JP3728930B2 - Exhaust gas recirculation control device for internal combustion engine - Google Patents

Exhaust gas recirculation control device for internal combustion engine Download PDF

Info

Publication number
JP3728930B2
JP3728930B2 JP16097198A JP16097198A JP3728930B2 JP 3728930 B2 JP3728930 B2 JP 3728930B2 JP 16097198 A JP16097198 A JP 16097198A JP 16097198 A JP16097198 A JP 16097198A JP 3728930 B2 JP3728930 B2 JP 3728930B2
Authority
JP
Japan
Prior art keywords
intake air
egr rate
exhaust gas
gas recirculation
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16097198A
Other languages
Japanese (ja)
Other versions
JPH11351068A (en
Inventor
裕賢 村木
貞幸 米玉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16097198A priority Critical patent/JP3728930B2/en
Priority to US09/326,704 priority patent/US6227182B1/en
Priority to DE69925066T priority patent/DE69925066T2/en
Priority to EP99111170A priority patent/EP0964142B1/en
Publication of JPH11351068A publication Critical patent/JPH11351068A/en
Application granted granted Critical
Publication of JP3728930B2 publication Critical patent/JP3728930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気還流制御装置の改良に関する。
【0002】
【従来の技術と解決すべき課題】
内燃機関から排出される窒素酸化物(NOx)を低減する目的で排気の一部を吸気中に還流させて燃焼温度を下げるようにした排気還流(EGR)装置が知られている(公知文献としては例えば特開昭60−230555号公報参照)。この排気還流は窒素酸化物の低減に有効であるが、還流する排気量を運転状態に応じて適量に制御しないと燃焼が悪化して出力低下など運転性に悪影響が及ぶ。このため近年のEGR装置では、排気還流量を加減するためのEGR弁の目標開度を機関回転数や負荷状態を検出して決定し、この目標開度となるようにステップモータ等によりEGR弁を精密に駆動することにより最適制御を達成できるようにしている。
【0003】
ところで、制御そのものが正確であったとしても、EGR弁に排気中の燃焼生成物や油分が付着して実質的な開度が変化すると正確な排気還流量が得られない。この問題はディーゼルエンジンのように燃焼生成物が発生しやすい筒内燃料噴射式の内燃機関では特に顕著である。そこで、このような弁開度の変動を吸入空気量の変化としてとらえ、EGR弁の開度を吸入空気量に応じて補正するようにしたものが考えられる。具体的には、還流する排気量が減少するとその分だけ吸入される新気の量が増えるので、そのときにはEGR弁の開度を増大方向に補正することにより目標とする排気還流量が得られるようにするのである。一方、機関回転数や負荷状態が同一であっても、例えば始動・暖機時と暖機完了後とでは燃焼状態が異なるためEGR弁の開度もこれらの運転条件の相違を考慮して補正してやる必要がある。
【0004】
このように、排気還流制御に万全を期するためには、EGR弁の開度について空気量変化に基づく補正と温度条件による補正など複数の補正を施す必要がある。しかしながら、従来の排気還流制御では、これらの補正を個々に行うようにしていたため、補正に使用する運転状態検出量やデータ毎に計算が必要になり、それだけ演算処理が複雑化したり用意すべきデータ量が増大したりしてしまうという問題点があった。本発明はこのような問題点に着目してなされたもので、吸入空気量をパラメータとするEGR率値に補正を施したうえでEGR弁の開度を決定することにより演算処理の簡略化を図ったものである。
【0005】
【課題を解決するための手段】
(1)請求項1の発明では、図1に示したように、内燃機関の第1の運転状態として回転数 N と負荷状態 Tp を、第2の運転状態として冷却水温 Tw を、検出する運転状態検出手段101と、排気還流時の吸入空気量QACを検出する吸入空気量検出手段102と、第1の運転状態に応じて目標EGR率MEGRMを演算する目標EGR率演算手段103と、第2の運転状態に応じてEGR率の第1の補正量KEGR1を演算する第1補正量演算手段104と、第1の運転状態に応じて目標吸入空気量BQACを演算する目標吸入空気量演算手段105と、EGR率MEGRMとその補正量に基づいて目標吸入空気量BQACを補正する補正後目標吸入空気量演算手段106と、補正後目標吸入空気量BQACKと検出吸入空気量QACとの偏差に基づいてEGR率の第2の補正量KEGR2を演算する第2補正量演算手段107と、第1の補正量KEGR1と第2の補正量KEGR2とに基づいてEGR率MEGRMを補正するEGR率補正手段108とを設ける。
【0006】
(2)請求項2の発明は、上記請求項1の発明の目標EGR率演算手段103を、運転状態に応じて定めたEGR弁の目標開度と運転状態とからEGR率MEGRMを演算するように構成したものとする。
【0007】
(3)請求項3の発明は、上記請求項1の発明において、EGR率補正手段により補正したEGR率と運転状態とからEGR弁の開度指令値 SEGR を演算する開度指令値演算手段109を備えたものとする
【0008】
(4)請求項4の発明は、請求項1の発明においてEGR弁をステップモータにより開閉駆動される構成を有し、開度指令値 SEGR は前記ステップモータのステップ数として演算するように構成したものとする。
【0009】
(5)請求項5の発明は、上記請求項1の発明の第2補正量演算手段107を、実吸入空気量と補正後目標吸入空気量との比 QAC BQAC Kの増大に応じて増大する特性で第2補正量 KEGR2 を設定するように構成したものとする。
【0010】
(6)請求項6の発明は、上記請求項1の発明の開度指令値演算手段を、EGR率に基づいて吸気絞弁の開度をも演算するように構成したものとする。
【0012】
【作用・効果】
上記各発明によれば、運転状態に応じて決められたEGR率に冷却水温などの機関状態に応じた補正がなされ、その補正後のEGR率をEGR弁開度に変換したうえで指令値STEPQとしてEGR弁のアクチュエータに出力する。このような補正処理によれば、EGR弁開度で代表される排気還流量と吸入空気量とをパラメータとするEGR率に対して補正が行われるので、冷却水温などの機関状態に応じたEGR弁開度の補正と、吸入空気量に応じた補正とを共通の運転状態検出結果に基づいて一括的に行うことができ、検出した運転状態情報の処理や補正のために用意しておくべきデータ量が必要最小限で済み、したがってマッチング作業が容易になると共にマイクロコンピュータなどで構成される制御装置の構成の簡略化が図れる。
【0013】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。図2は本発明が適用可能なEGR装置を備えたディーゼルエンジンの概略構成を示したものである。図においてエンジン11の吸気通路12と排気通路13とがEGR通路14を介して接続されており、その途中にEGR弁15が設けられている。EGR弁15はアクチュエータ16により全閉位置から全開位置までほぼ連続的に位置制御される。吸気通路12にはEGR通路14の出口部よりも上流側に絞り弁17が介装されると共に、この絞り弁17を開閉駆動するアクチュエータ18が設けられている。各アクチュエータ16,18は共に制御装置19によりその作動が制御され、比較的多量の排気還流が必要な運転条件では絞り弁17を閉じ加減にしてその下流側に負圧を発達させた状態でEGR弁15の開度を制御するようにしている。排気還流量が少ないときまたは排気還流を行わないときには絞り弁17は全開位置に制御される。
【0014】
上記アクチュエータ16,18の作動は各種運転状態の検出結果に基づき制御回路19が制御する。制御回路19は入出力回路および記憶回路を備えたマイクロコンピュータからなり、上記本発明の各演算手段の機能を有している。制御回路19には、燃料噴射量や噴射時期を決定するための基本的な運転状態パラメータとしてエンジンの回転数Nおよび負荷代表値としての目標燃料噴射量Tpが入力されるが、これらはEGR率の決定およびEGR弁開度の補正にも用いられる。また、EGR弁開度の補正のために、さらに冷却水温センサ20からの冷却水温Tpおよびエアフローメータ21からの吸入空気量QACが入力される。エアフローメータ21は上記吸気通路12の絞り弁17よりも上流側に位置して設けられており、エンジン11に吸入される新気の流量を検出する。
【0015】
図3および図4はこのようなEGR装置を備えたエンジンにおけるEGR弁開度の制御ルーチンの一例を示したものである。このルーチンは制御回路19内のマイクロコンピュータにより数ミリ秒ないし数十ミリ秒毎に周期的に繰り返される。
【0016】
基本的な制御として、図3に示したようにまずエンジン回転数N,燃料噴射量Tp,吸入空気量QAC,冷却水温Twが検出され、これらの検出結果に基づいて排気還流を行うべき運転域であるか否かが、例えば図5に示したようにあらかじめ設定されたテーブルとの照合により判定される(ステップ301,302)。これにより、例えば低負荷域、低回転域、始動時、暖機時などは絞り弁17を全開とすると共にEGR弁15を全閉として排気還流を停止する(ステップ303)。これに対して、排気還流を行う運転状態のときは、次に絞り弁17とEGR弁15の開度演算を行い、それぞれのアクチュエータ18,16に指令値を出力して所定の開度となるように位置制御が行われる(ステップ304〜306)。
【0017】
