JP2001172038A - Preform ingot for optical fiber and method for producing the same - Google Patents

Preform ingot for optical fiber and method for producing the same

Info

Publication number
JP2001172038A
JP2001172038A JP35920299A JP35920299A JP2001172038A JP 2001172038 A JP2001172038 A JP 2001172038A JP 35920299 A JP35920299 A JP 35920299A JP 35920299 A JP35920299 A JP 35920299A JP 2001172038 A JP2001172038 A JP 2001172038A
Authority
JP
Japan
Prior art keywords
ingot
base material
preform
material ingot
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35920299A
Other languages
Japanese (ja)
Other versions
JP4148619B2 (en
Inventor
Masami Terajima
正美 寺嶋
Isao Arisaka
勲 有阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP35920299A priority Critical patent/JP4148619B2/en
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to EP07075824A priority patent/EP1894898B1/en
Priority to EP00126272A priority patent/EP1106584B1/en
Priority to DE60037098T priority patent/DE60037098T2/en
Priority to KR1020000072378A priority patent/KR100615545B1/en
Priority to US09/727,386 priority patent/US20020020193A1/en
Publication of JP2001172038A publication Critical patent/JP2001172038A/en
Priority to US10/934,473 priority patent/US20050147367A1/en
Application granted granted Critical
Publication of JP4148619B2 publication Critical patent/JP4148619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a preform ingot having excellent optical characteristics and to provide a method for producing the preform ingot by which the surface of the preform ingot obtained by sintering and vitrifying a soot material having unevennesses formed on the surface by high-speed deposition is smoothly ground and worked so as not to decenter a core part and the surface unevennesses are removed. SOLUTION: This method is characterized as smoothly working the outer peripheral surface near both ends of the preform ingot 21, mounting the resultant ingot 21 on a grinding machine and preventing the positional shift during the working when depositing glass microparticles produced by a flame hydrolytic reaction on a starting core member 1, forming a clad part, sintering and vitrifying the soot material, then grinding the unevennesses caused on the surface of the resultant preform ingot 21 and removing the unevennesses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火炎加水分解反応
により生成したガラス微粒子を、出発コア部材上に高速
度堆積させて得た光ファイバ用母材インゴット(以下、
母材インゴットと称する)表面の凹凸を研削して除去し
た母材インゴット及びその製造方法に関する。
The present invention relates to a base material ingot for optical fiber (hereinafter, referred to as a fiber ingot) obtained by depositing glass fine particles produced by a flame hydrolysis reaction on a starting core member at a high speed.
The present invention relates to a base material ingot in which surface irregularities are removed by grinding.

【0002】[0002]

【従来の技術】母材インゴットは、例えば、出発コア部
材の表面にOVD法(外付け法)により火炎加水分解反
応により生成したガラス微粒子(スート)を堆積させて
多孔質母材を製造し、さらに、脱水、焼結等の工程を経
て製造される。OVD法では、生産速度を上げるため
に、原料ガスを酸水素火炎中で加水分解させてガラス微
粒子を堆積させるバーナーを大径化する方法、あるいは
バーナーの数を増やす等の方法により、出発コア部材上
へのスートの堆積速度を速める方法が一般的に知られて
いる。
2. Description of the Related Art A base material ingot is produced by, for example, depositing glass fine particles (soot) generated by a flame hydrolysis reaction on the surface of a starting core member by an OVD method (external method) to produce a porous base material. Furthermore, it is manufactured through processes such as dehydration and sintering. In the OVD method, in order to increase the production rate, the starting core member is formed by a method of increasing the diameter of a burner for depositing glass particles by hydrolyzing a raw material gas in an oxyhydrogen flame, or by increasing the number of burners. Methods for increasing the rate of soot deposition on top are generally known.

【0003】原料ガスを供給するバーナーを大径化して
供給ガス量を増す方法は、出発コア部材表面へのスート
の付着率がスートの堆積初期において極めて低く、また
複数のバーナーを用いる方法は、バーナー間で炎の干渉
があり、堆積効率が思うように上がらない。さらに、バ
ーナーの数を増やす方法は、一般に知られているよう
に、出発コア部材に沿ってバーナーを平行にかつ左右に
移動させてスートを堆積させるため、堆積されたスート
体の左右両端に、この方式の欠点である不良部を生じ
る。また、複数本のバーナーを使用するためにスート体
の表面に凹凸ができる。この現象は、外付け法によりス
ート堆積用のバーナーのサイズや本数、またバーナーの
左右移動方法などによりその表面に凹凸が顕著に現れる
ことがある。特に、原料ガスを増量して高速度堆積を行
うとより顕著に現れる。
A method of increasing the supply gas amount by increasing the diameter of the burner for supplying the raw material gas is as follows. The soot deposition rate on the surface of the starting core member is extremely low in the initial stage of soot deposition, and the method using a plurality of burners is as follows. There is flame interference between the burners, and the deposition efficiency does not rise as expected. Further, as is generally known, a method of increasing the number of burners is to move the burners in parallel and left and right along the starting core member to deposit soot. The defective part which is a disadvantage of this method is generated. In addition, since a plurality of burners are used, the surface of the soot body has irregularities. This phenomenon may be conspicuous on the surface due to the size and number of burners for soot deposition by an external method, or the method of moving the burners from side to side. In particular, when the high-speed deposition is performed by increasing the amount of the raw material gas, it appears more remarkably.

【0004】上記したように、出発コア部材の周囲に外
付け法によりスートを堆積させて得られる母材インゴッ
トの表面に、凹凸を生じることがあるが、このような母
材インゴットを所望の径に細径化してプリフォームと
し、これを紡糸して光ファイバとしたとき、光ファイバ
としての光学特性に、母材インゴット表面の凹凸の影響
が現れる場合がある。従って、クラッド部を形成する
際、表面に凹凸が生じないような条件で行わねばならな
いが、そのような条件ではスートの堆積速度に限界があ
り、高速化の妨げになっていた。
As described above, the surface of a base material ingot obtained by depositing soot around the starting core member by an external method may have irregularities. Such a base material ingot may have a desired diameter. When the diameter of the preform is reduced to form a preform, and the preform is spun into an optical fiber, the optical characteristics of the optical fiber may be affected by irregularities on the surface of the base material ingot. Therefore, when forming the clad portion, it must be performed under conditions that do not cause unevenness on the surface. However, under such conditions, there is a limit to the soot deposition rate, which hinders speeding up.

【0005】[0005]

【発明が解決しようとする課題】このようにOVD法を
用いて母材インゴットを製造する場合、スートの堆積速
度を飛躍的に向上させるには、これらの問題を解決する
必要がある。そこで、スート堆積用のバーナーを複数本
用い、かつ原料ガスを増量してスートの高速度堆積を行
い、焼結ガラス化して得た母材インゴット表面の凹凸を
研削・除去して平滑にする方法が考えられる。しかし、
研削機に取り付けるには、母材インゴットの両端の円錐
状の部分で研削機に握持させねばならないが、この部分
の形状が一定でないため、研削用ホイルによる研削時の
振動により回転中心がズレて、コア部が偏芯することが
あった。
When a base material ingot is manufactured using the OVD method as described above, these problems must be solved in order to dramatically increase the soot deposition rate. Therefore, a method of using multiple burners for soot deposition, increasing the amount of source gas, performing high-speed soot deposition, and grinding and removing irregularities on the surface of the base material ingot obtained by sintering vitrification to smooth it. Can be considered. But,
In order to attach to the grinder, the conical portions at both ends of the base material ingot must be gripped by the grinder. As a result, the core may be eccentric.

【0006】本発明の目的は、高速度堆積によって表面
に凹凸が生じたスート体を焼結ガラス化して得られた母
材インゴットの表面を、コア部が偏芯しないように平滑
に研削加工して表面の凹凸を除去し、優れた光学特性を
有する母材インゴット及びその製造方法を提供すること
にある。
An object of the present invention is to grind the surface of a base material ingot obtained by sintering and vitrifying a soot body having an uneven surface due to high-speed deposition so that the core portion is not eccentric. To provide a base material ingot having excellent optical characteristics by removing surface irregularities and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の母材インゴット
の製造方法は、火炎加水分解反応により生成したスート
(ガラス微粒子)を出発コア部材上に堆積させてクラッ
ド部を形成し、焼結ガラス化した後、得られた母材イン
ゴットの表面に生じた凹凸を研削して除去するに際し、
該母材インゴットの両端部近傍の外周面を平滑に加工し
て研削機に取り付け、加工時の位置ずれを防止すること
を特徴としている。
According to a method of manufacturing a base material ingot of the present invention, a soot (glass fine particles) generated by a flame hydrolysis reaction is deposited on a starting core member to form a clad portion, and a sintered glass is formed. Then, when grinding and removing irregularities generated on the surface of the obtained base material ingot,
The present invention is characterized in that the outer peripheral surfaces near both ends of the base material ingot are processed smoothly and attached to a grinding machine to prevent displacement during processing.

【0008】母材インゴットの両端部近傍の外周面を平
滑に加工する際、コア部の位置を検出し、該コア部が回
転軸中心となるように研削機に取り付け、該回転軸中心
に沿って該母材インゴットの外周面を研削する。また、
両端部近傍の外周面を平滑に加工する際、該母材インゴ
ットの長さ中心に向かって広がる円錐形状に加工するの
が好ましい。さらに、円錐形状に加工した円錐部に、円
周方向への傾き角度を検出するための基準方位面(オリ
エンテーションフラット)を研削して設けるのが好まし
い。本発明の母材インゴットは、このようにして製造さ
れる。
When smoothing the outer peripheral surfaces near both ends of the base material ingot, the position of the core is detected, and the core is attached to a grinding machine so that the core is located at the center of the rotation axis. To grind the outer peripheral surface of the base material ingot. Also,
When the outer peripheral surfaces near both ends are processed smoothly, it is preferable to process the outer peripheral surface into a conical shape that spreads toward the center of the length of the base material ingot. Further, it is preferable to grind and provide a reference azimuth plane (orientation flat) for detecting a tilt angle in a circumferential direction on a conical portion processed into a conical shape. The base material ingot of the present invention is manufactured in this manner.

【0009】[0009]

【発明の実施の形態】OVD法で製作したスート体を脱
水・焼結ガラス化して得た母材インゴットの表面に凹凸
が存在すると、光ファイバ用プリフォームとするため所
定の径に延伸するとコア径が変動し、これを紡糸して得
られる光ファイバの光学特性に悪影響を与える。これを
防止するには、母材インゴットの表面に凹凸がある場
合、表面を円滑に円柱形状に研削(以下、円柱研削とい
う)加工する必要がある。このとき重要なことは、焼結
ガラス化された母材インゴットの真円度とコア部の偏芯
量である。特に、光ファイバの真円度とコア部の偏芯量
は、光ファイバケーブル敷設時の光ファイバ接続作業の
ときに、光学特性(接続ロス)に大きな悪影響を与え
る。
BEST MODE FOR CARRYING OUT THE INVENTION If there is unevenness on the surface of a base material ingot obtained by dehydrating and sintering a soot body manufactured by the OVD method, the core is stretched to a predetermined diameter in order to obtain an optical fiber preform. The diameter fluctuates and adversely affects the optical properties of the optical fiber obtained by spinning the diameter. In order to prevent this, when the surface of the base material ingot has irregularities, it is necessary to smoothly grind the surface into a cylindrical shape (hereinafter, referred to as cylindrical grinding). What is important at this time is the roundness of the base material ingot that has been vitrified and the amount of eccentricity of the core. In particular, the roundness of the optical fiber and the amount of eccentricity of the core have a large adverse effect on optical characteristics (connection loss) when connecting the optical fiber when laying the optical fiber cable.

【0010】このため、母材インゴットを円柱研削する
にあたり、母材インゴットのコア部の位置を光学的に計
測して、研削時の回転中心位置を決定し、母材インゴッ
トの両端部に、コア部の真円と合致する回転軸中心を持
った円錐状の加工を施し、さらにコア部の円周方位が確
認できるように、円錐部に基準方位面(オリエンテーシ
ョンフラット)を研削して設けた後、研削機の回転中心
にセットする。この状態で円柱研削することで非円、コ
ア部の偏芯不良等の発生を防止することができる。この
結果、光学的に安定した特性を持つ母材インゴットを高
速合成することが可能となり、これを所定の径に延伸し
て得たプリフォームを紡糸して光学特性の良好な光ファ
イバが得られる。本発明を実施例,比較例および図に基
いてさらに詳細に説明するが、本発明はこれらに限定さ
れるものではない。
Therefore, in cylindrical grinding of the base material ingot, the position of the core portion of the base material ingot is optically measured to determine the rotation center position at the time of grinding. After processing a conical shape with the rotation axis center that matches the true circle of the part, and grinding the reference azimuth plane (orientation flat) on the conical part so that the circumferential direction of the core part can be confirmed , Set at the center of rotation of the grinding machine. By performing cylindrical grinding in this state, it is possible to prevent the occurrence of non-circularity, eccentricity failure of the core portion, and the like. As a result, a base material ingot having optically stable characteristics can be synthesized at a high speed, and a preform obtained by stretching the preform to a predetermined diameter is spun to obtain an optical fiber having good optical characteristics. . The present invention will be described in more detail with reference to Examples, Comparative Examples and Figures, but the present invention is not limited thereto.

【0011】[0011]

【実施例】(実施例1)図1に光ファイバ用スート体(多
孔質ガラス母材)の製造装置の一例を示す。出発コア部
材1として外径が25mmφ、長さ1200mmのシン
グルモード光ファイバ用に屈折率を調整したコア用石英
ガラス棒を用いた。この出発コア部材1を石英ガラス製
のダミー棒2に溶接し、これを密閉型反応炉3の中に設
けられたコア部材回転用モータ4に取り付け40rpm
で回転させた。
(Embodiment 1) FIG. 1 shows an example of an apparatus for producing a soot body (porous glass base material) for an optical fiber. As the starting core member 1, a quartz glass rod for a core whose outer diameter was 25 mmφ and whose refractive index was adjusted for a single mode optical fiber having a length of 1200 mm was used. The starting core member 1 is welded to a dummy rod 2 made of quartz glass, and this is attached to a core member rotating motor 4 provided in a closed-type reaction furnace 3 at 40 rpm.
And rotated.

【0012】酸水素火炎バーナー5は、従来使用してい
るバーナーよりも大径大型の物を複数本取り付け、図示
を省略した原料供給装置より酸素ガス80cm3/mi
n、水素ガス160cm3/min、キャリアガスとし
ての酸素ガス10cm3/minに同伴して原料ガスS
iCl440g/minを供給した。このバーナー5を
トラバース用モータ6により150mm/minの速度
で1600mmの範囲で往復運動させ、SiCl4の火
炎加水分解で生じたガラス微粒子を出発コア部材1に堆
積させた。堆積が進むにつれてさらに原料ガス量を増量
し、24時間後に外径が230mmφのスート体を得
た。さらに、堆積終了直前には、バーナーに原料供給装
置より、酸素ガス240cm3/min、水素ガス48
0cm3/min、キャリアガスとしての酸素ガス25
0cm3/minに同伴して原料ガスSiCl4125c
3/minを供給した。
The oxyhydrogen flame burner 5 is provided with a plurality of large-diameter and large-sized burners, which are conventionally used, and is supplied with an oxygen gas of 80 cm 3 / mi from a raw material supply device (not shown).
n, hydrogen gas 160 cm 3 / min, oxygen gas 10 cm 3 / min as carrier gas
40 g / min of iCl 4 was supplied. The burner 5 was reciprocated by the traverse motor 6 at a speed of 150 mm / min within a range of 1600 mm, and glass fine particles generated by flame hydrolysis of SiCl 4 were deposited on the starting core member 1. As the deposition proceeded, the amount of the raw material gas was further increased, and a soot body having an outer diameter of 230 mmφ was obtained after 24 hours. Immediately before the end of the deposition, an oxygen gas 240 cm 3 / min and a hydrogen gas 48
0 cm 3 / min, oxygen gas 25 as carrier gas
Source gas SiCl 4 125c accompanied by 0 cm 3 / min
m 3 / min.

【0013】この平均堆積速度30g/minの高速で
堆積されたスート体7の表面には、螺旋状に凹凸を生じ
ているのが認められた。さらにスート体7を焼結炉に入
れ、脱水・焼結ガラス化して透明な母材インゴットを得
たが、焼結ガラス化後においても表面に螺旋状の凹凸が
残っていた。凹凸の深さは最大で1.35mmあり、こ
の状態でプリフォーム化し、さらに紡糸して光ファイバ
とすると、光ファイバの光学特性の一つである、光ファ
イバの融着接続時に偏芯による大きな接続ロスを生じ
る。
The surface of the soot body 7 deposited at a high speed of the average deposition rate of 30 g / min was found to have spiral irregularities. Further, the soot body 7 was placed in a sintering furnace and dewatered and sintered to obtain a transparent base material ingot. However, even after the sintering and vitrification, spiral irregularities remained on the surface. The maximum depth of the irregularities is 1.35 mm. In this state, when the optical fiber is formed into a preform and further spun into an optical fiber, one of the optical characteristics of the optical fiber is large due to eccentricity during fusion splicing of the optical fiber. Connection loss occurs.

【0014】次ぎに、第1研削工程として、焼結ガラス
化した母材インゴットの両端部に、コア部の真円と合致
する回転軸中心を持った円錐状の加工を施し、さらに、
形成した円錐部に、コア部の円周方向への傾き角度すな
わち円周方位が確認できるよう基準方位面(オリエンテ
ーションフラット)を研削して設けた。このように両端
部に平滑な円錐部を加工して設けた後、円柱研削機に取
り付け加工する。
Next, as a first grinding step, both ends of the sintered and vitrified base material ingot are subjected to conical processing having a rotation axis center that matches the perfect circle of the core portion.
The reference azimuth plane (orientation flat) was ground on the formed conical part so that the inclination angle of the core part in the circumferential direction, that is, the circumferential azimuth, could be confirmed. After forming a smooth conical portion on both ends in this way, the conical portion is mounted on a cylindrical grinder.

【0015】具体的には図2に示すように,母材インゴ
ット21をテーパー研削機22のチャック23に取り付
け、チャック支持部24で固定した。次に、母材インゴ
ット21を回転させながら、図示を省略した光学計測器
(偏光ガラスを用いた光学測定器)にてコア位置の測定
を行い、コアの中心位置をチャック23を移動させてチ
ャック支持部24の回転中心に調整して合わせ、母材イ
ンゴット21のセッティングを行った。母材インゴット
端部のテーパー部8の研削には荒さ#600番のダイヤ
モンドホイール25を使用し、コアの中心軸線に対して
10度の角度で円錐状に研削した。これを母材インゴッ
ト21の両端について行った。さらに、図3に示すよう
に、一方のテーパー部8に円周方向の原点(円周方向へ
の傾き角度を検出するための基準方位面)とするオリエ
ンテーションフラット26を研削して設けた。
More specifically, as shown in FIG. 2, a base material ingot 21 was attached to a chuck 23 of a taper grinder 22 and fixed by a chuck support 24. Next, while rotating the base material ingot 21, the core position is measured by an optical measuring device (optical measuring device using polarizing glass) not shown, and the center position of the core is moved by the chuck 23, and the chuck is moved. The base material ingot 21 was set by adjusting to the center of rotation of the support portion 24. The tapered portion 8 at the end of the base material ingot was ground using a diamond wheel 25 having a roughness of # 600 using a diamond wheel 25 with a roughness of # 600 and a conical shape at an angle of 10 degrees with respect to the center axis of the core. This was performed for both ends of the base material ingot 21. Further, as shown in FIG. 3, an orientation flat 26 serving as an origin in the circumferential direction (a reference azimuth plane for detecting a tilt angle in the circumferential direction) is provided on one tapered portion 8 by grinding.

【0016】さらに、第2研削工程では、母材インゴッ
ト21の直胴部の周面を平滑に研削して表面の凹凸を除
去する。先ず、両端を円錐状に研削加工した母材インゴ
ット21を図4に示す円柱研削機27のチャック28に
取り付け、チャック支持部29に固定した。一方のチャ
ック28には、母材インゴット21をオリエンテーショ
ンフラット26で固定するように加工がなされている。
次ぎに、母材インゴット21を回転して、図示を省略し
た光学計測器にてコア部の偏芯を母材インゴット21の
長手方向にわたって測定し、オリエンテーションフラッ
ト26を基準とした回転角度・偏芯量、および長手方向
における位置を制御機器に記憶させる。なお、図2,4
において、研削機に支持されたダイヤモンドホイールの
支持機構は図示を省略した。
Further, in the second grinding step, the peripheral surface of the straight body portion of the base material ingot 21 is ground smoothly to remove irregularities on the surface. First, the base material ingot 21 having both ends conically ground was attached to the chuck 28 of the cylindrical grinder 27 shown in FIG. One of the chucks 28 is processed so that the base material ingot 21 is fixed by the orientation flat 26.
Next, the base material ingot 21 is rotated, and the eccentricity of the core portion is measured in the longitudinal direction of the base material ingot 21 by an optical measuring device (not shown), and the rotation angle and the eccentricity with respect to the orientation flat 26 are measured. The quantity and the position in the longitudinal direction are stored in the control device. 2 and 4
In the figure, the support mechanism of the diamond wheel supported by the grinding machine is not shown.

【0017】これらのデータにもとづき、円柱研削機2
7にダイヤモンドホイール31,32,33を下記のよ
うに取り付けて回転させ、母材インゴット21の送り速
度50mm/minで研削部を水冷しながら1回研削し
た。この研削で母材インゴット21の表面は平滑に仕上
がり、コア部も明確に計測できる状態になった。なお、
各ダイヤモンドホイール31,32,33の荒さは、そ
れぞれ順に#60番、#140番、#600番であり、
各ホイールは研削深さが、ホイール31は0.75m
m、ホイール32はホイール31の切削面よりさらに
0.3mm深く、ホイール33はホイール32の切削面
よりさらに0.05mm深くなる位置にセットした(図
5,6参照)。
Based on these data, the cylindrical grinder 2
Diamond wheels 31, 32, and 33 were attached to 7 and rotated as described below, and were ground once at a feed speed of the base material ingot 21 of 50 mm / min while cooling the ground portion with water. By this grinding, the surface of the base material ingot 21 was finished smoothly, and the core portion was clearly measured. In addition,
The roughness of each of the diamond wheels 31, 32, and 33 is # 60, # 140, and # 600, respectively.
Grinding depth of each wheel, 0.75m for wheel 31
m, the wheel 32 was set at a position 0.3 mm deeper than the cut surface of the wheel 31, and the wheel 33 was set at a position 0.05 mm deeper than the cut surface of the wheel 32 (see FIGS. 5 and 6).

【0018】次ぎに、母材インゴット21を回転させな
がら光学計測器で、コア・クラッドの径比率とコアの偏
芯量を測定した。この測定結果にもとづき、コアの回転
中心の微調整をチャックで行うとともに、さらにコア・
クラッドの径比率を調整するために、#600番のホイ
ール33のみを用いて、研削深さ0.05mm、母材イン
ゴットの送り速度50mm/minで仕上げ研削を1回
行い、母材インゴットの直胴部周面の研削を終了した。
直胴部の研削工程におよそ120分の時間を要したが、
母材インゴットの表面は極めて平滑となり、堆積速度の
遅い従来の製造方法で製作した物となんら遜色なく、製
造時間を、表面凹凸を除去するための円柱研削を含めて
も従来の約1/2に短縮することができた。
Next, while rotating the base material ingot 21, the diameter ratio of the core and the clad and the eccentricity of the core were measured by an optical measuring instrument. Based on this measurement result, fine adjustment of the center of rotation of the core is performed with the chuck, and
In order to adjust the diameter ratio of the clad, finish grinding is performed once using only the # 600 wheel 33 at a grinding depth of 0.05 mm and a feed rate of the base material ingot of 50 mm / min. Grinding of the trunk surface was completed.
It took about 120 minutes to grind the straight body part,
The surface of the base material ingot is extremely smooth, and is not inferior to the one manufactured by the conventional manufacturing method having a low deposition rate, and the manufacturing time is reduced to about 1/2 that of the conventional one even when the cylindrical grinding for removing the surface irregularities is included. Could be shortened.

【0019】研削加工した母材インゴットを電気炉にて
45mmφに延伸して光ファイバプリフォームとし、さ
らに、これを線引き機で紡糸して外径125μmの光フ
ァイバを得た。この光ファイバの光学特性を測定したと
ころ、表1に示すように、コアの偏芯率、接続損失とも
に極めて小さく、良好な結果が得られた。
The ground preform ingot was drawn to 45 mmφ in an electric furnace to form an optical fiber preform, which was spun with a wire drawing machine to obtain an optical fiber having an outer diameter of 125 μm. When the optical characteristics of this optical fiber were measured, as shown in Table 1, both the eccentricity of the core and the connection loss were extremely small, and good results were obtained.

【0020】(比較例1)実施例1と同様にして合成し
たスート体を焼結炉に入れ、脱水・焼結ガラス化して透
明な母材インゴットを得た。この母材インゴットの表面
には螺旋状に凹凸が残っていた。凹凸の深さは最大で
1.20mmであった。従来方法で円柱研削機に母材イ
ンゴットをセットし、荒さ#60番のダイヤモンドホイ
ールを使用し、研削深さ0.5mm、母材インゴットの送
り速度70mm/minで研削部を水冷しながら3回研
削し、さらに#600番のダイヤモンドホイールを使用
して深さ0.1mm、母材インゴットの送り速度50m
m/minで1回、さらに、研削深さ0.05mm、母
材インゴットの送り速度50mm/minで仕上げ研削
を1回行い、母材インゴット直胴部の研削を終了した。
Comparative Example 1 A soot body synthesized in the same manner as in Example 1 was placed in a sintering furnace, and dehydrated and sintered to obtain a transparent base material ingot. Spiral irregularities remained on the surface of the base material ingot. The depth of the unevenness was 1.20 mm at the maximum. A base material ingot is set on a cylindrical grinder by a conventional method, and three times while using a diamond wheel having a roughness of # 60 with a grinding depth of 0.5 mm and a feed speed of the base material ingot of 70 mm / min while cooling the ground portion with water. After grinding, using a # 600 diamond wheel, the depth is 0.1 mm and the feed rate of the base material ingot is 50 m.
The finish grinding was performed once at m / min, and once at a grinding depth of 0.05 mm and a feed rate of the base material ingot of 50 mm / min, and the grinding of the body portion of the base material ingot was completed.

【0021】製造した母材インゴットを電気炉にて直径
45mmφに延伸して光ファイバプリフォームとした。
このプリフォームを線引き機で紡糸して外径125μm
の光ファイバを得た。この光ファイバの光学特性を測定
したところ、コアの偏芯率にバラつきが見られる結果と
なった。この原因は、母材インゴット両端部のテーパー
部の形状が不均一なため円柱研削機に取り付ける際、チ
ャック部での馴染みが悪く、研削加工時の震動等による
取り付け位置のズレに起因することが判明した。実施
例、比較例で得られた光ファイバの光学特性の測定結果
を表1に示す。
The produced base material ingot was drawn to a diameter of 45 mmφ in an electric furnace to obtain an optical fiber preform.
This preform is spun with a wire drawing machine and has an outer diameter of 125 μm.
Was obtained. When the optical characteristics of this optical fiber were measured, the results showed that the eccentricity of the core varied. The reason for this is that the shape of the taper at both ends of the base material ingot is not uniform, so when mounting it on a cylindrical grinder, the fitting at the chuck is poor and the mounting position shifts due to vibration etc. during grinding. found. Table 1 shows the measurement results of the optical characteristics of the optical fibers obtained in Examples and Comparative Examples.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】上記したように本発明によれば、スート
体の表面に凹凸が発生するような条件で高速合成を行い
製造した母材インゴットでも、両端のテーパー部を円錐
状に研削し、この円錐部にオリエンテーションフラット
の加工を施したことによって、母材インゴット直胴部の
外周面研削時の位置ズレは防止され、さらに、オリエン
テーションフラットで円周方向の原点位置を決め、円周
方向の削り込み深さを調節することで、焼結ガラス化時
に生じたコア部の微妙な曲りも修正され、コアの偏芯率
は小さく向上し、従来の方法で製造したものと同様な光
学特性を得ることができた。この母材インゴットを所望
の径に延伸してプリフォームとし、紡糸して得られる光
ファイバは、コアの偏芯率、接続損失ともに極めて小さ
く、良好な光学特性を有していた。
As described above, according to the present invention, even in a base material ingot manufactured by performing high-speed synthesis under such a condition that irregularities are generated on the surface of the soot body, the tapered portions at both ends are ground into conical shapes. By applying orientation flat processing to this conical portion, positional deviation during grinding of the outer peripheral surface of the base body ingot straight body portion is prevented, and furthermore, the origin flat in the circumferential direction is determined by the orientation flat, and By adjusting the shaving depth, the delicate bending of the core that occurs during vitrification is corrected, the eccentricity of the core is improved, and the same optical characteristics as those manufactured by the conventional method are obtained. I got it. The optical fiber obtained by stretching this base material ingot to a desired diameter to form a preform and spinning the fiber had extremely small eccentricity and connection loss of the core, and had good optical characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 光ファイバ用スート体製造装置の概略を示す
正面図である。
FIG. 1 is a front view schematically showing an apparatus for manufacturing an optical fiber soot body.

【図2】 テーパー部研削機で、母材インゴットの端部
を円錐状に加工する様子を示す概略正面図である。
FIG. 2 is a schematic front view showing a state in which the end of a base material ingot is processed into a conical shape by a taper portion grinding machine.

【図3】 テーパー部に設けられたオリエンテーション
フラットを示す概略平面図である。
FIG. 3 is a schematic plan view showing an orientation flat provided on a tapered portion.

【図4】 円柱研削機を用いて、母材インゴット直胴部
の周面を平滑に研削する様子を示す概略正面図である。
FIG. 4 is a schematic front view showing how a cylindrical grinder is used to smoothly grind a peripheral surface of a straight body of a base material ingot.

【図5】 母材インゴット直胴部の周面を平滑に研削す
る様子を示す概略側面図である。
FIG. 5 is a schematic side view showing a state in which a peripheral surface of a straight body portion of a base material ingot is ground smoothly.

【図6】 母材インゴット直胴部の周面を平滑に研削す
る様子を示す概略平面図である。
FIG. 6 is a schematic plan view showing a state in which a peripheral surface of a straight body portion of a base material ingot is ground smoothly.

【符号の説明】[Explanation of symbols]

1.出発コア部材 2.ダミー棒 3.密閉型反応炉 4.コア部材回転用モータ 5.酸水素火炎バーナー 6.トラバース用モータ 7.スート体 8.テーパー部 9.バーナーガイド機構 10.排気フード 21.母材インゴット 22.テーパー研削機 23,28.チャック 24,29.チャック支持部 25,31,32,33.ダイヤモンドホイール 26.オリエンテーションフラット 27.円柱研削機 1. Starting core member 2. Dummy stick 3. Closed reactor 4. Motor for core member rotation 5. 5. Oxy-hydrogen flame burner 6. Traverse motor Soot body 8. Tapered section 9. Burner guide mechanism 10. Exhaust hood 21. Base material ingot 22. Taper grinding machine 23, 28. Chuck 24, 29. Chuck support 25, 31, 32, 33. Diamond wheel 26. Orientation flat 27. Cylindrical grinding machine

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 火炎加水分解反応により生成したガラス
微粒子を出発コア部材上に堆積させてクラッド部を形成
し、焼結ガラス化した後、得られた母材インゴットの表
面に生じた凹凸を研削して除去するに際し、該母材イン
ゴットの両端部近傍の外周面を平滑に加工して研削機に
取り付け、加工時の位置ずれを防止することを特徴とす
る光ファイバ用母材インゴットの製造方法。
1. A method in which glass fine particles generated by a flame hydrolysis reaction are deposited on a starting core member to form a clad portion, and after sintering and vitrification, the irregularities formed on the surface of the obtained base material ingot are ground. A method of manufacturing a preform ingot for an optical fiber, wherein the outer peripheral surfaces near both ends of the preform ingot are smoothed and attached to a grinder to prevent displacement during processing. .
【請求項2】 前記母材インゴットの両端部近傍の外周
面を平滑に加工する際、コア部の位置を検出し、該コア
部が回転軸中心となるように研削機に取り付け、該回転
軸中心に沿って該母材インゴットの外周面を研削する請
求項1に記載の光ファイバ用母材インゴットの製造方
法。
2. The method according to claim 1, wherein when the outer peripheral surface near both ends of the base material ingot is machined smoothly, a position of a core is detected, and the core is attached to a grinding machine such that the core is located at the center of the rotation axis. The method for manufacturing a preform ingot for optical fibers according to claim 1, wherein the outer peripheral surface of the preform ingot is ground along the center.
【請求項3】 前記母材インゴットの両端部近傍の外周
面を平滑に加工する際、該母材インゴットの長さ中心に
向かって広がる円錐形状に加工する請求項1に記載の光
ファイバ用母材インゴットの製造方法。
3. The optical fiber mother according to claim 1, wherein, when the outer peripheral surfaces near both ends of the base material ingot are processed smoothly, the base material ingot is processed into a conical shape extending toward the center of the length of the base material ingot. Method of manufacturing material ingot.
【請求項4】 前記円錐形状に加工された円錐部に、円
周方向への傾き角度を検出するための基準方位面(オリ
エンテーションフラット)を研削して設ける請求項1乃
至4のいずれかに記載の光ファイバ用母材インゴットの
製造方法。
4. A conical part machined in a conical shape, wherein a reference azimuth plane (orientation flat) for detecting a tilt angle in a circumferential direction is provided by grinding. A method for producing a preform ingot for optical fibers according to the above.
【請求項5】 請求項1乃至4のいずれかに記載の製造
方法により製造されてなることを特徴とする光ファイバ
用母材インゴット。
5. A preform ingot for an optical fiber, produced by the production method according to claim 1. Description:
JP35920299A 1999-12-01 1999-12-17 Optical fiber base material ingot and method of manufacturing the same Expired - Fee Related JP4148619B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP35920299A JP4148619B2 (en) 1999-12-17 1999-12-17 Optical fiber base material ingot and method of manufacturing the same
EP00126272A EP1106584B1 (en) 1999-12-01 2000-12-01 Method and apparatus for manufacturing a preform for an optical fibre
DE60037098T DE60037098T2 (en) 1999-12-01 2000-12-01 Method and apparatus for producing a preform for optical fibers
KR1020000072378A KR100615545B1 (en) 1999-12-01 2000-12-01 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same
EP07075824A EP1894898B1 (en) 1999-12-01 2000-12-01 Method for modifying a glass base material for an optical fiber
US09/727,386 US20020020193A1 (en) 1999-12-01 2000-12-01 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same
US10/934,473 US20050147367A1 (en) 1999-12-01 2004-09-07 Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35920299A JP4148619B2 (en) 1999-12-17 1999-12-17 Optical fiber base material ingot and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001172038A true JP2001172038A (en) 2001-06-26
JP4148619B2 JP4148619B2 (en) 2008-09-10

Family

ID=18463286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35920299A Expired - Fee Related JP4148619B2 (en) 1999-12-01 1999-12-17 Optical fiber base material ingot and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4148619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210310161A1 (en) * 2018-11-22 2021-10-07 Shin-Etsu Quartz Products Co., Ltd. Silica glass yarn and silica glass cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210310161A1 (en) * 2018-11-22 2021-10-07 Shin-Etsu Quartz Products Co., Ltd. Silica glass yarn and silica glass cloth

Also Published As

Publication number Publication date
JP4148619B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
EP0885853B1 (en) Apparatus for drawing a glass preform for optical fibers
RU2096355C1 (en) Large-size pipe of quarts glass, large-size stock of quarts glass, manufacture of pipe and stock, optical fiber of quarts glass
KR100782393B1 (en) A method of manufacturing a preform ingot for optical fiber
KR970006994B1 (en) Method of flame grinding glass preform
EP0976689B1 (en) Process of producing a preform for an optical fibre
US20050147367A1 (en) Method for manufacturing base material for optical fiber, apparatus therefor, and base material manufactured by the same
EP1487750B1 (en) Method for producing an optical fiber and optical fiber
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
JP4148619B2 (en) Optical fiber base material ingot and method of manufacturing the same
JP2003327440A (en) Method for manufacturing preform for optical fiber
JPH1059739A (en) Production of optical fiber preform
JP2002356341A (en) Method for producing optical fiber preform ingot
JPH09328328A (en) Production of preform for optical fiber
JP3576873B2 (en) Manufacturing method of optical fiber preform
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
JP2005162511A (en) Glass preform for optical fiber and its manufacturing method
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP2000203860A (en) Large-sized quartz glass reform
JPH09278453A (en) Production of blank for rod lens
JP2003146683A (en) Optical fiber preform ingot and its manufacturing method
JP2003327441A (en) Method and apparatus for producing glass pipe for optical fiber
JP4413715B2 (en) Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof
JP2003226542A (en) Method and apparatus for grinding optical fiber preform ingot to cylinder
JP2003137582A (en) Method for manufacturing optical fiber preform
JP2003160353A (en) Optical fiber glass preform and method of manufacturing the same and optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees