JP2001173521A - Flow control device for internal combustion engine - Google Patents

Flow control device for internal combustion engine

Info

Publication number
JP2001173521A
JP2001173521A JP35872699A JP35872699A JP2001173521A JP 2001173521 A JP2001173521 A JP 2001173521A JP 35872699 A JP35872699 A JP 35872699A JP 35872699 A JP35872699 A JP 35872699A JP 2001173521 A JP2001173521 A JP 2001173521A
Authority
JP
Japan
Prior art keywords
pressure sensor
pressure
flow control
value
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35872699A
Other languages
Japanese (ja)
Inventor
Hiroshi Mushigami
広志 虫上
Tamon Tanaka
多聞 田中
Setsuo Nishihara
節雄 西原
Megumi Shigahara
恵 信ヶ原
Michihiro Hatake
道博 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP35872699A priority Critical patent/JP2001173521A/en
Publication of JP2001173521A publication Critical patent/JP2001173521A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system

Abstract

PROBLEM TO BE SOLVED: To extremely accurately obtain a differential pressure between an exhaust pressure sensor 15 and a boost pressure sensor 27. SOLUTION: During a time between the ON-state of a key switch and the ON-state of a starter switch, a differential pressure between the detecting value Pegr of the exhaust pressure sensor 15 and the detecting value Pb of a boost pressure sensor 27 is calculated as a learning value, and a detecting deviation state inherent to an exhaust pressure sensor 15 and a boost pressure sensor 27 is grasped. The differential value Pb between the detecting value Pegr of an exhaust pressure sensor 15 during operation of an engine 1 and the detecting value Pb of a boost pressure sensor 27 is corrected as a learning value. A differential pressure is detected in a state that a detection deviation state inherent to the pressure sensors is added, and a differential pressure between the detecting values of the exhaust pressure sensor 15 and the boost pressure sensor 27 is obtained and an EGR valve 22 is controlled extremely accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流量制御弁の上下
流に設けられた圧力センサの検出値に基づいて流量制御
弁の制御を行なう内燃機関の流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device for an internal combustion engine that controls a flow control valve based on a detection value of a pressure sensor provided upstream and downstream of a flow control valve.

【0002】[0002]

【従来の技術】内燃機関では、空気過剰率を適宜制御し
て排気ガスの有害成分の排出を最小限に抑制することが
行なわれている。空気過剰率は空燃比を変えることによ
り制御されるため、吸入空気量を変更して空気過剰率が
最適になるようにしている。例えば、ディーゼルエンジ
ンは、EGRバルブによって(要すれば吸気バルブを併
用し)排気ガスの吸気通路への混入量(EGR量)を制
御することにより空気過剰率を制御している。これによ
り、窒素酸化物(NOX )及び浮遊粒子状物質(PM)を最
小限に抑制することができる。
2. Description of the Related Art In an internal combustion engine, emission of harmful components of exhaust gas is minimized by appropriately controlling an excess air ratio. Since the excess air ratio is controlled by changing the air-fuel ratio, the intake air amount is changed to optimize the excess air ratio. For example, in a diesel engine, the excess air ratio is controlled by controlling the amount of exhaust gas mixed into an intake passage (EGR amount) by using an EGR valve (and using an intake valve if necessary). Thus, nitrogen oxides (NO X) and suspended particulate matter (PM) can be suppressed to a minimum.

【0003】例えば、従来から、特開平10-115259 号公
報等に示されるように、吸気圧力を検出することでEG
R流量を推定し、EGR流量が最適であるかを診断する
装置が知られている。従来の装置を適用することによ
り、EGR流量を最適に制御してEGRバルブの開閉制
御を行なうことで、空気過剰率を最適にして排ガス性能
を向上させることができる。しかしながら、特開平10-1
15259 号公報のEGR流量推定方法は、EGR作動中の
吸気圧検出値とEGR停止時相当の吸気圧推定値とに基
づくものであり、推定値を使用して推定を行なうことか
ら精度に劣る問題がある。これに対して、吸気圧力とE
GRバルブ上流の圧力との差圧に基づいてEGR流量を
推定する手法もあり、この手法を用いればより精度を向
上できる可能性がある。
For example, conventionally, as disclosed in Japanese Patent Application Laid-Open No. H10-115259, EG is detected by detecting intake pressure.
A device that estimates an R flow rate and diagnoses whether the EGR flow rate is optimal is known. By applying the conventional device, the EGR flow rate is optimally controlled and the opening and closing control of the EGR valve is performed, so that the excess air ratio can be optimized and the exhaust gas performance can be improved. However, JP 10-1
The method of estimating the EGR flow rate disclosed in Japanese Patent No. 15259 is based on the detected value of the intake pressure during the EGR operation and the estimated value of the intake pressure corresponding to the time when the EGR is stopped. There is. In contrast, the intake pressure and E
There is also a method of estimating the EGR flow rate based on the pressure difference from the pressure upstream of the GR valve, and there is a possibility that the accuracy can be further improved by using this method.

【0004】[0004]

【発明が解決しようとする課題】ところで、EGR量の
制御が望まれる領域は低負荷領域であるが、低負荷領域
では吸気圧力と排気ガス圧力との差圧が極僅かである。
一方、低負荷領域ではEGRバルブが全開に近い状態に
あり、このような状態では流量変化に対する圧力変化は
極僅かしか発生しない。このため、差圧に基づいてEG
R量の制御を精度良く行なうためには吸気圧力や排気ガ
ス圧力を極めて正確に検出する必要がある。
The region where the control of the EGR amount is desired is a low load region, but in the low load region, the differential pressure between the intake pressure and the exhaust gas pressure is extremely small.
On the other hand, in the low load region, the EGR valve is almost fully opened, and in such a state, the pressure change with respect to the flow rate change is very small. For this reason, based on the differential pressure, EG
In order to accurately control the R amount, it is necessary to detect the intake pressure and the exhaust gas pressure extremely accurately.

【0005】しかし、圧力センサは、高価なものであっ
ても多少なりとも検出公差が存在する。従って、公差範
囲であっても誤差を持ったままEGRバルブの開閉制御
が行なわれることになるため、導入される排ガスの流量
が大きく変化し、正確にEGR量を制御することは非常
に困難であった。
[0005] However, even if the pressure sensor is expensive, there is some detection tolerance. Therefore, since the opening / closing control of the EGR valve is performed with an error even in the tolerance range, the flow rate of the introduced exhaust gas greatly changes, and it is very difficult to accurately control the EGR amount. there were.

【0006】本発明は上記状況に鑑みてなされたもの
で、流量制御弁の上下流に設けられた圧力センサの検出
値に基づいて流量制御弁の制御、即ち、流量制御弁を通
過する流体の流量を正確に制御することができる内燃機
関の流量制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and controls the flow control valve based on the detection values of pressure sensors provided upstream and downstream of the flow control valve, that is, controls the flow of the fluid passing through the flow control valve. An object of the present invention is to provide a flow control device for an internal combustion engine that can accurately control a flow rate.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明では、キースイッチがオンの状態からスタータス
イッチがオンの状態になるまでの間に、上流圧力センサ
と下流圧力センサの検出値の差圧を基準圧力値として算
出して上流圧力センサ及び下流圧力センサ固有の検出ず
れ状態を把握し、内燃機関の作動時における上流圧力セ
ンサと下流圧力センサの検出値の差圧を基準圧力値にて
補正することで、圧力センサ固有の検出ずれ状態を加味
した状態で差圧を検出し、極めて正確に上流圧力センサ
と下流圧力センサの検出値の差圧を得て流量制御弁を制
御する。
In order to achieve the above object, according to the present invention, the detection values of the upstream pressure sensor and the downstream pressure sensor are measured between the time when the key switch is turned on and the time when the starter switch is turned on. The differential pressure is calculated as a reference pressure value to determine the detection deviation state unique to the upstream pressure sensor and the downstream pressure sensor, and the differential pressure between the detection values of the upstream pressure sensor and the downstream pressure sensor during operation of the internal combustion engine is used as the reference pressure value. In this way, the differential pressure is detected in a state in which the detection deviation state unique to the pressure sensor is taken into account, and the differential pressure between the detected values of the upstream pressure sensor and the downstream pressure sensor is obtained very accurately to control the flow control valve.

【0008】基準圧力値を算出する場合、複数回の計測
値の平均を用いることが好ましく、複数回の計測値の平
均により基準圧力値が算出できるまでの間にスタータス
イッチがオンになった場合には、前回の基準圧力値を適
用するようにすることが好ましい。また、基準圧力値を
算出する場合、複数回の計測値の平均を用いることが好
ましい。
When calculating the reference pressure value, it is preferable to use the average of a plurality of measured values. If the starter switch is turned on until the reference pressure value can be calculated by averaging the plurality of measured values. , It is preferable to apply the previous reference pressure value. When calculating the reference pressure value, it is preferable to use the average of a plurality of measured values.

【0009】具体的には、上流圧力センサは吸気通路に
合流するEGR通路に設けられる排気圧力センサであ
り、下流圧力センサはEGR通路の合流部位の下流側に
設けられるブースト圧センサであり、流量制御弁はEG
R通路の合流部位に設けられるEGRバルブである。そ
して、一例として、ブースト圧センサと排気圧力センサ
の検出値の差圧によりEGRバルブを制御してEGR量
を制御し、排ガス性能を向上させる装置に適用すること
が好ましい。
More specifically, the upstream pressure sensor is an exhaust pressure sensor provided in an EGR passage that joins the intake passage, and the downstream pressure sensor is a boost pressure sensor provided downstream of the junction of the EGR passage. The control valve is EG
This is an EGR valve provided at the junction of the R passage. Then, as an example, it is preferable to apply the present invention to a device that controls an EGR valve by controlling the EGR valve based on a differential pressure between detection values of a boost pressure sensor and an exhaust pressure sensor to improve exhaust gas performance.

【0010】[0010]

【発明の実施の形態】図1には本発明の一実施形態例に
係る流量制御装置を備えた内燃機関(ディーゼルエンジ
ン)の概略構成、図2には圧力センサのばらつきを説明
するグラフ、図3には流量制御手段の制御フローチャー
トを示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration of an internal combustion engine (diesel engine) provided with a flow control device according to an embodiment of the present invention. FIG. 3 shows a control flowchart of the flow control means.

【0011】図1に示すように、ディーゼルエンジン
(エンジン)1の各気筒には燃焼室2が形成され、燃焼
室2毎に吸気弁11により開閉される吸気ポート3が設
けられている。吸気ポート3には吸気通路4が連結さ
れ、吸気通路4にはエアクリーナ5、過給機6及びイン
タークーラ7を介して外気が吸入され(図中白矢印)、
吸気通路4から燃焼室2に外気が導入される。また、燃
焼室2毎に排気弁12を介して開閉される排気ポート9
が設けられ、排気ポート9には排気通路8が連結されて
いる。排気通路8は過給機6につながり、排気ガスは過
給機6を回転させて吸気を過給した後、触媒10を介し
て外部に排出される(図中黒矢印)。
As shown in FIG. 1, a combustion chamber 2 is formed in each cylinder of a diesel engine (engine) 1, and an intake port 3 opened and closed by an intake valve 11 is provided for each combustion chamber 2. An intake passage 4 is connected to the intake port 3, and outside air is sucked into the intake passage 4 via an air cleaner 5, a supercharger 6 and an intercooler 7 (white arrows in the figure),
Outside air is introduced from the intake passage 4 into the combustion chamber 2. Also, an exhaust port 9 opened and closed via an exhaust valve 12 for each combustion chamber 2
The exhaust port 9 is connected to the exhaust passage 8. The exhaust passage 8 is connected to the supercharger 6, and the exhaust gas is discharged to the outside via the catalyst 10 after the supercharger 6 rotates to supercharge the intake air (black arrows in the figure).

【0012】吸気通路4と排気通路9とはEGR通路2
1により連通し、EGR通路21は流量制御弁としての
EGR弁22により開閉されて適宜量の排気ガスが吸気
通路4に混入される。吸気通路4に排気ガスを混入する
ことにより、空気過剰率を適宜制御し、窒素酸化物(NO
X )及び浮遊粒子状物質(PM)を最小限に抑制してい
る。
The intake passage 4 and the exhaust passage 9 are connected to the EGR passage 2
The EGR passage 21 is opened and closed by an EGR valve 22 as a flow control valve, and an appropriate amount of exhaust gas is mixed into the intake passage 4. By mixing exhaust gas into the intake passage 4, the excess air ratio is appropriately controlled, and the nitrogen oxides (NO
X ) and suspended particulate matter (PM) are minimized.

【0013】EGR弁22の下流側における吸気通路4
には、吸気温度を検出する吸気温センサ25及びブース
ト圧ホース26を介して吸気圧力Pbを検出する下流圧力
センサとしてのブースト圧センサ27が設けられてい
る。また、エンジン1のクランク角を検出してエンジン
回転数Neを検出するクランク角センサ28が設けられ、
吸気温センサ25、ブースト圧センサ27及びクランク
角センサ28の検出情報はECU29に入力される。ま
た、ECU29にはアクセル開度(APS) 情報が入力さ
れ、これらの情報により、ECU29からは燃料噴射ポ
ンプ30の電子ガバナ31及びタイマ制御バルブ32に
制御信号が送られ、燃料噴射量が制御されるようになっ
ている。
The intake passage 4 downstream of the EGR valve 22
Is provided with an intake air temperature sensor 25 for detecting an intake air temperature and a boost pressure sensor 27 as a downstream pressure sensor for detecting an intake pressure Pb via a boost pressure hose 26. Further, a crank angle sensor 28 that detects the crank angle of the engine 1 and detects the engine speed Ne is provided.
Information detected by the intake air temperature sensor 25, the boost pressure sensor 27, and the crank angle sensor 28 is input to the ECU 29. Accelerator opening (APS) information is input to the ECU 29. Based on the information, a control signal is sent from the ECU 29 to the electronic governor 31 and the timer control valve 32 of the fuel injection pump 30 to control the fuel injection amount. It has become so.

【0014】更に、EGR通路21には排気ガスの圧力
Pegrを検出する上流圧力センサとしての排気圧力センサ
15が設けられ、排気圧力センサ15の検出情報はEC
U29に入力される。ブースト圧センサ27で検出され
る吸気圧力Pbと排気圧力センサ15で検出される圧力Pe
grの差圧に基づいてEGR弁22が開閉制御され、EG
R通路21から吸気通路4に導入される排気ガス流量が
最適に制御される(流量制御手段)。即ち、上記差圧と
EGR弁22の開度とから演算またはマップ参照により
排気ガス流量(EGR流量)を正確に求めることがで
き、求められた排気ガス流量が目標空気過剰率を実現す
るための目標排気ガス流量となるようにEGR弁22の
開度がフィードバック制御される。
Further, the pressure of the exhaust gas is
An exhaust pressure sensor 15 is provided as an upstream pressure sensor for detecting Pegr.
It is input to U29. The intake pressure Pb detected by the boost pressure sensor 27 and the pressure Pe detected by the exhaust pressure sensor 15
The EGR valve 22 is controlled to open and close based on the differential pressure of the gr.
The flow rate of exhaust gas introduced from the R passage 21 into the intake passage 4 is optimally controlled (flow control means). That is, the exhaust gas flow rate (EGR flow rate) can be accurately obtained from the differential pressure and the opening degree of the EGR valve 22 by calculation or referring to a map, and the obtained exhaust gas flow rate is used to realize the target excess air ratio. The opening degree of the EGR valve 22 is feedback-controlled so as to reach the target exhaust gas flow rate.

【0015】圧力センサには固有の検出公差が存在し、
検出公差は高価なセンサであっても少なからず存在する
ものである。図2に示すように、基準となるセンサ出力
(V)と圧力(mmHg)との関係が実線の状態にある場合、例
えば、ブースト圧センサ27は一点鎖線の状態の検出特
性を有し、例えば、排気圧力センサ15は点線の状態の
検出特性を有していると仮定する。そして、2つのセン
サのばらつき幅Sは網目状の範囲に存在することにな
る。基準の圧力値Aの部位で、ブースト圧センサ27の
出力値はPb(0) となり、排気圧力センサ15の出力値は
Pegr(0) となる。このため、絶対圧力値ではなく2つの
圧力センサの差圧値を求める場合、予め、Pb(0) とPegr
(0) の差圧値(学習値)が判明していれば、実際のブー
スト圧センサ27の出力値Pbと排気圧力センサ15の出
力値Pegrの差圧を学習値にて補正することで、検出公差
に関係なく正確な差圧を得ることができることになる。
[0015] Pressure sensors have their own detection tolerances,
The detection tolerance exists even for an expensive sensor. As shown in FIG. 2, the reference sensor output
When the relationship between (V) and the pressure (mmHg) is in a state indicated by a solid line, for example, the boost pressure sensor 27 has a detection characteristic in a dashed line state, and for example, the exhaust pressure sensor 15 has a detection characteristic in a state indicated by a dotted line. Suppose that we have Then, the variation width S of the two sensors exists in a mesh-like range. At the position of the reference pressure value A, the output value of the boost pressure sensor 27 is Pb (0), and the output value of the exhaust pressure sensor 15 is
Pegr (0). For this reason, when calculating not the absolute pressure value but the differential pressure value of the two pressure sensors, Pb (0) and Pegr
If the differential pressure value (learning value) of (0) is known, the differential pressure between the actual output value Pb of the boost pressure sensor 27 and the output value Pegr of the exhaust pressure sensor 15 is corrected by the learning value, An accurate differential pressure can be obtained irrespective of the detection tolerance.

【0016】このため、ECU29は、エンジン1のキ
ースイッチがオンの状態からスタータスイッチがオンの
状態になるまでの間に、排気圧力センサ15で検出され
る圧力Pegrとブースト圧センサ27で検出される吸気圧
力Pbとの差圧を基準圧力値(学習値)として算出する機
能を有している。また、ECU29は、エンジン1の作
動時に、排気圧力センサ15で検出される圧力Pegrとブ
ースト圧センサ27で検出される吸気圧力Pbとの差圧を
学習値にて補正する補正機能を有している。
Therefore, the ECU 29 detects the pressure Pegr detected by the exhaust pressure sensor 15 and the pressure detected by the boost pressure sensor 27 between the time when the key switch of the engine 1 is turned on and the time when the starter switch is turned on. And has a function of calculating a differential pressure from the intake pressure Pb as a reference pressure value (learning value). Further, the ECU 29 has a correction function for correcting the differential pressure between the pressure Pegr detected by the exhaust pressure sensor 15 and the intake pressure Pb detected by the boost pressure sensor 27 by a learning value when the engine 1 is operating. I have.

【0017】つまり、エンジン1のキースイッチがオン
の状態からスタータスイッチがオンの状態になるまでの
間に、ブースト圧センサ27と排気圧力センサ15の固
有の検出ずれ状態の差圧を基準圧力値(学習値)として
算出し、学習値を加味した状態でエンジン1の作動時に
おけるブースト圧センサ27と排気圧力センサ15の差
圧を検出するようになっている。これにより、センサ固
有の検出公差のばらつきの影響を受けずに極めて正確に
ブースト圧センサ27と排気圧力センサ15の検出値の
差圧を得ることができ、EGR弁22を制御して適正な
排気ガス流量を得ることができる。
That is, during the period from the time when the key switch of the engine 1 is turned on to the time when the starter switch is turned on, the differential pressure of the inherent misalignment between the boost pressure sensor 27 and the exhaust pressure sensor 15 is determined by the reference pressure value. (Learning value), and the differential pressure between the boost pressure sensor 27 and the exhaust pressure sensor 15 when the engine 1 is operating is detected with the learning value taken into account. This makes it possible to extremely accurately obtain the differential pressure between the detection values of the boost pressure sensor 27 and the exhaust pressure sensor 15 without being affected by the variation in the detection tolerance inherent to the sensor. The gas flow can be obtained.

【0018】図3に基づいて流量制御手段を詳細に説明
する。
The flow control means will be described in detail with reference to FIG.

【0019】図に示すように、ステップS1でIGスイッ
チ(キースイッチ)がオンであるか否かが判断され、ス
テップS1でIGスイッチがオンであると判断された場
合、ステップS2でスタータスイッチがオンであるか否
かが判断される。ステップS1でIGスイッチがオンでは
ないと判断された場合、IGスイッチがオンになるまでス
テップS1の判断を繰り返す。
As shown in the figure, it is determined in step S1 whether or not the IG switch (key switch) is on. If it is determined in step S1 that the IG switch is on, the starter switch is turned on in step S2. It is determined whether the switch is on. If it is determined in step S1 that the IG switch is not on, the determination in step S1 is repeated until the IG switch is turned on.

【0020】ステップS2でスタータスイッチがオンで
はないと判断された場合、即ち、エンジン1のキースイ
ッチがオンの状態からスタータスイッチがオンの状態に
なるまでの間であると判断された場合、排気圧力センサ
15で検出される圧力Pegrとブースト圧センサ27で検
出される吸気圧力PbをステップS3でサンプリングし、
ステップS4でサンプリングの点数がN点(例えば5
点)になったか否かが判断される。ステップS4でサン
プリングの点数がN点に満たないと判断された場合、サ
ンプリングの点数がN点になるまでステップS3及びス
テップS4の処理を繰り返す。
If it is determined in step S2 that the starter switch is not on, that is, if it is determined that the time period is from when the key switch of the engine 1 is on to when the starter switch is on, The pressure Pegr detected by the pressure sensor 15 and the intake pressure Pb detected by the boost pressure sensor 27 are sampled in step S3,
In step S4, the number of sampling points is N (for example, 5 points).
Is determined. If it is determined in step S4 that the number of sampling points is less than N, the processing of steps S3 and S4 is repeated until the number of sampling points becomes N.

【0021】ステップS4でN点のサンプリングが終了
したと判断された場合、ステップS5でN点の圧力Pegr
と吸気圧力Pbの平均化処理を行ない、平均圧力aPegr と
平均吸気圧力aPb を求める。ステップS6で平均圧力aP
egr と平均吸気圧力aPb との差圧(aPegr-aPb) を学習値
とし、ステップS7で今回求めた学習値を使用する処理
を行なう。そして、スタータスイッチがオンにされたと
きにスタータをオンにする処理が行なわれる。一方、ス
テップS2でスタータスイッチがオンであると判断され
た場合、ステップS8で前回の学習値を使用する処理を
行ない、スタータをオンにする処理が行なわれる。
If it is determined in step S4 that sampling at N points has been completed, the pressure Pegr at N points is determined in step S5.
And an intake pressure Pb are averaged to obtain an average pressure aPegr and an average intake pressure aPb. In step S6, average pressure aP
The difference between the egr and the average intake pressure aPb (aPegr-aPb) is set as a learning value, and a process using the learning value obtained this time is performed in step S7. Then, a process of turning on the starter when the starter switch is turned on is performed. On the other hand, if it is determined in step S2 that the starter switch is on, a process of using the previous learning value is performed in step S8, and a process of turning on the starter is performed.

【0022】尚、本実施形態例は、IGスイッチがオンに
なった後にはスタータスイッチがオンになることが前提
とされているので、IGスイッチがオンになった後に所定
時間が経過してもスタータスイッチがオンにならない場
合には、学習値を算出する処理はキャンセルされる。ま
た、ステップS3からステップS7の処理の間にスター
タスイッチがオンになった場合には強制的にステップS
8の処理に移行するようになっている。
In this embodiment, since it is assumed that the starter switch is turned on after the IG switch is turned on, even if a predetermined time has elapsed after the IG switch is turned on. If the starter switch is not turned on, the process of calculating the learning value is cancelled. If the starter switch is turned on during the processing from step S3 to step S7, step S is forcibly performed.
8 is performed.

【0023】つまり、学習値を算出する場合、N回の計
測値の平均値が用いられ、N回の計測値の平均値により
学習値が算出できるまでの間にスタータスイッチがオン
になった場合には、前回の学習値が適用されるようにな
っている。
That is, when calculating the learning value, the average value of the N measurement values is used, and when the starter switch is turned on until the learning value can be calculated based on the average value of the N measurement values. , The previous learning value is applied.

【0024】上述した処理により学習値を算出してスタ
ータがオンになった後、ECU29では、エンジン1の
作動時に、排気圧力センサ15で検出される圧力Pegrと
ブースト圧センサ27で検出される吸気圧力Pbとの差圧
が学習値にて補正されて演算される。即ち、エンジン1
の作動時における排気圧力センサ15とブースト圧セン
サ27の検出圧力の差圧DEP が、DEP =Pegr−Pb−(学
習値)により演算される。
After the learning value is calculated by the above-described processing and the starter is turned on, the ECU 29 determines the pressure Pegr detected by the exhaust pressure sensor 15 and the intake air detected by the boost pressure sensor 27 when the engine 1 is operating. The differential pressure from the pressure Pb is corrected by the learning value and calculated. That is, engine 1
The differential pressure DEP between the pressure detected by the exhaust pressure sensor 15 and the pressure detected by the boost pressure sensor 27 during the operation of is calculated by DEP = Pegr−Pb− (learning value).

【0025】つまり、学習値を加味した状態でエンジン
1の作動時におけるブースト圧センサ27と排気圧力セ
ンサ15の差圧DEP が検出され、センサ固有の検出公差
のばらつきの影響を受けずに極めて正確にブースト圧セ
ンサ27と排気圧力センサ15の検出値の差圧を得るこ
とができる。そして、ブースト圧センサ27と排気圧力
センサ15の検出値の差圧により、EGR弁22を制御
することで、排ガス性能に優れた適正な排気ガス流量を
得ることが可能になる。このため、コストアップを招く
ことなく極めて正確な差圧を得ることができ、EGR弁
22の最適制御が可能になる。
That is, the differential pressure DEP between the boost pressure sensor 27 and the exhaust pressure sensor 15 during the operation of the engine 1 is detected in a state in which the learning value is added, and is extremely accurate without being affected by the variation in the detection tolerance inherent in the sensor. The differential pressure between the values detected by the boost pressure sensor 27 and the exhaust pressure sensor 15 can be obtained. Then, by controlling the EGR valve 22 based on the differential pressure between the detection values of the boost pressure sensor 27 and the exhaust pressure sensor 15, it becomes possible to obtain an appropriate exhaust gas flow rate with excellent exhaust gas performance. Therefore, a very accurate differential pressure can be obtained without increasing the cost, and the optimal control of the EGR valve 22 can be performed.

【0026】上記実施形態例では、ブースト圧センサ2
7と排気圧力センサ15の差圧によりEGR弁22を制
御する場合について説明したが、例えば、ブースト圧セ
ンサ27と大気圧センサ等の差圧により流量制御弁を制
御して流体流量の制御を行なう場合等、他の流量制御弁
の制御に適用することも可能である。
In the above embodiment, the boost pressure sensor 2
The case where the EGR valve 22 is controlled by the differential pressure between the exhaust gas pressure sensor 7 and the exhaust pressure sensor 15 has been described. For example, the flow rate control valve is controlled by the differential pressure between the boost pressure sensor 27 and the atmospheric pressure sensor to control the fluid flow rate. In some cases, for example, the present invention can be applied to control of other flow control valves.

【0027】図4に基づいて流量制御手段の他の実施形
態例を詳細に説明する。図4には他の実施形態例に係る
流量制御手段の制御フローチャートを示してある。
Another embodiment of the flow control means will be described in detail with reference to FIG. FIG. 4 shows a control flow chart of the flow control means according to another embodiment.

【0028】図4に示した例は、学習値を算出する場
合、複数回の計測値の平均を用い、複数回の計測値の平
均により学習値が算出できたことを条件にスタータがオ
ンになるようになっている。即ち、スタータスイッチが
オンになっても、スタータがオンになる処理を実行しな
ければスタータはオンにならないようになっている。本
実施形態例では、ステップS1からステップS6までの
処理は図3に示した処理と同一となっているため、同一
処理には同一ステップ番号を付して重複する説明は省略
してある。
In the example shown in FIG. 4, when the learning value is calculated, the starter is turned on under the condition that the learning value can be calculated by averaging the plurality of measurement values and using the average of the plurality of measurement values. It is becoming. That is, even if the starter switch is turned on, the starter does not turn on unless the process for turning on the starter is executed. In the present embodiment, since the processing from step S1 to step S6 is the same as the processing shown in FIG. 3, the same processing is denoted by the same step number and redundant description is omitted.

【0029】ステップS6で平均圧力aPegr と平均吸気
圧力aPb との差圧(aPegr-aPb) を学習値とした後、ステ
ップS11で学習終了フラグをオンにする。そして、ス
テップS12で学習終了フラグがオンになっているか否
かが判断され、学習終了フラグがオンになっているとス
テップS12で判断された場合、ステップS13で今回
求めた学習値を使用する処理を行なう。そして、スター
タスイッチがオンにされたときにステップS14でスタ
ータをオンにする処理が行なわれる。
In step S6, the differential pressure (aPegr-aPb) between the average pressure aPegr and the average intake pressure aPb is set as a learning value, and in step S11, a learning end flag is turned on. Then, in step S12, it is determined whether or not the learning end flag is turned on. If it is determined in step S12 that the learning end flag is turned on, a process of using the learning value obtained this time in step S13. Perform Then, when the starter switch is turned on, a process of turning on the starter is performed in step S14.

【0030】このとき、IGスイッチがオンになった後に
はスタータスイッチがオンになることが前提とされてい
るので、IGスイッチがオンになった後に所定時間が経過
してもスタータスイッチがオンにされない場合には、学
習値を算出する処理はキャンセルされる。
At this time, since it is assumed that the starter switch is turned on after the IG switch is turned on, the starter switch is turned on even if a predetermined time has elapsed after the IG switch is turned on. If not, the process of calculating the learning value is cancelled.

【0031】ステップS12で学習終了フラグがオンに
なっていないと判断された場合、ステップS3に移行し
て学習終了フラグがオンになるまで処理を繰り返す。一
方、ステップS2でスタータスイッチがオンであると判
断された場合、ステップS12に移行して学習終了フラ
グがオンになっているか否かが判断される。そして、学
習終了フラグがオンになった場合に、ステップS13及
びステップS14に移行してスタータをオンにする処理
を行なう。
If it is determined in step S12 that the learning end flag has not been turned on, the process proceeds to step S3 and the process is repeated until the learning end flag is turned on. On the other hand, when it is determined in step S2 that the starter switch is on, the process proceeds to step S12, and it is determined whether the learning end flag is on. Then, when the learning end flag is turned on, the processing shifts to steps S13 and S14 to turn on the starter.

【0032】つまり、学習値を算出する場合、N回の計
測値の平均値が用いられ、N回の計測値の平均値により
学習値が算出できたことを条件にスタータがオンになる
ようになっている。
That is, when calculating the learning value, the average value of the N measurement values is used, and the starter is turned on under the condition that the learning value has been calculated based on the average value of the N measurement values. Has become.

【0033】上述した処理により学習値を算出した後、
ECU29では、前述同様にエンジン1の作動時に、排
気圧力センサ15で検出される圧力Pegrとブースト圧セ
ンサ27で検出される吸気圧力Pbとの差圧DEP が、DEP
=Pegr−Pb−(学習値)により演算され、最新の学習値
により補正された状態になる。このため、常に最新の学
習値を加味した状態で、コストアップを招くことなく極
めて正確な差圧を得ることができ、EGR弁22の最適
制御が可能になる。
After calculating the learning value by the above processing,
In the ECU 29, as described above, when the engine 1 is operating, the differential pressure DEP between the pressure Pegr detected by the exhaust pressure sensor 15 and the intake pressure Pb detected by the boost pressure sensor 27 is DEP.
= Pegr-Pb-(learning value), and the state is corrected by the latest learning value. Therefore, it is possible to obtain an extremely accurate differential pressure without increasing the cost while always taking the latest learning value into account, and the optimal control of the EGR valve 22 becomes possible.

【0034】[0034]

【発明の効果】本発明の内燃機関の流量制御装置は、キ
ースイッチがオンの状態からスタータスイッチがオンの
状態になるまでの間に、上流圧力センサと下流圧力セン
サの検出値の差圧を基準圧力値として算出して上流圧力
センサ及び下流圧力センサ固有の検出ずれ状態を把握
し、内燃機関の作動時における上流圧力センサと下流圧
力センサの検出値の差圧を基準圧力値にて補正するよう
にしたので、圧力センサ固有の検出ずれ状態を加味した
状態で差圧を検出することができる。この結果、コスト
アップすることなく極めて正確に上流圧力センサと下流
圧力センサの検出値の差圧を得て流量制御弁を制御する
ことが可能になる。
According to the flow control device for an internal combustion engine of the present invention, the differential pressure between the detection values of the upstream pressure sensor and the downstream pressure sensor is determined between the time when the key switch is turned on and the time when the starter switch is turned on. Calculate as a reference pressure value to grasp the detection deviation state unique to the upstream pressure sensor and the downstream pressure sensor, and correct the differential pressure between the detection values of the upstream pressure sensor and the downstream pressure sensor during operation of the internal combustion engine with the reference pressure value. With this configuration, the differential pressure can be detected in a state in which a detection deviation state unique to the pressure sensor is added. As a result, it is possible to control the flow control valve by obtaining the pressure difference between the detection values of the upstream pressure sensor and the downstream pressure sensor extremely accurately without increasing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例に係る流量制御装置を備
えた内燃機関(ディーゼルエンジン)の概略構成図。
FIG. 1 is a schematic configuration diagram of an internal combustion engine (diesel engine) provided with a flow control device according to an embodiment of the present invention.

【図2】センサ出力と圧力との関係を表すグラフ。FIG. 2 is a graph showing the relationship between sensor output and pressure.

【図3】流量制御手段の制御フローチャート。FIG. 3 is a control flowchart of a flow control unit.

【図4】他の実施形態例に係る流量制御手段の制御フロ
ーチャート。
FIG. 4 is a control flowchart of a flow rate control unit according to another embodiment.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン(エンジン) 3 吸気ポート 4 吸気通路 5 エアクリーナ 6 過給機 15 排気圧力センサ 22 EGRバルブ 26 ブースト圧ホース 27 ブースト圧センサ 29 ECU DESCRIPTION OF SYMBOLS 1 Diesel engine (engine) 3 Intake port 4 Intake passage 5 Air cleaner 6 Supercharger 15 Exhaust pressure sensor 22 EGR valve 26 Boost pressure hose 27 Boost pressure sensor 29 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/06 355 F02D 41/06 355 (72)発明者 西原 節雄 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 信ヶ原 恵 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 畠 道博 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G062 AA01 AA05 BA04 GA04 GA06 GA14 GA16 GA22 3G092 AA02 AA17 AA18 BA04 DC09 EB04 EC01 EC05 EC09 FA06 FA50 HA01X HA04Z HA05Z HA16Z HD07X HD08Z HE01Z HE03Z HF08Z HF19Z 3G301 HA02 HA11 HA13 JA20 KA01 LA00 MA01 NA01 NC02 ND22 ND29 NE23 PA01A PA07Z PA09Z PA10Z PA16Z PD14Z PD15A PE01Z PE03Z PF16Z──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/06 355 F02D 41/06 355 (72) Inventor Setsuo Nishihara 33-3, Shiba 5-chome, Minato-ku, Tokyo No. Mitsubishi Motors Industry Co., Ltd. (72) Inventor Megumi Shinegahara 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Industry Co., Ltd. (72) Michihiro Hata 5-33-8 Shiba, Minato-ku, Tokyo No. Mitsubishi Motors Corporation F-term (reference) 3G062 AA01 AA05 BA04 GA04 GA06 GA14 GA16 GA22 3G092 AA02 AA17 AA18 BA04 DC09 EB04 EC01 EC05 EC09 FA06 FA50 HA01X HA04Z HA05Z HA16Z HD07X HD08Z HE01Z HE03Z11G01HA02 HA19Z19 MA01 NA01 NC02 ND22 ND29 NE23 PA01A PA07Z PA09Z PA10Z PA16Z PD14Z PD15A PE01Z PE03Z PF16Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の吸気系または排気系に設けら
れた流量制御弁と、上記流量制御弁の上流に配置されて
同流量制御弁の上流側の流体圧力を検出する上流圧力セ
ンサと、上記流量制御弁の下流に配置されて同流量制御
弁の下流側の流体圧力を検出する下流圧力センサと、上
記上流圧力センサと上記下流圧力センサの検出圧力の差
圧に基づいて上記流量制御弁を制御する流量制御手段と
を備え、上記流量制御手段は、キースイッチがオンの状
態からスタータスイッチがオンの状態になるまでの間に
上記上流圧力センサと上記下流圧力センサの検出値の差
圧を基準圧力値として算出する機能を有し、更に、内燃
機関の作動時に上記上流圧力センサと上記下流圧力セン
サの検出値の差圧を基準圧力値にて補正する補正機能を
有していることを特徴とする内燃機関の流量制御装置。
A flow control valve provided in an intake system or an exhaust system of an internal combustion engine; an upstream pressure sensor disposed upstream of the flow control valve for detecting a fluid pressure on an upstream side of the flow control valve; A downstream pressure sensor disposed downstream of the flow control valve to detect a fluid pressure on the downstream side of the flow control valve; and the flow control valve based on a pressure difference between the upstream pressure sensor and the pressure detected by the downstream pressure sensor. Flow rate control means for controlling the differential pressure between the detected values of the upstream pressure sensor and the downstream pressure sensor during a period from when the key switch is turned on to when the starter switch is turned on. As a reference pressure value, and a correction function for correcting the differential pressure between the detection values of the upstream pressure sensor and the downstream pressure sensor with the reference pressure value when the internal combustion engine is operating. Especially An internal combustion engine flow control device.
JP35872699A 1999-12-17 1999-12-17 Flow control device for internal combustion engine Withdrawn JP2001173521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35872699A JP2001173521A (en) 1999-12-17 1999-12-17 Flow control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35872699A JP2001173521A (en) 1999-12-17 1999-12-17 Flow control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001173521A true JP2001173521A (en) 2001-06-26

Family

ID=18460804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35872699A Withdrawn JP2001173521A (en) 1999-12-17 1999-12-17 Flow control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001173521A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845986A (en) * 2009-03-24 2010-09-29 通用汽车环球科技运作公司 By regulating the control of turbocharger bypass and variable-geometry turbine based on model to the airway pressure limit
WO2011013539A1 (en) * 2009-07-30 2011-02-03 サンデン株式会社 Refrigeration cycle
JP2016061595A (en) * 2014-09-16 2016-04-25 日本特殊陶業株式会社 Gas sensor apparatus and concentration measuring method using gas sensor
CN108979910A (en) * 2018-09-03 2018-12-11 潍柴动力股份有限公司 A kind of system for prompting and method
JP2020051326A (en) * 2018-09-27 2020-04-02 株式会社Subaru Exhaust gas recirculation control device
JP2021134748A (en) * 2020-02-28 2021-09-13 株式会社Subaru Exhaust emission recirculation control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845986A (en) * 2009-03-24 2010-09-29 通用汽车环球科技运作公司 By regulating the control of turbocharger bypass and variable-geometry turbine based on model to the airway pressure limit
WO2011013539A1 (en) * 2009-07-30 2011-02-03 サンデン株式会社 Refrigeration cycle
JP2011033235A (en) * 2009-07-30 2011-02-17 Sanden Corp Refrigerating cycle
EP2461124A1 (en) * 2009-07-30 2012-06-06 Sanden Corporation Refrigeration cycle
EP2461124A4 (en) * 2009-07-30 2013-04-03 Sanden Corp Refrigeration cycle
JP2016061595A (en) * 2014-09-16 2016-04-25 日本特殊陶業株式会社 Gas sensor apparatus and concentration measuring method using gas sensor
US9869663B2 (en) 2014-09-16 2018-01-16 Ngk Spark Plug Co., Ltd. Gas sensor apparatus and concentration measurement method performed through use of gas sensor
CN108979910A (en) * 2018-09-03 2018-12-11 潍柴动力股份有限公司 A kind of system for prompting and method
JP2020051326A (en) * 2018-09-27 2020-04-02 株式会社Subaru Exhaust gas recirculation control device
JP7168397B2 (en) 2018-09-27 2022-11-09 株式会社Subaru exhaust gas recirculation controller
JP2021134748A (en) * 2020-02-28 2021-09-13 株式会社Subaru Exhaust emission recirculation control device
JP7359721B2 (en) 2020-02-28 2023-10-11 株式会社Subaru Exhaust recirculation control device

Similar Documents

Publication Publication Date Title
JP2005220888A (en) Supercharging pressure presuming device of internal combustion engine with supercharger
US20020073965A1 (en) Device for and method of controlling air-fuel ratio of internal combustion engine
JPH05306643A (en) Fuel injection amount calculation device of internal combustion engine
JPWO2002081888A1 (en) Control device for internal combustion engine
JP2005207237A (en) Leak detection device of exhaust gas recirculating device
JP2001280202A (en) Exhaust gas recirculation system
JP2001173521A (en) Flow control device for internal combustion engine
JPH0763151A (en) Control device for internal combustion engine
US6609510B2 (en) Device and method for controlling air-fuel ratio of internal combustion engine
JPH1122561A (en) Egr control device for diesel engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS6011664A (en) Full-close referential position detecting method of egr valve in internal-combustion engine
US20030089358A1 (en) Air-fuel ratio detecting apparatus of engine and method thereof
JP3539045B2 (en) Fuel injection control device for internal combustion engine
JP2000303895A (en) Internal combustion engine
JP3562137B2 (en) Control device for internal combustion engine
JP4367749B2 (en) Failure detection device for exhaust secondary air supply device
JP2594943Y2 (en) Fuel control device for internal combustion engine
JP3531221B2 (en) Air-fuel ratio control device for internal combustion engine
JP4034697B2 (en) Failure detection device for exhaust secondary air supply device
JPS645059Y2 (en)
US20020062640A1 (en) Device and method for controlling air-fuel ratio of internal combustion engine
JPH0517394Y2 (en)
JP2007162549A (en) Control device of internal combustion engine
JP2000291493A (en) Egr controller

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306