図4は上記ステップ305のEGR弁の開度制御ルーチンの内容を示しており、まずNとTpとから目標EGR率の基本値MEGRMが演算され、次のこのEGR率に対する第1補正量KEGR1が演算される(ステップ401,402)。第1補正量KEGR1はこの場合水温Twによる補正量であり、一般に低温条件ではNOxが発生しにくいところから、図6に例示したように低水温時ほど排気還流量が減少する特性の補正値が付与される。この第1補正量KEGR1としては他に、燃料噴射時期による補正、大気圧による補正などを算入するようにしてもよい。
【0018】
次に、実吸入空気量の変動に対する補正を行うために、EGR率目標値MEGRMと第1補正量KEGR1とから、絞り弁開度および目標吸入空気量に対する補正量Zが演算され、次いでN,Tpから算出した目標吸入空気量BQACに前記補正量Zを乗じて補正後目標吸入空気量BQACKが求められる(ステップ403〜405)。ここで、絞り弁開度は図7に示したような特性で設定される一方、吸入空気量補正量ZはEGR率の定義に応じて次のようにして算出される。
【0019】
▲1▼EGR率=排気還流ガス量/吸入空気量とするとき
Z=(1+MEGRM)/(KEGR1×MEGRM+1)
▲2▼EGR率=排気還流ガス量/(排気還流ガス量+吸入空気量)とするとき
Z=(1−KEGR1×MEGRM)/(1−MEGRM)
このようにして得られた補正後目標吸入空気量BQACKとエアフローメータ21出力による実吸入空気量QACとの偏差に基づいて次に第2補正量KEGR2が演算される(ステップ406)。この第2補正量KEGR2は、図8に例示したように吸入空気量の実際値と目標値との比QAC/BQACKに対して比例的に増大する特性に設定されている。これはEGR弁開度が一定の条件下で実吸入空気量が目標値よりも増大した場合にはEGR率としては低下方向となるからである。この補正は、EGR弁15への燃焼生成物の付着による有効開度の減少や、絞り弁17の開度変動による吸入吸気量変化に対して所要EGR率を維持するのに有効である。
【0020】
次いで、上述のようにして求めた2つの補正量KEGR1、KEGR2を目標EGR率の基本値MEGRMに乗じて最終的な目標EGR率MEGRを求め、これをNとTpとに基づいてEGR弁開度に変換することでアクチュエータ16に対する指令値が求められる(ステップ407、408)。前記指令値としては、例えばアクチュエータ16としてステップモータを用いたものではそのステップ数である。
【0021】
このようにして、このEGR制御によればEGR率に対して補正を施すことでEGR弁の開度や吸入空気量の変動に対して個々に補正量を決定する場合に比較して簡潔な処理で適切な排気還流制御が可能となる。なお、本発明は運転状態に応じてEGR率ではなくEGR弁開度を演算するようにした制御系にも適用可能であり、この場合は当初に決定した目標EGR弁開度をNとTpとからEGR率に変換したうえで上述したような補正処理を行うようにすればよい。
【図面の簡単な説明】
【図1】本発明の構成概念図。
【図2】本発明が適用可能なディーゼルエンジンの実施形態の概略構成図。
【図3】本発明の一実施形態によるEGR制御ルーチンを示す流れ図。
【図4】同じくEGR弁開度に関する制御ルーチンを示す流れ図。
【図5】エンジン回転数N,燃料噴射量Tp,吸入空気量QAC,冷却水温Twに応じて排気還流の有無を決定するためのテーブルに相当する制御特性図。
【図6】冷却水温Twと第1補正量KEGR1との関係を示す特性線図。
【図7】目標EGR率と絞り弁開度の関係を示す特性線図。
【図8】第2補正量KEGR2を付与するテーブルの一例を示す特性線図。
【符号の説明】
11 ディーゼルエンジン
12 吸気通路
13 排気通路
14 EGR通路
15 EGR弁
16 アクチュエータ
17 絞り弁
18 アクチュエータ
19 制御回路
20 水温センサ
21 エアフローメータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an exhaust gas recirculation control device for an internal combustion engine.
[0002]
[Prior art and problems to be solved]
An exhaust gas recirculation (EGR) device is known in which a part of the exhaust gas is recirculated into the intake air to reduce the combustion temperature for the purpose of reducing nitrogen oxide (NOx) exhausted from the internal combustion engine (as known literature) Is disclosed in, for example, JP-A-60-230555. This exhaust gas recirculation is effective in reducing nitrogen oxides, but unless the recirculated exhaust amount is controlled to an appropriate amount according to the operating state, the combustion deteriorates and adversely affects the operability such as a reduction in output. For this reason, in recent EGR devices, the target opening of the EGR valve for adjusting the exhaust gas recirculation amount is determined by detecting the engine speed and the load state, and the EGR valve is set by a step motor or the like so as to reach this target opening. It is possible to achieve optimal control by driving the motor precisely.
[0003]
By the way, even if the control itself is accurate, an accurate exhaust gas recirculation amount cannot be obtained if combustion products or oil in the exhaust gas adhere to the EGR valve and the substantial opening degree changes. This problem is particularly noticeable in an in-cylinder fuel injection type internal combustion engine such as a diesel engine where combustion products are likely to be generated. In view of this, such a variation in the valve opening is considered as a change in the intake air amount, and the opening of the EGR valve is corrected in accordance with the intake air amount. Specifically, if the amount of exhaust gas that recirculates decreases, the amount of fresh air that is sucked increases accordingly, and at that time, the target exhaust gas recirculation amount can be obtained by correcting the opening degree of the EGR valve in the increasing direction. To do so. On the other hand, even if the engine speed and load state are the same, for example, the combustion state is different at the start / warm-up time and after the warm-up is completed, so the EGR valve opening is also corrected in consideration of the difference in these operating conditions. I need to do it.
[0004]
As described above, in order to ensure the exhaust gas recirculation control, it is necessary to perform a plurality of corrections such as a correction based on an air amount change and a correction based on a temperature condition on the opening degree of the EGR valve. However, in the conventional exhaust gas recirculation control, since these corrections are individually performed, calculation is required for each operation state detection amount and data used for the correction, and the calculation processing is complicated or data to be prepared accordingly. There was a problem that the amount would increase. The present invention has been made paying attention to such problems, and the calculation processing is simplified by determining the opening degree of the EGR valve after correcting the EGR rate value using the intake air amount as a parameter. It is intended.
[0005]
[Means for Solving the Problems]
(1) Operation In the first aspect of the invention, as shown in FIG. 1, the rotational speed N and the load state Tp as the first operating state of the internal combustion engine, the cooling water temperature Tw as the second operational state, detect a state detecting means 101, and the intake air amount detecting means 102 for detecting an intake air quantity QAC during exhaust gas recirculation, a target EGR rate calculating means 103 for calculating a target EGR rate MEGRM in response to the first operational state, the second a first correction amount calculating means 104 for calculating a first correction amount KEGR1 of EGR rate according to the operating condition, the target intake air amount calculating means for calculating a target intake air quantity BQAC in response to the first operational state 105 And a corrected target intake air amount calculating means 106 for correcting the target intake air amount BQAC based on the EGR rate MEGRM and its correction amount, and a deviation between the corrected target intake air amount BQACK and the detected intake air amount QAC. The second for calculating the second correction amount KEGR2 of the EGR rate A correction amount calculation means 107, provided an EGR rate correction means 108 for correcting the EGR rate MEGRM based on the first correction amount KEGR1 and second correction amount KEGR2.
[0006]
(2) In the invention of claim 2, the target EGR rate calculating means 103 of the invention of claim 1 calculates the EGR rate MEGRM from the target opening degree and the operating state of the EGR valve determined according to the operating state. It is assumed that
[0007]
(3) The invention of claim 3 is the opening command value calculating means 109 for calculating the opening command value SEGR of the EGR valve from the EGR rate corrected by the EGR rate correcting means and the operating state in the invention of claim 1 above. Shall be provided .
[0008]
(4) The invention of claim 4 has a configuration in which the EGR valve is driven to open and close by the step motor in the invention of claim 1, and the opening command value SEGR is calculated as the number of steps of the step motor . Shall.
[0009]
(5) In the invention of claim 5, the second correction amount calculation means 107 of the invention of claim 1 is increased in accordance with an increase in the ratio QAC / BQAC K between the actual intake air amount and the corrected target intake air amount. It is assumed that the second correction amount KEGR2 is set with the characteristics to be set .
[0010]
(6) In the invention of claim 6, the opening command value calculation means of the invention of claim 1 is configured to calculate the opening of the intake throttle valve based on the EGR rate .
[0012]
[Action / Effect]
According to each of the above-described inventions, the EGR rate determined according to the operating state is corrected according to the engine state such as the cooling water temperature, and the corrected EGR rate is converted into the EGR valve opening degree. Is output to the actuator of the EGR valve. According to such a correction process, the EGR rate using the exhaust gas recirculation amount and the intake air amount as typified by the EGR valve opening is corrected, so that the EGR according to the engine state such as the cooling water temperature. Correction of the valve opening and correction according to the intake air amount can be performed collectively based on the common operation state detection result, and should be prepared for processing and correction of the detected operation state information The amount of data is minimized, so that the matching operation is facilitated, and the configuration of the control device including a microcomputer can be simplified.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a schematic configuration of a diesel engine equipped with an EGR device to which the present invention can be applied. In the figure, an intake passage 12 and an exhaust passage 13 of the engine 11 are connected via an EGR passage 14, and an EGR valve 15 is provided in the middle thereof. The position of the EGR valve 15 is almost continuously controlled by the actuator 16 from the fully closed position to the fully open position. A throttle valve 17 is interposed in the intake passage 12 upstream of the outlet portion of the EGR passage 14, and an actuator 18 that opens and closes the throttle valve 17 is provided. The actuators 16 and 18 are both controlled by a control device 19, and under operating conditions that require a relatively large amount of exhaust gas recirculation, the EGR is operated with the throttle valve 17 closed and adjusted to develop a negative pressure downstream thereof. The opening degree of the valve 15 is controlled. When the exhaust gas recirculation amount is small or when exhaust gas recirculation is not performed, the throttle valve 17 is controlled to the fully open position.
[0014]
The operation of the actuators 16 and 18 is controlled by a control circuit 19 based on detection results of various operating states. The control circuit 19 is composed of a microcomputer provided with an input / output circuit and a storage circuit, and has the functions of the respective arithmetic means of the present invention. The control circuit 19 receives the engine speed N as a basic operation state parameter for determining the fuel injection amount and the injection timing, and the target fuel injection amount Tp as a load representative value. These are the EGR rate. And the correction of the EGR valve opening. Further, the cooling water temperature Tp from the cooling water temperature sensor 20 and the intake air amount QAC from the air flow meter 21 are further inputted to correct the EGR valve opening. The air flow meter 21 is provided on the upstream side of the throttle valve 17 in the intake passage 12 and detects the flow rate of fresh air taken into the engine 11.
[0015]
3 and 4 show an example of an EGR valve opening control routine in an engine equipped with such an EGR device. This routine is periodically repeated by the microcomputer in the control circuit 19 every several milliseconds to several tens of milliseconds.
[0016]
As basic control, as shown in FIG. 3, first, the engine speed N, the fuel injection amount Tp, the intake air amount QAC, and the cooling water temperature Tw are detected, and the operating range in which exhaust gas recirculation should be performed based on these detection results. Is determined by collation with a preset table as shown in FIG. 5, for example (steps 301 and 302). Thus, for example, in the low load region, the low rotation region, the start time, the warm-up time, etc., the throttle valve 17 is fully opened and the EGR valve 15 is fully closed to stop the exhaust gas recirculation (step 303). On the other hand, when the exhaust gas recirculation is in an operating state, the opening calculation of the throttle valve 17 and the EGR valve 15 is performed next, and command values are output to the actuators 18 and 16 to reach a predetermined opening. Position control is performed as described above (steps 304 to 306).
[0017]
FIG. 4 shows the contents of the EGR valve opening control routine in step 305. First, the basic value MEGRM of the target EGR rate is calculated from N and Tp, and the first correction amount KEGR1 for the next EGR rate is calculated as follows. Calculation is performed (steps 401 and 402). In this case, the first correction amount KEGR1 is a correction amount based on the water temperature Tw. In general, NOx is not easily generated under low temperature conditions. Therefore, as illustrated in FIG. 6, the correction value of the characteristic that the exhaust gas recirculation amount decreases as the water temperature decreases. Is granted. In addition to this, the first correction amount KEGR1 may include a correction based on fuel injection timing, a correction based on atmospheric pressure, and the like.
[0018]
Next, in order to correct the fluctuation of the actual intake air amount, a correction amount Z for the throttle valve opening and the target intake air amount is calculated from the EGR rate target value MEGRM and the first correction amount KEGR1, and then N, A corrected target intake air amount BQACK is obtained by multiplying the target intake air amount BQAC calculated from Tp by the correction amount Z (steps 403 to 405). Here, the throttle valve opening is set with the characteristics shown in FIG. 7, while the intake air amount correction amount Z is calculated as follows according to the definition of the EGR rate.
[0019]
(1) EGR rate = exhaust recirculation gas amount / intake air amount Z = (1 + MEGRM) / (KEGR1 × MEGRM + 1)
(2) When EGR rate = exhaust recirculation gas amount / (exhaust recirculation gas amount + intake air amount), Z = (1-KEGR1 × MEGRM) / (1-MEGRM)
The second correction amount KEGR2 is then calculated based on the deviation between the corrected target intake air amount BQACK obtained in this way and the actual intake air amount QAC from the output of the air flow meter 21 (step 406). As illustrated in FIG. 8, the second correction amount KEGR2 is set to a characteristic that increases in proportion to the ratio QAC / BQACK between the actual value of the intake air amount and the target value. This is because the EGR rate decreases when the actual intake air amount increases above the target value under the condition that the EGR valve opening is constant. This correction is effective for maintaining the required EGR rate with respect to a decrease in the effective opening due to adhesion of combustion products to the EGR valve 15 and a change in intake air intake amount due to a change in the opening of the throttle valve 17.
[0020]
Next, the final target EGR rate MEGR is obtained by multiplying the two correction amounts KEGR1 and KEGR2 obtained as described above by the basic value MEGRM of the target EGR rate, and this is calculated based on N and Tp. The command value for the actuator 16 is obtained by converting to (steps 407 and 408). The command value is, for example, the number of steps when a step motor is used as the actuator 16.
[0021]
In this way, according to this EGR control, the EGR rate is corrected, so that the processing is simpler than when the correction amount is individually determined for the variation of the opening degree of the EGR valve and the intake air amount. This makes it possible to perform appropriate exhaust gas recirculation control. The present invention can also be applied to a control system that calculates not the EGR rate but the EGR valve opening according to the operating state. In this case, the initially determined target EGR valve opening is represented by N and Tp. The correction processing as described above may be performed after conversion from EGR to EGR rate.
[Brief description of the drawings]
FIG. 1 is a configuration conceptual diagram of the present invention.
FIG. 2 is a schematic configuration diagram of an embodiment of a diesel engine to which the present invention is applicable.
FIG. 3 is a flowchart showing an EGR control routine according to an embodiment of the present invention.
FIG. 4 is a flowchart showing a control routine related to the EGR valve opening degree.
FIG. 5 is a control characteristic diagram corresponding to a table for determining the presence or absence of exhaust gas recirculation according to engine speed N, fuel injection amount Tp, intake air amount QAC, and cooling water temperature Tw.
FIG. 6 is a characteristic diagram showing the relationship between the cooling water temperature Tw and the first correction amount KEGR1.
FIG. 7 is a characteristic diagram showing the relationship between the target EGR rate and the throttle valve opening.
FIG. 8 is a characteristic diagram showing an example of a table for giving a second correction amount KEGR2.
[Explanation of symbols]
11 Diesel Engine 12 Intake Passage 13 Exhaust Passage 14 EGR Passage 15 EGR Valve 16 Actuator 17 Throttle Valve 18 Actuator 19 Control Circuit 20 Water Temperature Sensor 21 Air Flow Meter

Claims (6)

内燃機関の第1の運転状態として回転数と負荷状態を、第2の運転状態として冷却水温を、検出する運転状態検出手段、
排気還流時の吸入空気量QACを検出する吸入空気量検出手段、
第1の運転状態に応じて目標EGR率MEGRMを演算する目標EGR率演算手段、
第2の運転状態に応じてEGR率の第1の補正量KEGR1を演算する第1補正量演算手段、
第1の運転状態に応じて目標吸入空気量BQACを演算する目標吸入空気量演算手段、
EGR率とその補正量KEGR1に基づいて目標吸入空気量BQACを補正する補正後目標吸入空気量演算手段、
補正後目標吸入空気量BQACKと検出吸入空気量QACとの偏差に基づいてEGR率の第2の補正量KEGR2を演算する第2補正量演算手段、
第1の補正量KEGR1と第2の補正量KEGR2とに基づいてEGR率MEGRMを補正するEGR率補正手段
備えた内燃機関の排気還流制御装置。
An operating state detecting means for detecting the rotational speed and the load state as the first operating state of the internal combustion engine and the coolant temperature as the second operating state ;
Intake air amount detection means for detecting the intake air amount QAC during exhaust gas recirculation,
Target EGR rate calculating means for calculating the target EGR rate MEGRM according to the first operating state;
A first correction amount calculating means for calculating a first correction amount KEGR1 of the EGR rate according to the second operating state;
Target intake air amount calculating means for calculating a target intake air amount BQAC according to the first operating state;
A corrected target intake air amount calculating means for correcting the target intake air amount BQAC based on the EGR rate and the correction amount KEGR1;
A second correction amount calculating means for calculating a second correction amount KEGR2 of the EGR rate based on a deviation between the corrected target intake air amount BQACK and the detected intake air amount QAC;
EGR rate correction means for correcting the EGR rate MEGRM based on the first correction amount KEGR1 and the second correction amount KEGR2 .
Exhaust gas recirculation control apparatus for an internal combustion engine having a.
目標EGR率演算手段は、運転状態に応じて定めたEGR弁の目標開度と前記運転状態とからEGR率MEGRMを演算するように構成されていることを特徴とする請求項1に記載の内燃機関の排気還流装置。  2. The internal combustion engine according to claim 1, wherein the target EGR rate calculating means is configured to calculate an EGR rate MEGRM from a target opening degree of an EGR valve determined according to an operating state and the operating state. Engine exhaust gas recirculation device. 前記EGR率補正手段により補正したEGR率と第1の運転状態とからEGR弁の開度指令値SEGRを演算する開度指令値演算手段を備える請求項1に記載の内燃機関の排気還流制御装置。  2. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, further comprising an opening command value calculation unit that calculates an opening command value SEGR of the EGR valve from the EGR rate corrected by the EGR rate correction unit and the first operating state. . EGR弁はステップモータにより開閉駆動される構成を有し、開度指令値SEGRは前記ステップモータのステップ数として演算するように構成されていることを特徴とする請求項1に記載の内燃機関の排気還流制御装置。  2. The internal combustion engine according to claim 1, wherein the EGR valve is configured to be opened and closed by a step motor, and the opening degree command value SEGR is calculated as the number of steps of the step motor. Exhaust gas recirculation control device. 第2補正量演算手段は、実吸入空気量と補正後目標吸入空気量との比QAC/BQACKの増大に応じて増大する特性で第2補正量KEGR2を設定するように構成されていることを特徴とする請求項1に記載の内燃機関の排気還流制御装置。  The second correction amount calculating means is configured to set the second correction amount KEGR2 with a characteristic that increases with an increase in the ratio QAC / BQACK between the actual intake air amount and the corrected target intake air amount. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation control device is an internal combustion engine. 開度指令値演算手段は、EGR率に基づいて吸気絞弁の開度をも演算するように構成されていることを特徴とする請求項1に記載の内燃機関の排気還流制御装置。  2. The exhaust gas recirculation control apparatus for an internal combustion engine according to claim 1, wherein the opening command value calculation means is configured to also calculate the opening of the intake throttle valve based on the EGR rate.
JP16097198A 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine Expired - Fee Related JP3728930B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16097198A JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine
US09/326,704 US6227182B1 (en) 1998-06-09 1999-06-07 Exhaust gas recirculation control system for internal combustion engine
DE69925066T DE69925066T2 (en) 1998-06-09 1999-06-08 CONTROL DEVICE FOR EXHAUST GAS RECYCLING SYSTEM IN AN INTERNAL COMBUSTION ENGINE
EP99111170A EP0964142B1 (en) 1998-06-09 1999-06-08 Exhaust gas recirculation control system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16097198A JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11351068A JPH11351068A (en) 1999-12-21
JP3728930B2 true JP3728930B2 (en) 2005-12-21

Family

ID=15726128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16097198A Expired - Fee Related JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3728930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303914A (en) * 1999-04-23 2000-10-31 Mazda Motor Corp Exhaust gas reflux deivce for engine
JP2002227692A (en) * 2001-02-01 2002-08-14 Nissan Motor Co Ltd Air fuel ratio controller for engine
CN115355097B (en) * 2022-09-06 2023-11-17 潍柴动力股份有限公司 EGR system control method, EGR system control device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPH11351068A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
JPWO2002081888A1 (en) Control device for internal combustion engine
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
WO2006059558A1 (en) Egr control device for internal combustion engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3622506B2 (en) EGR control device for internal combustion engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JP4345400B2 (en) Control device for internal combustion engine
JP3704726B2 (en) Control device for internal combustion engine
JP2001173521A (en) Flow control device for internal combustion engine
JPH0689682B2 (en) Air-fuel ratio controller
JP3346116B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3702491B2 (en) EGR control device for internal combustion engine
JP3539045B2 (en) Fuel injection control device for internal combustion engine
JP3632446B2 (en) EGR control device for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JPH0517394Y2 (en)
JP4544215B2 (en) Control device for internal combustion engine
JP2870356B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH07294385A (en) Diagnostic device of egr device of internal engine
JPH0586908A (en) Exhaust pressure controller of internal combustion engine
JPH04175448A (en) Exhaust gas recirculation control device
JPH0868353A (en) Air-fuel ratio control device for internal combustion engine
JPS6270632A (en) Air-fuel ratio control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees