JPH11351068A - Exhaust gas reflux control device for internal combustion engine - Google Patents

Exhaust gas reflux control device for internal combustion engine

Info

Publication number
JPH11351068A
JPH11351068A JP10160971A JP16097198A JPH11351068A JP H11351068 A JPH11351068 A JP H11351068A JP 10160971 A JP10160971 A JP 10160971A JP 16097198 A JP16097198 A JP 16097198A JP H11351068 A JPH11351068 A JP H11351068A
Authority
JP
Japan
Prior art keywords
egr
amount
exhaust gas
air amount
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10160971A
Other languages
Japanese (ja)
Other versions
JP3728930B2 (en
Inventor
Hirokata Muraki
裕賢 村木
Sadayuki Yonedamari
貞幸 米玉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16097198A priority Critical patent/JP3728930B2/en
Priority to US09/326,704 priority patent/US6227182B1/en
Priority to EP99111170A priority patent/EP0964142B1/en
Priority to DE69925066T priority patent/DE69925066T2/en
Publication of JPH11351068A publication Critical patent/JPH11351068A/en
Application granted granted Critical
Publication of JP3728930B2 publication Critical patent/JP3728930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To facilitate calculation process by determining opening of a valve after correction of exhaust gas reflux factor value using intake air amount as a parameter. SOLUTION: First, base value MEGRM of a target exhaust gas reflux(EGR) factor based on engine rotation speed N and fuel injection amount TP, and next, a first corrective amount KEGR1 for this EGR factor are calculated. A corrective amount Z for a throttle valve opening and a target suction air amount are calculated from the target EGR factor value MEGRM and the first corrective amount KEGR1. Next, an after-correction target suction air amount BQACK is derived by multiplying a target suction air amount BQAC calculated from N and TP by the corrective amount Z. The corrective amount Z of the suction air is calculated according to definition of the EGR factor. A second corrective amount KEGR2 is calculated from deviation between the after-correction target suction air amount BQACK and net suction air amount QAC. A final target EGR factor MEGR is derived by multiplying the base value MEGRM of the target EGR factor by the corrective amounts KEGR1, KEGR2, and a command value for an actuator is provided by converting this to EGR valve opening based on N and TP.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気還
流制御装置の改良に関する。
The present invention relates to an improvement in an exhaust gas recirculation control device for an internal combustion engine.

【0002】[0002]

【従来の技術と解決すべき課題】内燃機関から排出され
る窒素酸化物(NOx)を低減する目的で排気の一部を
吸気中に還流させて燃焼温度を下げるようにした排気還
流(EGR)装置が知られている(公知文献としては例
えば特開昭60−230555号公報参照)。この排気
還流は窒素酸化物の低減に有効であるが、還流する排気
量を運転状態に応じて適量に制御しないと燃焼が悪化し
て出力低下など運転性に悪影響が及ぶ。このため近年の
EGR装置では、排気還流量を加減するためのEGR弁
の目標開度を機関回転数や負荷状態を検出して決定し、
この目標開度となるようにステップモータ等によりEG
R弁を精密に駆動することにより最適制御を達成できる
ようにしている。
2. Description of the Related Art Exhaust gas recirculation (EGR) in which a part of exhaust gas is recirculated into intake air to reduce combustion temperature in order to reduce nitrogen oxides (NOx) emitted from an internal combustion engine. An apparatus is known (for example, see JP-A-60-230555 as a known document). This exhaust gas recirculation is effective in reducing nitrogen oxides, but unless the recirculated exhaust gas amount is controlled to an appropriate amount in accordance with the operation state, combustion deteriorates and the operability such as output reduction is adversely affected. For this reason, in recent EGR devices, the target opening of the EGR valve for adjusting the exhaust gas recirculation amount is determined by detecting the engine speed and the load state,
EG is controlled by a stepping motor or the like to achieve this target opening.
Optimum control can be achieved by precisely driving the R valve.

【0003】ところで、制御そのものが正確であったと
しても、EGR弁に排気中の燃焼生成物や油分が付着し
て実質的な開度が変化すると正確な排気還流量が得られ
ない。この問題はディーゼルエンジンのように燃焼生成
物が発生しやすい筒内燃料噴射式の内燃機関では特に顕
著である。そこで、このような弁開度の変動を吸入空気
量の変化としてとらえ、EGR弁の開度を吸入空気量に
応じて補正するようにしたものが考えられる。具体的に
は、還流する排気量が減少するとその分だけ吸入される
新気の量が増えるので、そのときにはEGR弁の開度を
増大方向に補正することにより目標とする排気還流量が
得られるようにするのである。一方、機関回転数や負荷
状態が同一であっても、例えば始動・暖機時と暖機完了
後とでは燃焼状態が異なるためEGR弁の開度もこれら
の運転条件の相違を考慮して補正してやる必要がある。
[0003] Even if the control itself is accurate, if the combustion product or oil in the exhaust gas adheres to the EGR valve and the actual opening changes, an accurate exhaust gas recirculation amount cannot be obtained. This problem is particularly remarkable in an in-cylinder fuel injection type internal combustion engine, such as a diesel engine, in which combustion products are easily generated. Therefore, such a change in the valve opening may be considered as a change in the amount of intake air, and the opening of the EGR valve may be corrected in accordance with the amount of intake air. Specifically, the amount of fresh air to be taken in increases as the amount of recirculated exhaust gas decreases. At that time, the target exhaust gas recirculation amount can be obtained by correcting the opening of the EGR valve in the increasing direction. To do so. On the other hand, even when the engine speed and the load state are the same, for example, the combustion state is different at the time of start / warm-up and after the warm-up is completed. I need to do it.

【0004】このように、排気還流制御に万全を期する
ためには、EGR弁の開度について空気量変化に基づく
補正と温度条件による補正など複数の補正を施す必要が
ある。しかしながら、従来の排気還流制御では、これら
の補正を個々に行うようにしていたため、補正に使用す
る運転状態検出量やデータ毎に計算が必要になり、それ
だけ演算処理が複雑化したり用意すべきデータ量が増大
したりしてしまうという問題点があった。本発明はこの
ような問題点に着目してなされたもので、吸入空気量を
パラメータとするEGR率値に補正を施したうえでEG
R弁の開度を決定することにより演算処理の簡略化を図
ったものである。
As described above, in order to ensure the exhaust gas recirculation control, it is necessary to perform a plurality of corrections on the opening degree of the EGR valve, such as a correction based on a change in air amount and a correction based on temperature conditions. However, in the conventional exhaust gas recirculation control, these corrections are individually performed. Therefore, it is necessary to calculate for each operation state detection amount and data used for the correction. There is a problem that the amount increases. The present invention has been made in view of such a problem. The present invention corrects the EGR rate value using the intake air amount as a parameter, and then corrects the EG value.
The calculation processing is simplified by determining the opening of the R valve.

【0005】[0005]

【課題を解決するための手段】(1)請求項1の発明で
は、図1に示したように、内燃機関の運転状態を検出す
る運転状態検出手段101と、排気還流時の吸入空気量
QACを検出する吸入空気量検出手段102と、運転状態
に応じて目標EGR率MEGRMを演算する目標EGR率演
算手段103と、運転状態に応じてEGR率の第1の補
正量KEGR1を演算する第1補正量演算手段104と、運
転状態に応じて目標吸入空気量BQACを演算する目標吸入
空気量演算手段105と、EGR率MEGRMとその補正量K
EGR1に基づいて目標吸入空気量BQACを補正する補正後目
標吸入空気量演算手段106と、補正後目標吸入空気量
BQACKと検出吸入空気量QACとの偏差に基づいてEGR率
の第2の補正量KEGR2を演算する第2補正量演算手段1
07と、第1の補正量KEGR1と第2の補正量KEGR2とに基
づいてEGR率MEGRMを補正するEGR率補正手段10
8と、EGR率補正手段により補正したEGR率と運転
状態とからEGR弁の開度指令値SEGRを演算する開度指
令値演算手段109とを設ける。
(1) In the invention of claim 1, as shown in FIG. 1, an operating state detecting means 101 for detecting an operating state of an internal combustion engine, and an intake air amount at the time of exhaust gas recirculation.
Intake air amount detection means 102 for detecting QAC, target EGR rate calculation means 103 for calculating target EGR rate MEGRM according to the operation state, and first correction amount KEGR1 for calculating the EGR rate according to the operation state 1 correction amount calculating means 104, target intake air amount calculating means 105 for calculating a target intake air amount BQAC according to the operating state, EGR rate MEGRM and its correction amount K
A corrected target intake air amount calculating means 106 for correcting the target intake air amount BQAC based on EGR1; and a corrected target intake air amount
Second correction amount calculating means 1 for calculating a second correction amount KEGR2 of the EGR rate based on the difference between BQACK and the detected intake air amount QAC
07 and the EGR rate correction means 10 for correcting the EGR rate MEGRM based on the first correction amount KEGR1 and the second correction amount KEGR2.
8 and an opening command value calculating means 109 for calculating an opening command value SEGR of the EGR valve from the EGR rate and the operating state corrected by the EGR rate correcting means.

【0006】(2)請求項2の発明は、上記請求項1の
発明の目標EGR率演算手段103を、運転状態に応じ
て定めたEGR弁の目標開度と運転状態とからEGR率
MEGRMを演算するように構成したものとする。
(2) According to a second aspect of the present invention, the target EGR rate calculating means 103 according to the first aspect of the present invention is configured to calculate the EGR rate based on the target opening degree of the EGR valve determined according to the operating state and the operating state.
It is assumed that MEGRM is calculated.

【0007】(3)請求項3の発明は、同じく第1補正
量演算手段104を、少なくとも機関冷却水温に基づき
第1補正量KEGR1を演算するように構成したものとす
る。
(3) According to a third aspect of the present invention, the first correction amount calculating means 104 is configured to calculate the first correction amount KEGR1 based on at least the engine coolant temperature.

【0008】(4)請求項4の発明は、同じく運転状態
検出手段101を、目標EGR率演算手段103、第1
補正量演算手段104、目標吸入空気量演算手段10
6、開度指令値演算手段109に付与する運転状態とし
て少なくとも内燃機関の回転数と負荷状態とを検出する
ように構成したものとする。
(4) The invention according to a fourth aspect is the same as the first aspect, except that the operating state detecting means 101 is replaced by a target EGR rate calculating means 103
Correction amount calculating means 104, target intake air amount calculating means 10
6. It is assumed that at least the rotational speed and the load state of the internal combustion engine are detected as the operation state given to the opening command value calculation means 109.

【0009】(5)請求項5の発明は、請求項1の発明
においてEGR弁をステップモータにより開閉駆動され
る構成を有し、開度指令値SEGRは前記ステップモータの
ステップ数として演算するように構成したものとする。
(5) According to a fifth aspect of the present invention, in the first aspect of the invention, the EGR valve is driven to be opened and closed by a step motor, and the opening command value SEGR is calculated as the number of steps of the step motor. It is assumed that this is configured.

【0010】(6)請求項6の発明は、上記請求項1の
発明の第2補正量演算手段107を、実吸入空気量と補
正後目標吸入空気量との比QAC/BQACKの増大に応じて
増大する特性で第2補正量KEGR2を設定するように構成
したものとする。
(6) According to a sixth aspect of the present invention, the second correction amount calculating means 107 according to the first aspect of the present invention uses the second correction amount calculating means 107 according to an increase in the ratio QAC / BQACK between the actual intake air amount and the corrected target intake air amount. It is assumed that the second correction amount KEGR2 is set with a characteristic that increases.

【0011】(7)請求項7の発明は、上記請求項1の
発明の開度指令値演算手段を、EGR率に基づいて吸気
絞弁の開度をも演算するように構成したものとする。
(7) According to a seventh aspect of the present invention, the opening command value calculating means according to the first aspect of the present invention is configured to also calculate the opening of the intake throttle valve based on the EGR rate. .

【0012】[0012]

【作用・効果】上記各発明によれば、運転状態に応じて
決められたEGR率に冷却水温などの機関状態に応じた
補正がなされ、その補正後のEGR率をEGR弁開度に
変換したうえで指令値STEPQとしてEGR弁のアクチュ
エータに出力する。このような補正処理によれば、EG
R弁開度で代表される排気還流量と吸入空気量とをパラ
メータとするEGR率に対して補正が行われるので、冷
却水温などの機関状態に応じたEGR弁開度の補正と、
吸入空気量に応じた補正とを共通の運転状態検出結果に
基づいて一括的に行うことができ、検出した運転状態情
報の処理や補正のために用意しておくべきデータ量が必
要最小限で済み、したがってマッチング作業が容易にな
ると共にマイクロコンピュータなどで構成される制御装
置の構成の簡略化が図れる。
According to the present invention, the EGR rate determined according to the operating state is corrected according to the engine state such as the cooling water temperature, and the corrected EGR rate is converted into the EGR valve opening. Then, the command value STEPQ is output to the actuator of the EGR valve. According to such a correction process, EG
Since the EGR rate is corrected using the exhaust gas recirculation amount and the intake air amount represented by the R valve opening as parameters, the correction of the EGR valve opening according to the engine state such as the cooling water temperature,
Correction according to the intake air amount can be performed collectively based on the common operation state detection result, and the amount of data to be prepared for processing and correction of the detected operation state information is minimal. Thus, the matching operation is facilitated, and the configuration of the control device including the microcomputer can be simplified.

【0013】[0013]

【発明の実施の形態】以下本発明の実施形態を図面に基
づいて説明する。図2は本発明が適用可能なEGR装置
を備えたディーゼルエンジンの概略構成を示したもので
ある。図においてエンジン11の吸気通路12と排気通
路13とがEGR通路14を介して接続されており、そ
の途中にEGR弁15が設けられている。EGR弁15
はアクチュエータ16により全閉位置から全開位置まで
ほぼ連続的に位置制御される。吸気通路12にはEGR
通路14の出口部よりも上流側に絞り弁17が介装され
ると共に、この絞り弁17を開閉駆動するアクチュエー
タ18が設けられている。各アクチュエータ16,18
は共に制御装置19によりその作動が制御され、比較的
多量の排気還流が必要な運転条件では絞り弁17を閉じ
加減にしてその下流側に負圧を発達させた状態でEGR
弁15の開度を制御するようにしている。排気還流量が
少ないときまたは排気還流を行わないときには絞り弁1
7は全開位置に制御される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a schematic configuration of a diesel engine provided with an EGR device to which the present invention can be applied. In the figure, an intake passage 12 and an exhaust passage 13 of an engine 11 are connected via an EGR passage 14, and an EGR valve 15 is provided in the middle of the passage. EGR valve 15
Is controlled almost continuously from the fully closed position to the fully opened position by the actuator 16. EGR in the intake passage 12
A throttle valve 17 is provided upstream of the outlet of the passage 14, and an actuator 18 for opening and closing the throttle valve 17 is provided. Each actuator 16, 18
The operation is controlled by a control device 19, and in an operating condition requiring a relatively large amount of exhaust gas recirculation, the throttle valve 17 is closed and adjusted to develop an EGR with a negative pressure developed downstream thereof.
The opening of the valve 15 is controlled. When the exhaust gas recirculation amount is small or when exhaust gas recirculation is not performed, the throttle valve 1
7 is controlled to the fully open position.

【0014】上記アクチュエータ16,18の作動は各
種運転状態の検出結果に基づき制御回路19が制御す
る。制御回路19は入出力回路および記憶回路を備えた
マイクロコンピュータからなり、上記本発明の各演算手
段の機能を有している。制御回路19には、燃料噴射量
や噴射時期を決定するための基本的な運転状態パラメー
タとしてエンジンの回転数Nおよび負荷代表値としての
目標燃料噴射量Tpが入力されるが、これらはEGR率
の決定およびEGR弁開度の補正にも用いられる。ま
た、EGR弁開度の補正のために、さらに冷却水温セン
サ20からの冷却水温Tpおよびエアフローメータ21
からの吸入空気量QACが入力される。エアフローメータ
21は上記吸気通路12の絞り弁17よりも上流側に位
置して設けられており、エンジン11に吸入される新気
の流量を検出する。
The operation of the actuators 16 and 18 is controlled by a control circuit 19 based on detection results of various operating states. The control circuit 19 is composed of a microcomputer provided with an input / output circuit and a storage circuit, and has a function of each of the arithmetic means of the present invention. The control circuit 19 receives an engine speed N and a target fuel injection amount Tp as a load representative value as basic operating state parameters for determining the fuel injection amount and the injection timing. And the correction of the EGR valve opening. Further, in order to correct the EGR valve opening, the cooling water temperature Tp from the cooling water temperature sensor 20 and the air flow meter
The intake air amount QAC from is input. The air flow meter 21 is provided upstream of the throttle valve 17 in the intake passage 12 and detects the flow rate of fresh air sucked into the engine 11.

【0015】図3および図4はこのようなEGR装置を
備えたエンジンにおけるEGR弁開度の制御ルーチンの
一例を示したものである。このルーチンは制御回路19
内のマイクロコンピュータにより数ミリ秒ないし数十ミ
リ秒毎に周期的に繰り返される。
FIGS. 3 and 4 show an example of an EGR valve opening control routine in an engine having such an EGR device. This routine is executed by the control circuit 19
It is periodically repeated every few milliseconds to several tens of milliseconds by the microcomputer within.

【0016】基本的な制御として、図3に示したように
まずエンジン回転数N,燃料噴射量Tp,吸入空気量QA
C,冷却水温Twが検出され、これらの検出結果に基づ
いて排気還流を行うべき運転域であるか否かが、例えば
図5に示したようにあらかじめ設定されたテーブルとの
照合により判定される(ステップ301,302)。こ
れにより、例えば低負荷域、低回転域、始動時、暖機時
などは絞り弁17を全開とすると共にEGR弁15を全
閉として排気還流を停止する(ステップ303)。これ
に対して、排気還流を行う運転状態のときは、次に絞り
弁17とEGR弁15の開度演算を行い、それぞれのア
クチュエータ18,16に指令値を出力して所定の開度
となるように位置制御が行われる(ステップ304〜3
06)。
As a basic control, first, as shown in FIG. 3, the engine speed N, the fuel injection amount Tp, the intake air amount QA
C, the cooling water temperature Tw is detected, and based on these detection results, it is determined whether or not the engine is in an operating range in which exhaust gas recirculation is to be performed, for example, by collating with a table set in advance as shown in FIG. (Steps 301 and 302). Thus, for example, in a low load range, a low rotation range, at the time of starting, during warm-up, etc., the throttle valve 17 is fully opened and the EGR valve 15 is fully closed to stop the exhaust gas recirculation (step 303). On the other hand, in the operation state in which the exhaust gas is recirculated, the opening degree of the throttle valve 17 and the EGR valve 15 is calculated next, and a command value is output to each of the actuators 18 and 16 to achieve the predetermined opening degree. (Steps 304 to 3)
06).

【0017】図4は上記ステップ305のEGR弁の開
度制御ルーチンの内容を示しており、まずNとTpとか
ら目標EGR率の基本値MEGRMが演算され、次のこのE
GR率に対する第1補正量KEGR1が演算される(ステッ
プ401,402)。第1補正量KEGR1はこの場合水温
Twによる補正量であり、一般に低温条件ではNOxが
発生しにくいところから、図6に例示したように低水温
時ほど排気還流量が減少する特性の補正値が付与され
る。この第1補正量KEGR1としては他に、燃料噴射時期
による補正、大気圧による補正などを算入するようにし
てもよい。
FIG. 4 shows the contents of the EGR valve opening control routine in step 305. First, a basic value MEGRM of the target EGR rate is calculated from N and Tp.
A first correction amount KEGR1 for the GR rate is calculated (steps 401 and 402). In this case, the first correction amount KEGR1 is a correction amount based on the water temperature Tw. Since NOx is generally not likely to be generated under low temperature conditions, as shown in FIG. Granted. As the first correction amount KEGR1, a correction based on the fuel injection timing, a correction based on the atmospheric pressure, and the like may be included.

【0018】次に、実吸入空気量の変動に対する補正を
行うために、EGR率目標値MEGRMと第1補正量KEGR1
とから、絞り弁開度および目標吸入空気量に対する補正
量Zが演算され、次いでN,Tpから算出した目標吸入
空気量BQACに前記補正量Zを乗じて補正後目標吸入空気
量BQACKが求められる(ステップ403〜405)。こ
こで、絞り弁開度は図7に示したような特性で設定され
る一方、吸入空気量補正量ZはEGR率の定義に応じて
次のようにして算出される。
Next, in order to correct the fluctuation of the actual intake air amount, the EGR rate target value MEGRM and the first correction amount KEGR1
From this, a correction amount Z for the throttle valve opening and the target intake air amount is calculated, and then the corrected target intake air amount BQACK is obtained by multiplying the target intake air amount BQAC calculated from N and Tp by the correction amount Z. (Steps 403 to 405). Here, the throttle valve opening is set with a characteristic as shown in FIG. 7, while the intake air amount correction amount Z is calculated as follows according to the definition of the EGR rate.

【0019】EGR率=排気還流ガス量/吸入空気量
とするとき Z=(1+MEGRM)/(KEGR1×MEGRM+1) EGR率=排気還流ガス量/(排気還流ガス量+吸入
空気量)とするとき Z=(1−KEGR1×MEGRM)/(1−MEGRM) このようにして得られた補正後目標吸入空気量BQACKと
エアフローメータ21出力による実吸入空気量QACとの
偏差に基づいて次に第2補正量KEGR2が演算される(ス
テップ406)。この第2補正量KEGR2は、図8に例示
したように吸入空気量の実際値と目標値との比QAC/BQAC
Kに対して比例的に増大する特性に設定されている。こ
れはEGR弁開度が一定の条件下で実吸入空気量が目標
値よりも増大した場合にはEGR率としては低下方向と
なるからである。この補正は、EGR弁15への燃焼生
成物の付着による有効開度の減少や、絞り弁17の開度
変動による吸入吸気量変化に対して所要EGR率を維持
するのに有効である。
When EGR rate = exhaust gas recirculation gas amount / intake air amount Z = (1 + MEGRM) / (KEGR1 × MEGRM + 1) When EGR rate = exhaust gas recirculation gas amount / (exhaust gas recirculation gas amount + intake air amount) Z = (1−KEGR1 × MEGRM) / (1−MEGRM) Next, a second correction is performed based on the deviation between the corrected target intake air amount BQACK obtained as described above and the actual intake air amount QAC based on the output of the air flow meter 21. The quantity KEGR2 is calculated (step 406). As shown in FIG. 8, the second correction amount KEGR2 is a ratio QAC / BQAC between the actual value and the target value of the intake air amount.
The characteristic is set to increase in proportion to K. This is because, when the actual intake air amount is larger than the target value under the condition that the EGR valve opening is constant, the EGR rate decreases. This correction is effective to maintain the required EGR rate against a decrease in the effective opening due to the adhesion of combustion products to the EGR valve 15 and a change in the intake air amount due to a variation in the opening of the throttle valve 17.

【0020】次いで、上述のようにして求めた2つの補
正量KEGR1、KEGR2を目標EGR率の基本値MEGRMに
乗じて最終的な目標EGR率MEGRを求め、これをNとT
pとに基づいてEGR弁開度に変換することでアクチュ
エータ16に対する指令値が求められる(ステップ40
7、408)。前記指令値としては、例えばアクチュエ
ータ16としてステップモータを用いたものではそのス
テップ数である。
Next, the two correction amounts KEGR1 and KEGR2 obtained as described above are multiplied by the basic value MEGRM of the target EGR rate to obtain a final target EGR rate MEGR.
The command value for the actuator 16 is obtained by converting the EGR valve opening into an EGR valve opening degree based on p (step 40).
7, 408). The command value is, for example, the number of steps when a step motor is used as the actuator 16.

【0021】このようにして、このEGR制御によれば
EGR率に対して補正を施すことでEGR弁の開度や吸
入空気量の変動に対して個々に補正量を決定する場合に
比較して簡潔な処理で適切な排気還流制御が可能とな
る。なお、本発明は運転状態に応じてEGR率ではなく
EGR弁開度を演算するようにした制御系にも適用可能
であり、この場合は当初に決定した目標EGR弁開度を
NとTpとからEGR率に変換したうえで上述したよう
な補正処理を行うようにすればよい。
As described above, according to the EGR control, the correction is performed on the EGR rate, so that the correction amount is individually determined with respect to the fluctuation of the opening degree of the EGR valve and the intake air amount. Appropriate exhaust gas recirculation control is possible with simple processing. Note that the present invention is also applicable to a control system that calculates not the EGR rate but the EGR valve opening according to the operating state. In this case, the initially determined target EGR valve opening is determined by N and Tp. And then to the EGR rate, and then perform the above-described correction processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成概念図。FIG. 1 is a conceptual diagram of the configuration of the present invention.

【図2】本発明が適用可能なディーゼルエンジンの実施
形態の概略構成図。
FIG. 2 is a schematic configuration diagram of an embodiment of a diesel engine to which the present invention can be applied.

【図3】本発明の一実施形態によるEGR制御ルーチン
を示す流れ図。
FIG. 3 is a flowchart showing an EGR control routine according to one embodiment of the present invention.

【図4】同じくEGR弁開度に関する制御ルーチンを示
す流れ図。
FIG. 4 is a flowchart showing a control routine relating to an EGR valve opening degree.

【図5】エンジン回転数N,燃料噴射量Tp,吸入空気
量QAC,冷却水温Twに応じて排気還流の有無を決定す
るためのテーブルに相当する制御特性図。
FIG. 5 is a control characteristic diagram corresponding to a table for determining the presence or absence of exhaust gas recirculation according to an engine speed N, a fuel injection amount Tp, an intake air amount QAC, and a cooling water temperature Tw.

【図6】冷却水温Twと第1補正量KEGR1との関係を示
す特性線図。
FIG. 6 is a characteristic diagram showing a relationship between a cooling water temperature Tw and a first correction amount KEGR1.

【図7】目標EGR率と絞り弁開度の関係を示す特性線
図。
FIG. 7 is a characteristic diagram showing a relationship between a target EGR rate and a throttle valve opening.

【図8】第2補正量KEGR2を付与するテーブルの一例を
示す特性線図。
FIG. 8 is a characteristic diagram showing an example of a table for giving a second correction amount KEGR2.

【符号の説明】[Explanation of symbols]

11 ディーゼルエンジン 12 吸気通路 13 排気通路 14 EGR通路 15 EGR弁 16 アクチュエータ 17 絞り弁 18 アクチュエータ 19 制御回路 20 水温センサ 21 エアフローメータ DESCRIPTION OF SYMBOLS 11 Diesel engine 12 Intake passage 13 Exhaust passage 14 EGR passage 15 EGR valve 16 Actuator 17 Throttle valve 18 Actuator 19 Control circuit 20 Water temperature sensor 21 Air flow meter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の運転状態を検出する運転状態検
出手段、 排気還流時の吸入空気量QACを検出する吸入空気量検出
手段、 運転状態に応じて目標EGR率MEGRMを演算する目標E
GR率演算手段、 運転状態に応じてEGR率の第1の補正量KEGR1を演算
する第1補正量演算手段、 運転状態に応じて目標吸入空気量BQACを演算する目標吸
入空気量演算手段、 EGR率MEGRMとその補正量KEGR1に基づいて目標吸入空
気量BQACを補正する補正後目標吸入空気量演算手段、 補正後目標吸入空気量BQACKと検出吸入空気量QACとの偏
差に基づいてEGR率の第2の補正量KEGR2を演算する
第2補正量演算手段、 第1の補正量KEGR1と第2の補正量KEGR2とに基づいてE
GR率MEGRMを補正するEGR率補正手段、 EGR率補正手段により補正したEGR率と運転状態と
からEGR弁の開度指令値SEGRを演算する開度指令値演
算手段、を備えた内燃機関の排気還流制御装置。
1. An operating state detecting means for detecting an operating state of an internal combustion engine, an intake air amount detecting means for detecting an intake air amount QAC at the time of exhaust gas recirculation, and a target E for calculating a target EGR rate MEGRM according to the operating state.
GR rate calculation means, first correction amount calculation means for calculating a first correction amount KEGR1 of the EGR rate according to the operation state, target intake air amount calculation means for calculating the target intake air amount BQAC according to the operation state, EGR A corrected target intake air amount calculating means for correcting the target intake air amount BQAC based on the ratio MEGRM and the correction amount KEGR1, a EGR rate based on a deviation between the corrected target intake air amount BQACK and the detected intake air amount QAC. A second correction amount calculating means for calculating the second correction amount KEGR2, E based on the first correction amount KEGR1 and the second correction amount KEGR2.
An exhaust gas of an internal combustion engine comprising: an EGR rate correction means for correcting the GR rate MEGRM; and an opening command value calculating means for calculating an opening command value SEGR of the EGR valve from the EGR rate and the operating state corrected by the EGR rate correcting means. Reflux control device.
【請求項2】目標EGR率演算手段は、運転状態に応じ
て定めたEGR弁の目標開度と前記運転状態とからEG
R率MEGRMを演算するように構成されていることを特徴
とする請求項1に記載の内燃機関の排気還流装置。
2. An EGR rate calculating means for calculating an EGR value based on a target opening degree of an EGR valve determined according to an operation state and the operation state.
The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein the system is configured to calculate an R rate MEGRM.
【請求項3】第1補正量演算手段は少なくとも機関冷却
水温に基づき第1補正量KEGR1を演算するように構成さ
れていることを特徴とする請求項1に記載の内燃機関の
排気還流制御装置。
3. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the first correction amount calculation means is configured to calculate the first correction amount KEGR1 based on at least the engine cooling water temperature. .
【請求項4】運転状態検出手段は、目標EGR率演算手
段、第1補正量演算手段、目標吸入空気量演算手段、開
度指令値演算手段に付与する運転状態として少なくとも
内燃機関の回転数と負荷状態とを検出するように構成さ
れていることを特徴とする請求項1に記載の内燃機関の
排気還流制御装置。
The operating state detecting means includes at least a rotational speed of the internal combustion engine as operating states to be given to the target EGR rate calculating means, the first correction amount calculating means, the target intake air amount calculating means, and the opening command value calculating means. 2. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation control device is configured to detect a load state.
【請求項5】EGR弁はステップモータにより開閉駆動
される構成を有し、開度指令値SEGRは前記ステップモー
タのステップ数として演算するように構成されているこ
とを特徴とする請求項1に記載の内燃機関の排気還流制
御装置。
5. The EGR valve according to claim 1, wherein the EGR valve is configured to be driven to open and close by a step motor, and the opening command value SEGR is calculated as the number of steps of the step motor. An exhaust gas recirculation control device for an internal combustion engine according to the above.
【請求項6】第2補正量演算手段は、実吸入空気量と補
正後目標吸入空気量との比QAC/BQACKの増大に応じて
増大する特性で第2補正量KEGR2を設定するように構成
されていることを特徴とする請求項1に記載の内燃機関
の排気還流制御装置。
6. The second correction amount calculating means is configured to set the second correction amount KEGR2 with a characteristic that increases as the ratio QAC / BQACK between the actual intake air amount and the corrected target intake air amount increases. 2. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein:
【請求項7】開度指令値演算手段は、EGR率に基づい
て吸気絞弁の開度をも演算するように構成されているこ
とを特徴とする請求項1に記載の内燃機関の排気還流制
御装置。
7. The exhaust gas recirculation of an internal combustion engine according to claim 1, wherein the opening command value calculating means is configured to also calculate the opening of the intake throttle valve based on the EGR rate. Control device.
JP16097198A 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine Expired - Fee Related JP3728930B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16097198A JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine
US09/326,704 US6227182B1 (en) 1998-06-09 1999-06-07 Exhaust gas recirculation control system for internal combustion engine
EP99111170A EP0964142B1 (en) 1998-06-09 1999-06-08 Exhaust gas recirculation control system for internal combustion engines
DE69925066T DE69925066T2 (en) 1998-06-09 1999-06-08 CONTROL DEVICE FOR EXHAUST GAS RECYCLING SYSTEM IN AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16097198A JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11351068A true JPH11351068A (en) 1999-12-21
JP3728930B2 JP3728930B2 (en) 2005-12-21

Family

ID=15726128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16097198A Expired - Fee Related JP3728930B2 (en) 1998-06-09 1998-06-09 Exhaust gas recirculation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3728930B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289883B1 (en) * 1999-04-23 2001-09-18 Mazda Motor Corporation Exhaust gas recirculation control system for engine
EP1229228A3 (en) * 2001-02-01 2003-07-09 Nissan Motor Co., Ltd. Air-fuel ratio control system for internal combustion engine
CN115355097A (en) * 2022-09-06 2022-11-18 潍柴动力股份有限公司 EGR system control method, EGR system control device, electronic equipment and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289883B1 (en) * 1999-04-23 2001-09-18 Mazda Motor Corporation Exhaust gas recirculation control system for engine
EP1229228A3 (en) * 2001-02-01 2003-07-09 Nissan Motor Co., Ltd. Air-fuel ratio control system for internal combustion engine
CN115355097A (en) * 2022-09-06 2022-11-18 潍柴动力股份有限公司 EGR system control method, EGR system control device, electronic equipment and storage medium
CN115355097B (en) * 2022-09-06 2023-11-17 潍柴动力股份有限公司 EGR system control method, EGR system control device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP3728930B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
JP4251073B2 (en) Control device for internal combustion engine
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
US10309298B2 (en) Control device of an engine
JPWO2002081888A1 (en) Control device for internal combustion engine
US6564778B2 (en) Fuel supply control system for internal combustion engine
JP2006161569A (en) Egr control device for internal combustion engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH0633807A (en) Method of controlling internal combustion engine
EP1793108B1 (en) Fuel supply control system for internal combustion engine
JP4345400B2 (en) Control device for internal combustion engine
JP3622506B2 (en) EGR control device for internal combustion engine
JPS618444A (en) Air-fuel ratio control device
JP3346116B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH07293347A (en) Exhaust reflux control device for internal combustion engine
JP3632446B2 (en) EGR control device for internal combustion engine
JP3008770B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0874627A (en) Air-fuel ratio control device
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH11173218A (en) Egr rate estimation device for engine
JPH07294385A (en) Diagnostic device of egr device of internal engine
JP2000291493A (en) Egr controller
JPH10122057A (en) Egr controller for engine
JPH0868353A (en) Air-fuel ratio control device for internal combustion engine
JPH09242595A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees