller than that of the other part of the tube 2, and the cross sectional area of the refrigerant path at the joint part 10 of the tube 2 is made smaller than that of the refrigerant path in the other part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空調装置等に用
いられる熱交換器に関し、特に冷媒が流通するチューブ
が蛇行状に形成されたサーペンタイン型熱交換器及びこ
れに用いられるチューブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used for an air conditioner or the like, and more particularly to a serpentine type heat exchanger having a meandering tube through which a refrigerant flows, and a method of manufacturing a tube used in the serpentine type heat exchanger. .

【0002】[0002]

【従来の技術】蒸気圧縮式冷凍サイクルの一部を構成す
る蒸発器等の熱交換器としては、従来から様々なタイプ
のものが利用されているが、その中の一つとして、直線
部と折曲部とが交互に形成された蛇行状チューブと、こ
の蛇行状チューブと連結するヘッダタンクを備えるサー
ペンタイン型熱交換器がある。
2. Description of the Related Art Various types of heat exchangers, such as evaporators, which constitute a part of a vapor compression refrigeration cycle, have been used in the past. There is a serpentine heat exchanger including a meandering tube in which bent portions are alternately formed, and a header tank connected to the meandering tube.

【0003】通常、冷媒が流通するチューブとこのチュ
ーブに連通するヘッダタンクとを有して構成される熱交
換器においては、このチューブとヘッダタンクとの接合
部分が耐圧性等の面で弱点となっている。しかし、上記
サーペンタイン型熱交換器は、例えば直線部のみからな
る直線状チューブを多数平行に配しこれら直線状チュー
ブの両端部がそれぞれ2つのヘッダタンクと連結するタ
イプの熱交換器に比べて、チューブとヘッダタンクとの
接合部分が少ないため、耐圧性に優れるという特性を持
っている。
Usually, in a heat exchanger having a tube through which a refrigerant flows and a header tank communicating with the tube, the joint between the tube and the header tank has weak points in terms of pressure resistance and the like. Has become. However, the serpentine-type heat exchanger is, for example, compared to a heat exchanger of a type in which a large number of straight tubes composed only of straight portions are arranged in parallel, and both ends of these straight tubes are respectively connected to two header tanks. Since there are few joints between the tube and the header tank, it has excellent pressure resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、例えば
二酸化炭素等の臨界温度が高い冷媒を用いた冷凍サイク
ルにおいては、蒸発器等の熱交換器に極めて高い圧力が
かかるため、サーペンタイン型の熱交換器を用いた場合
であっても、チューブとヘッダタンクとの接合部分にか
かる負担は多大なものとなる。このため、チューブとヘ
ッダタンクとの接合部分における耐圧性の向上が求めら
れている。
However, in a refrigeration cycle using a refrigerant having a high critical temperature such as carbon dioxide, for example, a heat exchanger such as an evaporator is subjected to an extremely high pressure, so that a serpentine type heat exchanger is used. However, even when the pipe is used, the load on the joint between the tube and the header tank is enormous. For this reason, there is a demand for improved pressure resistance at the joint between the tube and the header tank.

【0005】そこで、この発明は、サーペンタイン型熱
交換器において、チューブとヘッダタンクとの接合部分
の耐圧性を向上させることを目的とするものである。
Accordingly, an object of the present invention is to improve the pressure resistance of a joint between a tube and a header tank in a serpentine heat exchanger.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】上記課題を解決するために、この発明は、
蛇行状に形成され内部に複数の冷媒通路が形成されたチ
ューブと、該チューブの所定部分に接続され前記冷媒通
路と連通する複数のヘッダタンクと、前記チューブの対
面する直線部間に介在されるフィンとを有するサーペン
タイン型熱交換器において、前記チューブの前記ヘッダ
タンクとの接続部分の幅が、該チューブの他の部分の幅
よりも小さく形成され、前記チューブの接続部分におけ
る前記冷媒通路の断面積が、前記他の部分における前記
冷媒通路の断面積よりも小さくなっているものである
(請求項1)。
[0007] In order to solve the above problems, the present invention provides:
A tube formed in a meandering shape and having a plurality of refrigerant passages therein, a plurality of header tanks connected to a predetermined portion of the tube and communicating with the refrigerant passage, and interposed between straight lines facing the tube. In the serpentine heat exchanger having fins, the width of a connecting portion of the tube with the header tank is formed smaller than the width of the other portion of the tube, and the refrigerant passage at the connecting portion of the tube is cut off. The area is smaller than the cross-sectional area of the refrigerant passage in the other portion (claim 1).

【0008】このように、チューブのヘッダタンクとの
接続部分のみを幅方向に縮小し、この接続部分の冷媒通
路の断面積を縮小することにより、接続部分におけるチ
ューブの厚さ方向にかかる力が減少する。これによれ
ば、耐圧性を上げるためにチューブ全体を肉厚にした
り、ヘッダタンクの接合部を肉厚にしたりする必要がな
いので、重量の増加や熱伝導効率の悪化を招くことな
く、耐圧性の高いサーペンタイン型熱交換器を製造する
ことができる。
As described above, by reducing only the connecting portion of the tube to the header tank in the width direction and reducing the cross-sectional area of the refrigerant passage at the connecting portion, the force applied to the connecting portion in the thickness direction of the tube is reduced. Decrease. According to this, it is not necessary to increase the thickness of the entire tube or the thickness of the joint portion of the header tank in order to increase the pressure resistance. It is possible to manufacture a serpentine heat exchanger having high performance.

【0009】また、この発明は、上記請求項1に記載の
サーペンタイン型熱交換器に用いられるチューブの製造
方法であって、前記チューブを、該チューブの幅及び前
記冷媒通路の断面積が該チューブの全長に渡って略同一
となるように押し出し成形する第1の行程と、所定の加
圧手段により、前記チューブの接続部分のみを該チュー
ブの幅が縮小する方向に加圧する第2の行程とを含むも
のである(請求項2)。
The present invention also relates to a method for manufacturing a tube used in a serpentine heat exchanger according to claim 1, wherein the tube has a width and a cross-sectional area of the refrigerant passage which are different from each other. A first step of extruding so as to be substantially the same over the entire length of the tube, and a second step of pressing only the connection portion of the tube in a direction in which the width of the tube is reduced by a predetermined pressing means. (Claim 2).

【0010】これによれば、前記チューブは、先ず全長
に渡って略同一の幅となるように、且つ冷媒通路の断面
積及び形状が略同一となるように押し出し成形された後
(第1の行程)、接続部分のみがプレス器等の加圧手段
により幅方向に圧縮されるが(第2の行程)、この第2
の行程においてチューブの接続部分の幅が縮小する際
に、この接続部分の冷媒通路も自然に縮小される。例え
ば、前記第1の行程において冷媒通路の形状を断面円形
とした場合、前記第2の行程における圧縮後には、接続
部分の冷媒通路は断面縦長の楕円形となる。
According to this, the tube is first extruded so as to have substantially the same width over the entire length and to have substantially the same cross-sectional area and shape of the refrigerant passage (first tube). Stroke), only the connecting portion is compressed in the width direction by a pressing means such as a press machine (second stroke).
When the width of the connecting portion of the tube is reduced in the step, the refrigerant passage of this connecting portion is naturally reduced. For example, when the shape of the refrigerant passage is circular in cross section in the first stroke, after compression in the second stroke, the refrigerant passage in the connection portion has an elliptical shape with a vertically long cross section.

【0011】また、接続部分の圧縮分はほとんど冷媒通
路の縮小によりまかなわれるので、各冷媒通路間の間隔
(肉厚)はほとんど変化することはない。これにより、
チューブの剛性をアップさせるために、チューブを全長
に渡って肉厚に形成した場合に比べて重量が軽くなると
共に熱伝導効率の悪化も防ぐことができる。
Further, since the compression amount of the connection portion is almost covered by the reduction of the refrigerant passage, the space (thickness) between the refrigerant passages hardly changes. This allows
In order to increase the rigidity of the tube, it is possible to reduce the weight and prevent the heat conduction efficiency from deteriorating as compared with the case where the tube is formed thick over the entire length.

【0012】また、前記第2の行程において、前記チュ
ーブを加圧するのに先だち、前記接続部分の冷媒通路に
中子を挿入しておくとよい(請求項3)。
[0012] In the second step, a core may be inserted into the refrigerant passage of the connecting portion before the tube is pressurized (claim 3).

【0013】これによれば、プレス器等でチューブの接
続部分を圧縮する際に、この接続部分の冷媒流路が完全
に潰れてしまうことを防止することができる。
According to this, when the connecting portion of the tube is compressed by a press or the like, it is possible to prevent the refrigerant flow path of the connecting portion from being completely collapsed.

【0014】[0014]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1に示すこの発明の第1の実施の形態に
係る熱交換器1は、直線部2aと折曲部2bとが交互に
形成された蛇行状のサーペンタインチューブ2(以下、
単にチューブ2と表記する)と、このチューブ2の一端
部及び他端部に連結した筒状の流入用ヘッダタンク4a
及び流出用ヘッダタンク4bと、チューブ2の直線部2
a間にろう付け等により固定されたコルゲート状のフィ
ン5とを有して構成されている。尚、このフィン5に
は、表面積を増大させ熱交換効率を向上させるためのル
ーバ(図示せず)が形成されているとよい。
A heat exchanger 1 according to a first embodiment of the present invention shown in FIG. 1 has a serpentine tube 2 (hereinafter, referred to as a serpentine tube) in which linear portions 2a and bent portions 2b are alternately formed.
Tube 2) and a tubular inflow header tank 4a connected to one end and the other end of the tube 2.
And the outflow header tank 4b and the straight portion 2 of the tube 2.
and a corrugated fin 5 fixed between them by brazing or the like. The fin 5 may be provided with a louver (not shown) for increasing the surface area and improving the heat exchange efficiency.

【0016】図2及び図3に示すように、前記チューブ
2の内部には、複数の断面円形状の冷媒通路11がこの
チューブ2の幅方向に一列に並んで形成されており、こ
の冷媒通路11は、チューブ2の前記一端部から前記他
端部まで連通している。これにより、外部から流入用ヘ
ッダタンク4aに流入した冷媒Cは、チューブ2内部の
冷媒通路11を蛇行状に通りフィン5を介して空気と熱
交換した後、流出用ヘッダタンク4bを経て外部へ流出
する。
As shown in FIGS. 2 and 3, a plurality of circular refrigerant passages 11 having a circular cross section are formed in a line in the width direction of the tube 2 inside the tube 2. 11 communicates from the one end of the tube 2 to the other end. As a result, the refrigerant C flowing from the outside into the header tank 4a for inflow passes through the refrigerant passage 11 inside the tube 2 in a meandering manner and exchanges heat with the air through the fins 5 and then to the outside via the header tank 4b for outflow. leak.

【0017】前記チューブ2の両端は、前記ヘッダタン
ク4a,4bと接続する接続部分10であり、この接続
部分10を除く部分を中間部分9と称する。前記中間部
分9では、図2(a),(b)に示すように、チューブ
2の幅(図中上下方向の長さ)が略同一であると共に、
冷媒通路11の断面が略円形状となっている。一方、前
記接続部分10は、図3(a)に示すように、チューブ
2の幅が前記中間部分9よりも小さくなっていると共
に、図3(b)に示すように、内部の冷媒通路11’は
チューブ2の幅方向に潰されてチューブ2の厚さ方向
(図中左右方向)に長い楕円形状となっており、前記中
間部分9における冷媒通路11に比べて断面積が小さく
なっている。また、接続部分10と中間部分9との間
は、なだらかな傾斜部12となっている。
Both ends of the tube 2 are connection portions 10 connected to the header tanks 4a and 4b, and a portion excluding the connection portion 10 is referred to as an intermediate portion 9. In the intermediate portion 9, as shown in FIGS. 2A and 2B, the width of the tube 2 (the length in the vertical direction in the figure) is substantially the same,
The cross section of the refrigerant passage 11 is substantially circular. On the other hand, as shown in FIG. 3A, the connecting portion 10 has a tube 2 having a width smaller than that of the intermediate portion 9 and, as shown in FIG. ′ Is crushed in the width direction of the tube 2 and has an elliptical shape long in the thickness direction of the tube 2 (left-right direction in the figure), and has a smaller cross-sectional area than the refrigerant passage 11 in the intermediate portion 9. . A gentle slope 12 is provided between the connection portion 10 and the intermediate portion 9.

【0018】また、図4に示す中間部分9の断面図にお
いて、冷媒通路11のチューブ幅方向の長さ(直径)を
Lh 、冷媒通路11間の間隔をLi とし、また図5に示
す接続部分10の断面図において、冷媒通路11’のチ
ューブ幅方向の長さをLh 、冷媒通路11’間の間隔を
Li ’とすると、Lh ’<Lh であり、且つLi ≒Li
’となっている。即ち、接続部分10の冷媒通路1
1’は中間部分9の冷媒通路11に比べて断面積が小さ
くなっているが、冷媒通路11’の間隔については、中
間部分9の冷媒通路11の間隔と略同じということであ
る。
In the sectional view of the intermediate portion 9 shown in FIG. 4, the length (diameter) of the refrigerant passage 11 in the tube width direction is Lh, the interval between the refrigerant passages 11 is Li, and the connection portion shown in FIG. 10, if the length of the refrigerant passage 11 'in the tube width direction is Lh and the interval between the refrigerant passages 11' is Li ', then Lh'<Lh, and LihLi.
'. That is, the refrigerant passage 1 of the connection portion 10
Although 1 ′ has a smaller cross-sectional area than the refrigerant passage 11 of the intermediate portion 9, the interval of the refrigerant passage 11 ′ is substantially the same as the interval of the refrigerant passage 11 of the intermediate portion 9.

【0019】前記流入及び流出用ヘッダタンク4a,4
bには、前記チューブ2の接続部分10の形状に合わせ
て連結口5がそれぞれ形成されている。この連結口5
に、前記チューブ2の接続部分10を差し込み、ろう付
け等により固定する。
The inflow and outflow header tanks 4a, 4
In b, connection ports 5 are respectively formed according to the shape of the connection portion 10 of the tube 2. This connection port 5
Then, the connecting portion 10 of the tube 2 is inserted and fixed by brazing or the like.

【0020】上記構成の熱交換器1によれば、チューブ
2とヘッダタンク4a,4bとの接続部分10の冷媒通
路11’が中間部分9よりも狭くなっているために、冷
媒Cの単位時間の通過量が減少し、この接続部分10に
かかる圧力が減少するので、チューブ2とヘッダタンク
4a,4bとの接続部分の耐圧性を向上させることがで
きる。これにより、チューブ2の全体、又はヘッダタン
ク4a,4bの連結口5付近の肉厚を厚く形成する必要
がなくなるため、重量の増加や熱伝導効率の低下を招く
ことなく、熱交換器1の耐圧性を向上させることができ
る。また、チューブ2をヘッダタンク4a,4bの連結
口5に差し込む際に、前記接続部分10の傾斜部12が
ストッパの役目をはたすので、組付け作業性が向上す
る。
According to the heat exchanger 1 having the above-described structure, since the refrigerant passage 11 'of the connecting portion 10 between the tube 2 and the header tanks 4a and 4b is narrower than the intermediate portion 9, the unit time of the refrigerant C And the pressure applied to the connecting portion 10 is reduced, so that the pressure resistance of the connecting portion between the tube 2 and the header tanks 4a and 4b can be improved. This eliminates the need to increase the thickness of the entire tube 2 or the vicinity of the connection port 5 of the header tanks 4a and 4b, so that the weight of the heat exchanger 1 does not decrease and the heat transfer efficiency does not decrease. The pressure resistance can be improved. In addition, when the tube 2 is inserted into the connection port 5 of the header tanks 4a and 4b, the inclined portion 12 of the connection portion 10 serves as a stopper, so that the assembling workability is improved.

【0021】次に、図6及び図7(a),(b)を参照
して、上記チューブ2の製造方法を説明する。
Next, a method for manufacturing the tube 2 will be described with reference to FIGS. 6 and 7A and 7B.

【0022】先ず、図6に示すように、第1の行程にお
いて、公知の押し出し成形法により、チューブ2を、チ
ューブ2の幅及び冷媒通路11の断面積がチューブ2の
全長に渡って略同一となるように成形する。次に、第2
の行程において、所定のプレス器15を用いて、前記接
続部分11をチューブ2の幅を縮小させる方向に圧縮す
る。
First, as shown in FIG. 6, in a first step, the width of the tube 2 and the cross-sectional area of the refrigerant passage 11 are substantially the same over the entire length of the tube 2 by a known extrusion molding method. It is molded so that Next, the second
In the step (3), the connecting portion 11 is compressed in a direction to reduce the width of the tube 2 by using a predetermined press device 15.

【0023】図7(a),(b)は、前記第2の行程に
おいて、前記チューブ2の接続部分10を形成する際の
作業を示すものである。先ず、図7(a)に示すよう
に、チューブ2の端部から冷媒通路11にこの冷媒通路
11と同形の断面円形状の中子20を挿入する。その
後、図7(b)に示すように、プレス器15により、チ
ューブ2端部の幅を狭める方向に両側から加圧する。ま
た、このプレス器15には、チューブ2端部とは反対側
に圧接する部分に斜面16が形成されていることによ
り、前記接続部分10と中間部分9との間がなだらかな
傾斜部12となる。
FIGS. 7A and 7B show an operation for forming the connecting portion 10 of the tube 2 in the second step. First, as shown in FIG. 7A, a core 20 having the same circular cross section as the refrigerant passage 11 is inserted into the refrigerant passage 11 from the end of the tube 2. Thereafter, as shown in FIG. 7B, pressure is applied from both sides by a press 15 in a direction to reduce the width of the end of the tube 2. Further, in the press device 15, a slope 16 is formed in a portion that is pressed against the side opposite to the end of the tube 2, so that a gentle slope 12 between the connection portion 10 and the intermediate portion 9 is formed. Become.

【0024】これにより、チューブ2端部の幅が縮小す
ると同時に、冷媒通路11’の断面積も自然に縮小され
ることによって、前記接続部分10を形成することがで
きる。更に、前記中子12が冷媒通路11’に挿入され
ていることにより、冷媒通路11’が完全に潰れてしま
うことを防止しつつ、断面積の縮小を行うことができ
る。尚、前記中子12を使用しなくとも、上記成形法は
実行可能である。
As a result, at the same time as the width of the end of the tube 2 is reduced, the cross-sectional area of the refrigerant passage 11 'is naturally reduced, whereby the connection portion 10 can be formed. Further, since the core 12 is inserted into the refrigerant passage 11 ', the cross-sectional area can be reduced while preventing the refrigerant passage 11' from being completely collapsed. Note that the above molding method can be performed without using the core 12.

【0025】また、図1には、1つのチューブ2の両端
部にそれぞれ流入用ヘッダタンク4aと流出用ヘッダタ
ンク4bとを接続する構成のサーペンタイン型熱交換器
1を示したが、この発明はこの構成に限られるものでは
なく、チューブ2の中間部に更にヘッダタンクを接続す
る等の構成においても適用できるものである。
FIG. 1 shows a serpentine heat exchanger 1 in which an inflow header tank 4a and an outflow header tank 4b are connected to both ends of one tube 2, respectively. The present invention is not limited to this configuration, and can be applied to a configuration in which a header tank is further connected to an intermediate portion of the tube 2.

【0026】[0026]

【発明の効果】以上のように、この発明によれば、チュ
ーブ又はヘッダタンクの肉厚を厚くすることなく、チュ
ーブとヘッダタンクとの接続部分の耐圧性を向上させる
ことができる。このため、重量の増加や熱伝導効率の低
下を招くことなく、サーペンタイン型熱交換器の耐圧性
を向上させることができる。
As described above, according to the present invention, the pressure resistance of the connection portion between the tube and the header tank can be improved without increasing the thickness of the tube or the header tank. Therefore, the pressure resistance of the serpentine heat exchanger can be improved without causing an increase in weight and a decrease in heat conduction efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明に係るサーペンタイン型熱交
換器を示す斜視図である。
FIG. 1 is a perspective view showing a serpentine heat exchanger according to the present invention.

【図2】図2(a)は、この発明に係るチューブの中間
部分の幅の状態を示す上面図であり、図2(b)は、該
チューブ内部の冷媒通路の状態を示す図2(a)のA−
A’断面図である。
FIG. 2 (a) is a top view showing a state of a width of an intermediate portion of a tube according to the present invention, and FIG. 2 (b) is a view showing a state of a refrigerant passage inside the tube. A- of A)
It is A 'sectional drawing.

【図3】図3(a)は、この発明に係るチューブの接続
部分の幅の状態を示す上面図であり、図3(b)は、該
チューブ内部の冷媒通路の状態を示す図3(a)のB−
B’断面図である。
FIG. 3 (a) is a top view showing a state of a width of a connecting portion of a tube according to the present invention, and FIG. 3 (b) is a view showing a state of a refrigerant passage inside the tube. a) B-
It is B 'sectional drawing.

【図4】図4は、チューブの中間部分における断面図で
ある。
FIG. 4 is a sectional view of an intermediate portion of the tube.

【図5】図5は、チューブの接続部分における断面図で
ある。
FIG. 5 is a sectional view of a connecting portion of a tube.

【図6】図6は、この発明に係るサーペンタイン型熱交
換器に用いられるチューブの製造方法を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a method of manufacturing a tube used in the serpentine heat exchanger according to the present invention.

【図7】図7(a)は、この発明に係るサーペンタイン
型熱交換器に用いられるチューブの製造方法の第2の行
程におけるチューブの圧縮前の状態を示す説明図であ
り、図7(b)は、該第2の行程におけるチューブの圧
縮後の状態を示す説明図である。
FIG. 7A is an explanatory view showing a state before compression of a tube in a second step of a method for manufacturing a tube used in a serpentine heat exchanger according to the present invention, and FIG. () Is an explanatory view showing a state after compression of the tube in the second stroke.

【符号の説明】[Explanation of symbols]

1 サーペンタイン型熱交換器 2 チューブ 3 フィン 4a 流入用ヘッダタンク 4b 流出用ヘッダタンク 5 連結口 9 中間部分 10 接続部分 11,11’ 冷媒通路 12 傾斜部 15 プレス器 20 中子 C 冷媒 DESCRIPTION OF SYMBOLS 1 Serpentine heat exchanger 2 Tube 3 Fin 4a Inflow header tank 4b Outflow header tank 5 Connection port 9 Intermediate part 10 Connection part 11,11 'Refrigerant passage 12 Inclined part 15 Press unit 20 Core C refrigerant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蛇行状に形成され内部に複数の冷媒通路
が形成されたチューブと、該チューブの所定部分に接続
され前記冷媒通路と連通する複数のヘッダタンクと、前
記チューブの対面する直線部間に介在されるフィンとを
有するサーペンタイン型熱交換器において、 前記チューブの前記ヘッダタンクとの接続部分の幅が、
該チューブの他の部分の幅よりも小さく形成され、 前記チューブの接続部分における前記冷媒通路の断面積
が、前記他の部分における前記冷媒通路の断面積よりも
小さくなっていることを特徴とするサーペンタイン型熱
交換器。
1. A tube having a meandering shape and a plurality of refrigerant passages formed therein, a plurality of header tanks connected to a predetermined portion of the tube and communicating with the refrigerant passage, and a straight portion facing the tube. In a serpentine heat exchanger having a fin interposed therebetween, a width of a connecting portion of the tube with the header tank is
It is formed to be smaller than the width of the other portion of the tube, and a cross-sectional area of the refrigerant passage at a connection portion of the tube is smaller than a cross-sectional area of the refrigerant passage at the other portion. Serpentine heat exchanger.
【請求項2】 上記請求項1に記載のサーペンタイン型
熱交換器に用いられるチューブの製造方法であって、 前記チューブを、該チューブの幅及び前記冷媒通路の断
面積が該チューブの全長に渡って略同一となるように押
し出し成形する第1の行程と、 前記チューブの接続部分のみを該チューブの幅が縮小す
る方向に加圧する第2の行程とを含むことを特徴とする
サーペンタイン型熱交換器に用いられるチューブの製造
方法。
2. The method for manufacturing a tube used in a serpentine heat exchanger according to claim 1, wherein the width of the tube and the cross-sectional area of the refrigerant passage extend over the entire length of the tube. A first step of extruding the tubes so that they are substantially the same, and a second step of pressing only the connecting portions of the tubes in a direction in which the width of the tubes is reduced. A method for producing tubes used in vessels.
【請求項3】 前記第2の行程において、前記チューブ
の接続部分を加圧するのに先だち、前記接続部分の冷媒
通路に中子を挿入しておくことを特徴とする請求項2記
載のサーペンタイン型熱交換器に用いられるチューブの
製造方法。
3. The serpentine mold according to claim 2, wherein in the second step, a core is inserted into a refrigerant passage of the connection portion before pressurizing the connection portion of the tube. A method for producing a tube used for a heat exchanger.
JP35758299A 1999-12-16 1999-12-16 Serpentine type heat exchanger and method of manufacturing tube used therefor Pending JP2001174188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35758299A JP2001174188A (en) 1999-12-16 1999-12-16 Serpentine type heat exchanger and method of manufacturing tube used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35758299A JP2001174188A (en) 1999-12-16 1999-12-16 Serpentine type heat exchanger and method of manufacturing tube used therefor

Publications (1)

Publication Number Publication Date
JP2001174188A true JP2001174188A (en) 2001-06-29

Family

ID=18454868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35758299A Pending JP2001174188A (en) 1999-12-16 1999-12-16 Serpentine type heat exchanger and method of manufacturing tube used therefor

Country Status (1)

Country Link
JP (1) JP2001174188A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471593B1 (en) * 2002-03-21 2005-03-09 김등진 Heat exchanger
US7013954B2 (en) 2002-01-23 2006-03-21 Twinbird Corporation Thermosiphon
WO2010052889A1 (en) * 2008-11-04 2010-05-14 ダイキン工業株式会社 Cooling member, and method and device for manufacturing same
JP4470125B1 (en) * 2008-11-17 2010-06-02 ダイキン工業株式会社 Cooling member, manufacturing method thereof, and manufacturing apparatus
JP2014001902A (en) * 2012-06-19 2014-01-09 Japan Climate Systems Corp Tuber for heat exchanger
WO2022168232A1 (en) * 2021-02-04 2022-08-11 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013954B2 (en) 2002-01-23 2006-03-21 Twinbird Corporation Thermosiphon
KR100471593B1 (en) * 2002-03-21 2005-03-09 김등진 Heat exchanger
WO2010052889A1 (en) * 2008-11-04 2010-05-14 ダイキン工業株式会社 Cooling member, and method and device for manufacturing same
US9795056B2 (en) 2008-11-04 2017-10-17 Daikin Industries, Ltd. Cooling member with pressed pipe
JP4470125B1 (en) * 2008-11-17 2010-06-02 ダイキン工業株式会社 Cooling member, manufacturing method thereof, and manufacturing apparatus
JP2010137282A (en) * 2008-11-17 2010-06-24 Daikin Ind Ltd Cooling member, method and device for manufacturing the same
JP2014001902A (en) * 2012-06-19 2014-01-09 Japan Climate Systems Corp Tuber for heat exchanger
WO2022168232A1 (en) * 2021-02-04 2022-08-11 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with same

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
JP4451981B2 (en) Heat exchange tube and finless heat exchanger
JPH07190661A (en) Heat exchanger
US6594897B2 (en) Method for manufacturing coolant tube of heat exchanger
US11268769B2 (en) Heat exchanger
JPH11351777A (en) Flat heat transfer tube for heat exchanger
JP2001174083A (en) Heat exchanger
JP2001174188A (en) Serpentine type heat exchanger and method of manufacturing tube used therefor
US20080245518A1 (en) Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger
JP3966134B2 (en) Heat exchanger
JP4348113B2 (en) Heat exchanger
JPH0510694A (en) Heat transfer tube for heat exchanger
JP2002181488A (en) Compound type heat exchanger
JP2000105093A (en) Heat exchanger
JP3812021B2 (en) Laminate heat exchanger
JP2009250600A (en) Copper flat heat-transfer pipe
JP4221260B2 (en) Heat exchanger and manufacturing method thereof
JP3756641B2 (en) Tube for heat exchanger and manufacturing method thereof
JP2000304489A (en) Heat exchanger and heat radiator
KR20010113580A (en) Condenser in united fin body
JP4058824B2 (en) Double heat exchanger
JP3682633B2 (en) Method of forming tube element and heat exchanger using the tube element
JP2000039284A5 (en)
WO2021192189A1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
JPH10153358A (en) Stacked type heat exchanger