JP2001170441A - Malodorous component removing method - Google Patents

Malodorous component removing method

Info

Publication number
JP2001170441A
JP2001170441A JP35557899A JP35557899A JP2001170441A JP 2001170441 A JP2001170441 A JP 2001170441A JP 35557899 A JP35557899 A JP 35557899A JP 35557899 A JP35557899 A JP 35557899A JP 2001170441 A JP2001170441 A JP 2001170441A
Authority
JP
Japan
Prior art keywords
discharge
tube
wire
air
malodorous components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35557899A
Other languages
Japanese (ja)
Other versions
JP4607272B2 (en
Inventor
Sachiko Okazaki
幸子 岡崎
Masuhiro Kokoma
益弘 小駒
Tadaaki Inomata
忠明 猪俣
Hoo Tanaka
邦翁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EC KAGAKU KK
Original Assignee
EC KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EC KAGAKU KK filed Critical EC KAGAKU KK
Priority to JP35557899A priority Critical patent/JP4607272B2/en
Publication of JP2001170441A publication Critical patent/JP2001170441A/en
Application granted granted Critical
Publication of JP4607272B2 publication Critical patent/JP4607272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove a malodorous component represented by ammonia, NOx, etc., in air while suppressing occurrence of ozone as a by product. SOLUTION: In the malodorous component removing method, the malodorous component is removed by generating negative corona discharge at a fine wire and reducing the malodorous component in air by providing the fine wire at the center of a stainless steel tube long in one direction, grounding the fine wire as a negative electrode, forming a discharge tube using the stainless steel tube as a positive electrode, sending the air containing the malodorous component represented by ammonia, ozone, etc. in the discharge tube, and also applying direct or alternating high voltage and regulating discharge current to 0.067-0.01 mA/cm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気中に存在するア
ンモニア、NOx、NO2等の悪臭ガス成分を除去する
悪臭成分の除去方法に関する。
The present invention relates to the ammonia present in the air, NOx, relates to a process removing the malodorous components of removing malodorous gas components such as NO 2.

【0002】[0002]

【従来技術】現在、家庭からでる生ごみやトイレあるい
は自動車の排気ガス等の排気中にはいろいろな悪臭の元
となっているアンモニア、NOx或いはNO2等、また
これらの混合物が空気中に混入し、いわゆる悪臭ガスの
形で空気中に拡散し我々の生活の中に悪影響を及ぼし、
特に環境問題で良く論じられている所である。これらの
悪臭ガスは人為的に作り出されるもの、また動物やその
他、自然現象で発生したものなど種々雑多であり、これ
らの悪臭を除去する方法もいろいろと提案されている
が、現実には困難な場合が多い。例えば、各種の香料に
よる消臭や、またヒノキチオールによる方法などが提案
されているが、これらの方法は単に臭気に近い芳香によ
って悪臭があっても他の臭気を強める事で悪臭を弱めた
り、中和するものであって根本的に悪臭源である有機物
を除去するものではない。
BACKGROUND ART Currently, incorporation of ammonia in the exhaust, such as exhaust gas of garbage and toilet or car leaving the home has become a different stench source, NOx or NO 2 etc., also mixtures of these in the air And diffuses into the air in the form of so-called stench gases, which has a negative effect on our lives,
It is a place that is well discussed especially in environmental issues. These odorous gases are variously produced, such as those artificially produced, animals and others, and those generated by natural phenomena. Various methods for removing these odorous gases have been proposed, but in practice, it is difficult Often. For example, deodorization using various fragrances and methods using hinokitiol have been proposed.However, these methods reduce malodor by simply increasing other odors even if there is a malodor due to fragrance close to odor, or medium It does not remove organic matter that is a source of offensive odor.

【0003】一方、高温の中に悪臭を含んだガスを吹き
込んだり、触媒を使用した分解方法も例示されている
が、これらはすべて悪臭源のアンモニアや亜硝酸のガス
を酸化によって分解するものであり、これらは酸やアル
カリに変化するだけで又変化した酸やアルカリを処理し
なければならなくなる。
[0003] On the other hand, gasoline containing a malodor is blown into a high temperature, or a decomposition method using a catalyst is also exemplified. However, these methods all decompose ammonia or nitrous acid gas as a malodor source by oxidation. Yes, they only change to acids and alkalis and must also treat the changed acids and alkalis.

【0004】[0004]

【発明が解決しようとする課題】本発明者は従来の悪臭
源のアンモニア、NOx或いはNO2等の成分を除去す
る方法の欠点を改良した新規な悪臭成分の除去方法につ
いて種々検討した結果、本発明を完成したもので、本発
明はチューブ中に設けた細線上に負のコロナ放電を発生
させ、その中を悪臭源のガスを含有する空気を通過させ
て、コロナ放電の放電電流を制限することによって空気
中に含有させる悪臭成分ガス、例えばNH3或いはNO
x等を還元することによって窒素原子に戻し、且つ、同
時に空気中の窒素を解離することなく、更に有害オゾン
副成量を1/10以下に抑制しつつ悪臭源のガスを除去
する方法を提供することを目的とする。
The present inventors [0008] As a result of various investigations on a method of removing the new malodorous components having improved disadvantage of the process of removing ammonia conventional malodor, the components such as NOx or NO 2, the In the present invention, the present invention generates a negative corona discharge on a thin wire provided in a tube, passes air containing a gas of a bad odor source through the inside, and limits a discharge current of the corona discharge. Odorous component gas, such as NH 3 or NO
Provide a method for removing gas as a odor source while reducing x and the like to return to nitrogen atoms and at the same time without dissociating nitrogen in the air and further suppressing harmful ozone by-products to 1/10 or less. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】本願の第1の発明は、一
方向に長いステンレスチューブの中心に細線を設置し、
この細線を負電極として接地し、ステンレスチューブを
正電極とした放電管を形成し、該放電管内にアンモニア
等に代表される悪臭成分を含有する空気を送入すると共
に、直流または交流の高電圧を印加し、電流密度を0.
067mA/cm以下に制限することにより細線に負の
コロナ放電を発生せしめて、該空気中の悪臭成分をO3
の発生を抑制しつつ還元することにより除去することを
特徴とする悪臭成分の除去方法であり、第2の発明は、
一方向に長いステンレス円柱の長手方向に複数の穴を穿
設し、各穴の中心に1本の細線を設置して複数個の放電
管を形成し、各放電管内にNOx或いはNO2等に代表
される悪臭成分を含有するた空気を送ると共に、直流ま
たは交流の高電圧を印加し、電流密度を0.020A/
cm以下に制限する事により負のコロナ放電を複数個の
細線上に発生せしめて、空気中の悪臭成分を除去するこ
とを特徴とする悪臭成分の除去方法である。
According to a first aspect of the present invention, a thin line is provided at the center of a stainless steel tube that is long in one direction,
This fine wire is grounded as a negative electrode, a discharge tube is formed with a stainless tube as a positive electrode, air containing a malodorous component represented by ammonia or the like is fed into the discharge tube, and a DC or AC high voltage is applied. Is applied and the current density is set to 0.
067 mA / cm or less, a negative corona discharge is generated in the fine wire, and the malodorous component in the air is reduced to O 3.
A method for removing malodorous components, characterized in that removal is performed by reducing while suppressing the generation of odor components.
Drilled a plurality of holes in the longitudinal direction of the long stainless cylinder in one direction to form a plurality of discharge tube by installing a single thin line in the center of each hole, NOx or NO 2 or the like to each discharge tube While sending air containing a representative odor component, a DC or AC high voltage is applied to reduce the current density to 0.020 A /
This method is characterized in that a negative corona discharge is generated on a plurality of fine wires by limiting the density to less than a centimeter, thereby removing malodorous components in the air.

【0006】即ち、本発明は放電の中に悪臭成分含有の
ガスを通過させることにより、通常の方法では酸化反応
が生じて除去出来ないものが、負のコロナ放電をある条
件下においてはすべて原子状の酸素、窒素となり、更に
空気成分の窒素や酸素が解離しないので再結合を起こす
ことなく処理するのであって、特にアンモニア成分は1
00%まで除去することが出来るのである。本発明にお
ける負コロナ放電とはコロナ電極(尖った先端又は細線
側)を負電極としてコロナ放電させたことをいうのであ
る。正コロナ放電はその反対をいうのであるが、放電が
起こったときの違いは前者の場合、電子は外部電極(本
願発明の管状電極)に向かって電子雪崩を生じるのに対
し、後者の場合は中心細線に向かう。放電領域は両者共
高高数十μmであるから、発生した電子が外の電極に向
かう前者の方が反応領域が広く、電子と分子間との反応
確率は大きくなる。即ち、反応速度は大きくなるのであ
る。従って、交流電流ではNH3の分解速度は負コロナ
放電に比して遅くなる。更に、大気圧負コロナ放電の尖
端電極付近での放電機構は低気圧グロー放電の場合の陰
極部分と同様であるといわれている。即ち、陰極、陰極
暗部、負グロー部分だけが存在していることが知られて
いる。一般にグロー放電には正規グローと異常グローと
いう状態があり、前者は一定圧力下では放電電圧又は陰
極降下電圧は一定とみなされるが、後者では放出電圧は
電流の関数であるから、電流上昇と共に平均電子エネル
ギーは上昇する。負コロナ放電は異常グローとされてい
る為、電流値を下げてやれば全体に平均電子エネルギー
値は下降できる。本発明は平均電子エネルギー値を下降
させることに基づく。具体的に本発明においては、ステ
ンレスチューブもしくは穿設された穴内の細線を負電極
として接地し、ステンレスチューブもしくはステンレス
円柱を正電極として放電管を構成し、細線上に負のコロ
ナ放電を行なうのである。なお、負コロナ放電に替えて
正コロナ放電を行なったところNOxについては負コロ
ナ放電と同様の分解が見られたが、その分解速度は遅く
実用的ではない。
That is, in the present invention, a gas containing an odorous component is allowed to pass through a discharge, so that an oxidation reaction occurs and cannot be removed by an ordinary method. It becomes oxygen and nitrogen in a state, and since the nitrogen and oxygen of the air component do not dissociate, it is processed without recombination.
It is possible to remove up to 00%. Negative corona discharge in the present invention means that corona discharge is performed using a corona electrode (sharp tip or thin wire side) as a negative electrode. Positive corona discharge means the opposite, but the difference when the discharge occurs is that in the former case, electrons produce an avalanche toward the external electrode (the tubular electrode of the present invention), whereas in the latter case, Head toward the center thin line. Since both of the discharge regions have a height of several tens of μm, the former has a wider reaction region in which the generated electrons are directed to the outer electrode, and the reaction probability between the electrons and the molecules is larger. That is, the reaction rate increases. Therefore, the decomposition rate of NH 3 is reduced with an alternating current as compared with the negative corona discharge. Further, it is said that the discharge mechanism in the vicinity of the tip electrode of the atmospheric pressure negative corona discharge is the same as the cathode portion in the case of the low pressure glow discharge. That is, it is known that only the cathode, the cathode dark portion, and the negative glow portion exist. In general, glow discharge has two states: normal glow and abnormal glow.In the former case, the discharge voltage or the cathode drop voltage is regarded as constant under a constant pressure, but in the latter, the emission voltage is a function of the current. The electron energy increases. Since the negative corona discharge is regarded as abnormal glow, the average electron energy value can be reduced as a whole by reducing the current value. The invention is based on lowering the average electron energy value. Specifically, in the present invention, a stainless steel tube or a thin wire in a perforated hole is grounded as a negative electrode, and a stainless steel tube or a stainless steel cylinder is used as a positive electrode to constitute a discharge tube, and a negative corona discharge is performed on the thin wire. is there. When positive corona discharge was performed instead of negative corona discharge, NOx was decomposed in the same manner as negative corona discharge, but the decomposition speed was slow and not practical.

【0007】本願では単細線の放電管(以下、SWCと
いう場合がある)を使用する第1の発明と複数の細線を
含む放電管(以下、MWCという場合がある)を使用す
る第2の発明を含んでいるが、これらについて次の実験
を行ない各現象を確認した。 参考例 1 図1に示したような長さ330mm、内径22mmのス
テンレスチューブ1のの両端にフランジタイプの栓3を
施して密封し、それぞれの栓の中央には直径10mmの
ガラス管4を封入しガス送入口5及びガス排出口6を形
成する。ステンレスチューブ1の中心に直径50μmの
タングステン細線2をガラス管4の外側まで延ばして設
置する。このような装置において、ステンレスチューブ
1を正電極とし、中心に位置せしめたタングステン細線
2を負電極とし、かつ接地して単細線の放電管SWCを
形成した。タングステン細線2とステンレスチューブ1
とを図3に示す回路図に従って結線した。ブリッジ回路
部分は細線温度制御用である。得られた回路に直流高電
圧または商用周波数50Hz、1kHz、3kHzの交
流電圧を印加した。なお、負電極となるタングステン細
線には電流を通じて若干の加熱を行えるようにした。上
記のSWCに600ml/分の割合でアンモニアの濃度
が105〜110ppm含有の空気を送入した。
In the present application, a first invention using a single thin wire discharge tube (hereinafter sometimes referred to as SWC) and a second invention using a discharge tube including a plurality of thin wires (hereinafter sometimes referred to as MWC). However, the following experiments were performed on these, and each phenomenon was confirmed. Reference Example 1 As shown in FIG. 1, a stainless steel tube 1 having a length of 330 mm and an inner diameter of 22 mm is provided with flange-type stoppers 3 at both ends and sealed, and a glass tube 4 having a diameter of 10 mm is sealed in the center of each stopper. A gas inlet 5 and a gas outlet 6 are formed. A tungsten thin wire 2 having a diameter of 50 μm is installed at the center of the stainless steel tube 1 so as to extend to the outside of the glass tube 4. In such an apparatus, the stainless tube 1 was used as a positive electrode, the tungsten thin wire 2 positioned at the center was used as a negative electrode, and grounded to form a single thin wire discharge tube SWC. Tungsten wire 2 and stainless steel tube 1
And were connected according to the circuit diagram shown in FIG. The bridge circuit portion is for thin wire temperature control. A high DC voltage or an AC voltage having a commercial frequency of 50 Hz, 1 kHz, or 3 kHz was applied to the obtained circuit. It should be noted that the tungsten thin wire serving as the negative electrode was slightly heated by passing an electric current. Air containing ammonia at a concentration of 105 to 110 ppm was fed into the SWC at a rate of 600 ml / min.

【0008】実験は細線に酸化ニッケル触媒を担持させ
たものと無担持のものとについて行なった。担持方法と
しては、予めII、III黒色酸化ニッケルの微粉末を用意
し、別にセメダイン50gとアセトン250ccを混合
し、これを250ccのメスシリンダーに入れその中に
タングステン細線を入れゆっくり引き上げて放置し、ア
セトンが蒸発したときに表面に酸化ニッケルの微粉末を
付着担持させた。また、ステンレスチューブの内壁も同
様にして酸化ニッケルを担持させた。この実験では50
μmのタングステン細線を使用したが、細線が太くなる
ほど電流も流れやすく電子雪崩を起こし、放電が糸状に
なるストリーマ放電を起こし空気中の酸素からオゾンを
生成したり、窒素を解離してNOxの生成が見られるよ
うになる。放電電流とO3生成率との関係を50Hzの
場合について図4に示す。また、その際の反応を反応式
で示すと次ぎのようになる。
[0008] Experiments were carried out on a fine wire carrying a nickel oxide catalyst and a non-supported material. As a supporting method, fine powders of II and III black nickel oxide are prepared in advance, 50 g of cemedine and 250 cc of acetone are separately mixed, and this is put into a 250 cc measuring cylinder, a tungsten thin wire is put therein, slowly pulled up, and left. When the acetone evaporated, a fine powder of nickel oxide was adhered and carried on the surface. The inner wall of the stainless steel tube also carried nickel oxide in the same manner. In this experiment, 50
Although a thin tungsten wire of μm was used, the thicker the thin wire, the easier the current to flow, causing an electron avalanche, causing a streamer discharge that formed a string of discharges, generating ozone from oxygen in the air, and dissociating nitrogen to generate NOx. Can be seen. FIG. 4 shows the relationship between the discharge current and the O 3 generation rate in the case of 50 Hz. The reaction at that time is represented by the following reaction formula.

【0009】[0009]

【数1】 O2+e→2O+e (1) O+O2+M(O2,N2)→O3+M(O2,N2) (2) M:第3体物質 図4に示されているように、O3の収率は電流の1次関
数として表される。反応式(2)は負の活性化エネルギ
ーを有するので高温ではO3の収率は減少する。交流電
流の場合、非塗装−非加熱ワイヤー電極は比較的高いO
3収率を示し、塗装−加熱ワイヤー電極は最も低い収率
を示す。塗装−加熱ワイヤー電極を使用した場合、非塗
装−非加熱ワイヤー電極の場合に比して1/10のO3
収率を達成することが出来る。酸化ニッケル触媒を担持
させた場合オゾンの生成量が著しく減少している事は、
オゾンの発生が極力おさえられているものと思われる。 参考例 2 図1に示したSWCを用い、印加電圧を変化させた。即
ち、印加電圧を下げ電流が1〜2mAになると細線の表
面のみコロナ放電が発生して微かに光る。この状態にお
いて、放電管中にアンモニア、NOx或いはNO2のよ
うな悪臭ガス成分を入れると還元されて次のような反応
が起こる。
O 2 + e → 2O + e (1) O + O 2 + M (O 2 , N 2 ) → O 3 + M (O 2 , N 2 ) (2) M: Third substance As shown in FIG. The O 3 yield is expressed as a linear function of the current. Since the reaction formula (2) has a negative activation energy, the O 3 yield decreases at high temperatures. For alternating current, the unpainted-unheated wire electrode has a relatively high O
3 shows the yield, with the coating-heating wire electrode showing the lowest yield. 1/10 of O 3 when using the coating-heating wire electrode compared to the non-painting-non-heating wire electrode
Yields can be achieved. When the nickel oxide catalyst is supported, the amount of ozone generated is significantly reduced.
It seems that the generation of ozone is suppressed as much as possible. Reference Example 2 The applied voltage was changed using the SWC shown in FIG. That is, when the applied voltage is lowered and the current becomes 1 to 2 mA, corona discharge is generated only on the surface of the thin wire and the light is slightly shined. In this state, ammonia, is reduced and add malodorous gas components such as NOx or NO 2 has the following reaction takes place during discharge tube.

【0010】[0010]

【数2】 NH3+e→1/2N+2/3H2 (3) N+N→N2 (4) NO+e→N+O+e (5) NO+O3→NO2+O2 (6) NO+O2→NO2+O (7) 本発明の主要な点は、悪臭成分であるNH3やNOが解
離するに必要な電子エネルギーであって、NH3の場合
は4.5eV、NOの場合は約6.5eVであり、それ
に対して空気中の窒素が解離するのが9eV以上と極め
て高い。従って悪臭成分のみ分解し窒素が解離しないよ
うな電界強度にすれば電子エネルギー値も必然的に下が
り、悪臭成分のみが分解する。電流が小さくなると中心
電極付近の電界強度が高くならない。これは細線の長さ
当りの電流密度を小さく保ってやれば実現できる。従っ
て通過中のアンモニア、NOxやNO2は解離するが、
空気のN2は解離しないためにNH3やNOx濃度を増加
させるN原子はほとんど生成されず分解のみ進んでアン
モニアやNOx濃度が減少して行くと考えられる。
[Number 2] NH 3 + e → 1 / 2N + 2 / 3H 2 (3) N + N → N 2 (4) NO + e → N + O + e (5) NO + O 3 → NO 2 + O 2 (6) NO + O 2 → NO 2 + O (7) present The main point of the invention is the electron energy required for dissociation of the malodorous components NH 3 and NO, which are 4.5 eV for NH 3 and about 6.5 eV for NO, whereas Dissociation of nitrogen in the air is extremely high at 9 eV or more. Therefore, if the electric field intensity is set such that only the malodorous component is decomposed and nitrogen is not dissociated, the electron energy value is necessarily decreased, and only the malodorous component is decomposed. When the current is small, the electric field strength near the center electrode does not increase. This can be realized by keeping the current density per length of the thin wire small. Therefore ammonia in passing, NOx and NO 2 are dissociated,
It is considered that since N 2 in air does not dissociate, N atoms that increase the concentration of NH 3 or NOx are hardly generated, and only decomposition proceeds to reduce the concentration of ammonia or NOx.

【0011】そこで、参考例1において使用した放電管
及び電源回路を用いて上記単細線放電管(SWC)にア
ンモニアと空気の混合物を流入してアンモニアの除去率
及び分解されたアンモニアからNOxの生成の有無につ
いて測定した。アンモニアの検出装置はガステックコー
ポレーション製検出管を使用し、NOx検出装置は蛍光
タイプ(photo luminescent typ
e)NOxメーター(島津NOA305)を使用した。
測定に使用した電源は直流と周波数が50Hzの商用周
波数、1kHz、3kHzで、測定温度は常温及び25
0℃であった。その結果を図5に示す。この結果から2
50℃に細線を加熱した場合直流の負コロナによる分解
はほぼ100%のアンモニアが除去出来る。また50H
zの商用周波数も1kHz、3kHzもそれぞれに一定
の除去効果があり細線の加熱が有効な事も分かった。
Therefore, the mixture of ammonia and air flows into the single thin wire discharge tube (SWC) using the discharge tube and the power supply circuit used in Reference Example 1 to remove ammonia and generate NOx from decomposed ammonia. The presence or absence of was measured. The detection device for ammonia uses a detection tube manufactured by Gastech Corporation, and the NOx detection device is a fluorescent type (photo luminescent type).
e) A NOx meter (Shimadzu NOA305) was used.
The power source used for the measurement was a direct current and a commercial frequency of 50 Hz, 1 kHz and 3 kHz, and the measurement temperature was room temperature and 25 kHz.
It was 0 ° C. The result is shown in FIG. From this result 2
When the thin wire is heated to 50 ° C., almost 100% of ammonia can be removed by decomposition by a DC negative corona. Also 50H
It was also found that both the commercial frequency of z and 1 kHz and 3 kHz have a certain removal effect, and that heating of the fine wire is effective.

【0012】参考例 3 放電管として図2に示す複細線放電管(MWC)を使用
して放電電流に対するアンモニア除去率を測定した。こ
の放電管は、ステンレス円柱11の中に内径10mmの
穴12を複数個穿設し、すべて完全にくりぬいて複数個
の電極を作る。この中に中心電極として直径50ミクロ
ン長さ320mmのタングステン細線2を配置した。こ
れは前述した単細線放電管(SWC)と同様のものを複
数個作る事に相当し、単細線放電管(SWC)に比較す
ると大量の処理が可能となる。細線には単細線と全く同
様の酸化ニッケル触媒を担持させた。担持方法は単細線
と全く同様の方法である。測定方法は参考例2の場合と
同様である。MWCでは細線上だけでなく、ステンレス
円柱内表面とオゾン分解触媒で覆う事により細線を加熱
する事なくオゾン生成を抑制できる。その結果を図6に
示す。この結果によれば、触媒を予め担持させた複細線
放電管の場合は加熱する必要なく、常温の25℃でオゾ
ン副成を抑制しつつアンモニアを100%除去し、アン
モニア混合空気の流量を2倍の1200ccにしても9
0%以上の高い除去効率を持っている。 これは単に単
細線放電管を複数個用意しただけでなくアンモニアの除
去に大きな効果がある事が分かった。
Reference Example 3 A double-thin wire discharge tube (MWC) shown in FIG. 2 was used as a discharge tube, and the ammonia removal rate with respect to the discharge current was measured. In this discharge tube, a plurality of holes 12 having an inner diameter of 10 mm are formed in a stainless steel cylinder 11, and all of them are completely removed to form a plurality of electrodes. A tungsten thin wire 2 having a diameter of 50 μm and a length of 320 mm was disposed as a central electrode therein. This is equivalent to making a plurality of the same thing as the above-mentioned single thin wire discharge tube (SWC), and a large amount of processing is possible as compared with the single thin wire discharge tube (SWC). The fine wire carried the same nickel oxide catalyst as the single fine wire. The carrying method is exactly the same as that of the single thin wire. The measuring method is the same as in Reference Example 2. In MWC, ozone generation can be suppressed without heating the fine wire by covering the stainless steel cylinder inner surface as well as on the fine wire with the ozone decomposition catalyst. FIG. 6 shows the result. According to this result, in the case of a double-wire discharge tube in which a catalyst was previously supported, 100% of ammonia was removed while suppressing ozone by-product at room temperature of 25 ° C. without heating, and the flow rate of ammonia mixed air was reduced to 2 ° C. Even if it doubles to 1200cc, it is 9
It has a high removal efficiency of 0% or more. It was found that this not only provided a plurality of single thin wire discharge tubes but also had a great effect on removing ammonia.

【0013】参考例 4 上記参考例2及び参考例3の実験において、更にNOx
の生成について測定した。NOxの検出装置として蛍光
タイプ(photo luminescenttyp
e)NOxメーター(島津NOA305)を使用した。
その結果を図7に示した。この結果よりSWCの場合、
放電電流が1mA以下の直流ではNOxの生成が全く認
められず、1mAを過ぎるとNOxの生成が見られた。
交流(3kHz)の場合も0.5mAまでは生成されな
かった。なお、窒素、酸素の種類によりこれらの分子を
解離するために必要な最高エネルギーはそれぞれ異なっ
てはいるが今回実験を行ったSWCの場合、アンモニア
は2mAで100%近く除去されるが(第6図参照)、
逆にNOxの生成が見られる。そのために電圧を下げた
結果アンモニアも除去されNOxも生成しない条件の許
容放電電流は1mA以下の電流値が良いことが判明し
た。この条件を出す為には電圧の変化は勿論であるが細
線を長くしても同様に電流値を下げる事が出来る。実験
で確かめた結果、NH3の分解を主目的とすれば単線放
電管の場合、250℃の加熱を行い放電電流は2mA以
下が良く、NOxの副成をさけるために更に好ましくは
1mA以下が好ましい。これをコロナ細線の長さcm当
たりに換算すれば0.067mA/cmである。MWC
の場合はNOxの除去に大きな効果がある事が分かっ
た。即ち、図2のように放電管が6個あるMWCの場
合、放電電流が直流2mAなってもNOxの生成が起こ
らないと言う大きな特徴を持っている事が分かった。こ
の時cm当りに換算すれば0.01mA/cmにする事
ができた。単細線(SWC)でこの様な低電流密度にす
るためには数m以上の管長が必要となり、細線を安定に
維持する事は困難で、製作できない。つまりこのような
複数の放電管は細線の長さを更に長くしたと同様の効果
が見られ、先に示したように、アンモニア混合空気の流
量を2倍の1200mlにしても90%以上の高い除去
効果を奏することが見出された。また、交流電流につい
ても放電電流を小さくすればNH3の分解効率は落ちる
が、NOxの副成を最小限に抑えることが出来る。
Reference Example 4 In the experiments of Reference Examples 2 and 3, NOx
Was measured. As a NOx detecting device, a fluorescent type (photo luminescent type) is used.
e) A NOx meter (Shimadzu NOA305) was used.
The result is shown in FIG. From this result, in the case of SWC,
No generation of NOx was observed at a direct current of 1 mA or less, and generation of NOx was observed after 1 mA.
Also in the case of an alternating current (3 kHz), it was not generated up to 0.5 mA. Although the maximum energy required to dissociate these molecules differs depending on the type of nitrogen and oxygen, in the case of the SWC used in this experiment, ammonia was removed at nearly 100% at 2 mA (No. 6). See figure),
Conversely, generation of NOx is observed. Therefore, as a result of reducing the voltage, it was found that the allowable discharge current under the condition that ammonia was removed and NOx was not generated had a current value of 1 mA or less. In order to obtain this condition, the current value can be similarly reduced by lengthening the thin line, not to mention changing the voltage. As a result of experiments, it has been found that if the main purpose is to decompose NH 3 , in the case of a single-wire discharge tube, heating at 250 ° C. is performed, and the discharge current is preferably 2 mA or less. preferable. This is 0.067 mA / cm when converted into the length per cm of the corona fine wire. MWC
It was found that in the case of (1), there was a great effect on the removal of NOx. That is, it has been found that the MWC having six discharge tubes as shown in FIG. 2 has a great feature that NOx is not generated even if the discharge current is 2 mA DC. At this time, it could be 0.01 mA / cm in terms of cm. In order to achieve such a low current density with a single thin wire (SWC), a tube length of several meters or more is required, and it is difficult to maintain a stable thin wire, and it cannot be manufactured. In other words, such a plurality of discharge tubes have the same effect as a further increase in the length of the fine wire. As described above, even if the flow rate of the ammonia mixed air is doubled to 1200 ml, the discharge tubes are as high as 90% or more. It has been found that it has a removing effect. As for the alternating current, if the discharge current is reduced, the decomposition efficiency of NH 3 is reduced, but the by-product of NOx can be minimized.

【0014】[0014]

【本発明の実施の形態】次に本発明について詳細に説明
する。本発明ではステンレスチューブまたはステンレス
円柱を使用する。他の金属でも良いが、耐酸化性あるい
は耐触性の点で優れているので本発明ではステンレスを
使用する。ステンレスチューブまたはステンレス円柱の
大きさとして特に制限はないが、通常、長さは10〜1
00cm、径は0.5〜5.00cmであって、このチ
ューブの中に細線を設ける。そして本願の第1の発明で
はこのチューブの中に1本の細線を、第2の発明では円
柱は直径約10〜12mmの穴を複数個、例えば数個〜
数百個程度穿設し、各穴の中心に細線を設ける。細線の
径としては、第1発明及び第2発明の何れの場合も特に
規定されるものではなく、極細線から数百ミクロンくら
いまでのものが使用できる。具体的には20〜500ミ
クロン程度のものが好ましく、更に30〜300ミクロ
ンのものが好ましい。細線の直径が30μm以下では耐
久性の問題で好ましくなく、また、250μm以上の太
いものを使用すると、ストリーマ状の放電が起き易くな
り、除却効率が低下する。この細線を負電極として接地
し、ステンレスチューブを正電極とし、直流または交流
の高電圧を印加する。この際、第1の発明では高電圧と
して約7kVの電圧を印加し、放電電流として2mA程
度にする。又、第2の発明では放電は、0.20mA/
cm以下、好ましくは0.10mA/cm以下で0.2
mAを越えると異状放電(ストリーマ等)が発生し、細
線が破断する事がある。処理される悪臭が含まれている
空気の通過量としては、第1の発明も第2の発明も異な
らず、凡そ600ml/min〜6000ml/min
である。更に、本発明では除去触媒として黒色酸化ニッ
ケルを細線又は/及び放電管の内壁に付着させることが
好ましい。付着手段としては通常の有機接着剤もしくは
水ガラスのような無機接着剤を用いる。なお、放電管は
作業中に次第に温度が上昇するので無機接着剤を使用す
ることが好ましい。
Next, the present invention will be described in detail. In the present invention, a stainless steel tube or a stainless steel cylinder is used. Other metals may be used, but stainless steel is used in the present invention because it is excellent in oxidation resistance or touch resistance. There is no particular limitation on the size of the stainless steel tube or the stainless steel cylinder, but the length is usually 10 to 1
The diameter is 0.5 to 5.00 cm, and a thin line is provided in this tube. In the first invention of the present application, one thin wire is inserted into the tube. In the second invention, the cylinder has a plurality of holes having a diameter of about 10 to 12 mm, for example, several holes.
Several hundred holes are drilled, and a thin line is provided at the center of each hole. The diameter of the fine wire is not particularly limited in any of the first and second inventions, and a diameter from a fine wire to about several hundred microns can be used. Specifically, the size is preferably about 20 to 500 microns, more preferably 30 to 300 microns. When the diameter of the fine wire is 30 μm or less, it is not preferable because of the problem of durability. When a fine wire having a diameter of 250 μm or more is used, a streamer-like discharge is likely to occur and the removal efficiency is reduced. The thin wire is grounded as a negative electrode, the stainless tube is used as a positive electrode, and a high DC or AC voltage is applied. At this time, in the first invention, a voltage of about 7 kV is applied as a high voltage, and a discharge current is set to about 2 mA. In the second invention, the discharge is 0.20 mA /
cm or less, preferably 0.20 at 0.10 mA / cm or less.
When the current exceeds mA, abnormal discharge (such as a streamer) is generated, and the thin wire may be broken. The passage amount of the air containing the odor to be treated is not different between the first invention and the second invention, and is about 600 ml / min to 6000 ml / min.
It is. Further, in the present invention, it is preferable to attach black nickel oxide as a removal catalyst to the thin wire and / or the inner wall of the discharge tube. As an attaching means, a normal organic adhesive or an inorganic adhesive such as water glass is used. It is preferable to use an inorganic adhesive since the temperature of the discharge tube gradually increases during the operation.

【0015】[0015]

【実施例】次に実施例により本発明を更に具体的に説明
する。 実施例1 先に述べたと同様な方法で複細線放電管を使ってNOの
除去を行った。直流の負コロナが発生している時にNO
を50ppm含有した空気を通し電流のmAとNO除去
率を調べた。通電と共に、NOの解離と、空気中のN2
分子の解離及びN2分子の解離に伴い生じたNとOとの
結合によるNOxの生成との反応が拮抗するのである
が、放電電流が2.00mAまでの範囲では空気中のN
2分子が解離するに要する電子エネルギ−(9.8e
V)に達せず、その結果NOの解離(解離に必要な電子
エネルギ−は6.5eV)のみが行なわれ、その結果、
表1に示すようにNOの初濃度の50ppmが減少し放
電電流0.8以上になるとNOxは0となる。
Next, the present invention will be described more specifically with reference to examples. Example 1 NO was removed using a double-thin wire discharge tube in the same manner as described above. NO when DC negative corona is generated
Was passed through air containing 50 ppm, and the current mA and the NO removal rate were examined. With energization, dissociation of NO and N 2 in air
The reaction between NO and the generation of NOx due to the bond between N and O caused by the dissociation of the molecules and the dissociation of the N 2 molecule is antagonized.
Electron energy required for dissociation of two molecules (9.8 e
V), so that only NO dissociation (the electron energy required for dissociation is 6.5 eV) is performed, and as a result,
As shown in Table 1, when the initial concentration of NO decreases by 50 ppm and reaches a discharge current of 0.8 or more, NOx becomes zero.

【0016】[0016]

【表1】 [Table 1]

【0017】この実施例ではNOが完全に除去され、更
に電流を大きくしても2mAではNOの解離反応が優先
し、N2の解離に伴い新しくNOが生成されない事が良
く分かり複細線放電管における負コロナの効果が良く発
揮された。なお、2.00mA以上の場合は異常放電が
細線が切断する。なお、この実施例ではステンレス円柱
に内径10mmの穴を穿設した場合であるが、内径10
mmを12mmにすることにより最大4.0mAの放電
までNOが除去されることが判った。4.0mAの放電
では電流密度は0.020mA/cmとなった。なお、
4.0mA以上でも放電は可能であったが、NO生成が
顕著になり、実用上は4.0mA以下以下、即ち電流密
度は0.02mA/cm以下とするこことが望ましい。
NOに替えてNO2を用いても同様の結果を得た。
In this embodiment, NO is completely removed, and even when the current is further increased, the dissociation reaction of NO takes precedence at 2 mA, and it is clearly understood that no new NO is generated with the dissociation of N 2. The effect of the negative corona in was well exhibited. In the case of 2.00 mA or more, the abnormal wire breaks the thin wire. In this embodiment, a stainless steel cylinder is provided with a hole having an inner diameter of 10 mm.
It was found that NO was removed up to a maximum discharge of 4.0 mA by setting mm to 12 mm. At a discharge of 4.0 mA, the current density was 0.020 mA / cm. In addition,
Although discharge was possible even at 4.0 mA or more, NO generation became remarkable, and in practice, it is desirable that the current density be 4.0 mA or less, that is, the current density is 0.02 mA / cm or less.
Similar results were obtained when NO 2 was used instead of NO.

【0018】実施例2 次に大気中ではなく窒素中にNOを50ppm混合して
全く同様の実験を行った。その結果を表2に示す。
Example 2 Next, exactly the same experiment was conducted by mixing 50 ppm of NO in nitrogen instead of in the air. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】1.60mA以上では、放電が不安定にな
り続行が不能となった。このように窒素が非常に多い状
態の中でも、窒素自身は解離することもなくNOxは減
少を続けている。以上の結果を図示すると、図8のよう
になる。
At 1.60 mA or more, the discharge became unstable and continuation was impossible. Even in the state where the amount of nitrogen is very high, NOx continues to decrease without dissociation of nitrogen itself. FIG. 8 illustrates the above results.

【0021】[0021]

【発明の効果】図1及び2に示す装置で負のコロナ放電
を発生せしめ、この中にアンモニア、NOx等に代表さ
れる悪臭成分が含まれた気体を通過させて還元すること
により悪臭成分が完全に除去できた。
The apparatus shown in FIGS. 1 and 2 generates a negative corona discharge, which is passed through a gas containing a malodorous component represented by ammonia, NOx, etc., and is reduced, whereby the malodorous component is reduced. It was completely removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 単細線電極放電管の概略図。FIG. 1 is a schematic diagram of a single thin wire electrode discharge tube.

【図2】 複細線電極放電管の概略図(説明のため一本
のみを示す)。
FIG. 2 is a schematic diagram of a double-thin-wire electrode discharge tube (only one is shown for explanation).

【図3】 コロナ放電管とその回路図。FIG. 3 is a corona discharge tube and its circuit diagram.

【図4】 放電電流に対するオゾン生成に与える触媒の
影響を示した図。
FIG. 4 is a diagram showing an influence of a catalyst on ozone generation with respect to a discharge current.

【図5】 単細線放電管における放電電流に対するアン
モニア除去率を示した図。
FIG. 5 is a diagram showing an ammonia removal rate with respect to a discharge current in a single thin wire discharge tube.

【図6】 複細線放電管における放電電流に対するアン
モニアの除去率を単細線放電管と比較して示した図。
FIG. 6 is a diagram showing a removal rate of ammonia with respect to a discharge current in a double-wire discharge tube in comparison with a single-wire discharge tube.

【図7】 放電電流とNOx生成との関係について示し
た図。
FIG. 7 is a diagram showing a relationship between a discharge current and NOx generation.

【図8】 MWC放電管における放電電流とNOとNO
xの濃度との関係図
FIG. 8 shows discharge current, NO and NO in an MWC discharge tube
Relationship between x and concentration

【符号の説明】[Explanation of symbols]

1 ステンレスチューブ 11 ステンレス円柱 12
穴 2 タングステン細線 3 栓 4
ガラス管 5 ガス送入口 6 ガス排出口
1 Stainless steel tube 11 Stainless steel cylinder 12
Hole 2 Tungsten wire 3 Plug 4
Glass tube 5 Gas inlet 6 Gas outlet

【手続補正書】[Procedure amendment]

【提出日】平成12年6月29日(2000.6.2
9)
[Submission date] June 29, 2000 (2006.2.
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【発明が解決しようとする課題】本発明者は従来の悪臭
源のアンモニア、NOx或いはNO2等の成分を除去す
る方法の欠点を改良した新規な悪臭成分の除去方法につ
いて種々検討した結果、本発明を完成したもので、本発
明はチューブ中に設けた細線上に負のコロナ放電を発生
させ、その中を悪臭源のガスを含有する空気を通過させ
て、コロナ放電の放電電流を制限することによって空気
中に含有せる悪臭成分ガス、例えばNH3或いはNOx
等を還元することによって窒素原子に戻し、且つ、同時
に空気中の窒素を解離することなく、更に有害オゾン副
成量を1/10以下に抑制しつつ悪臭源のガスを除去す
る方法を提供することを目的とする。
The present inventors [0008] As a result of various investigations on a method of removing the new malodorous components having improved disadvantage of the process of removing ammonia conventional malodor, the components such as NOx or NO 2, the In the present invention, the present invention generates a negative corona discharge on a thin wire provided in a tube, passes air containing a gas of a bad odor source through the inside, and limits a discharge current of the corona discharge. malodorous component gas causes free closed into the air by, for example NH 3 or NOx
The present invention provides a method for reducing odorous source gas while reducing harmful ozone by-products to 1/10 or less without dissociating nitrogen in the air at the same time by reducing nitrogen and the like by reducing nitrogen and the like. The purpose is to:

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】本願の第1の発明は、一
方向に長いステンレスチューブの中心に細線を設置し、
この細線を負電極として接地し、ステンレスチューブを
正電極とした放電管を形成し、該放電管内にアンモニア
等に代表される悪臭成分を含有する空気を送入すると共
に、直流または交流の高電圧を印加し、電流密度を0.
067mA/cm以下に制限することにより細線に負の
コロナ放電を発生せしめて、該空気中の悪臭成分をO3
の発生を抑制しつつ還元することにより除去することを
特徴とする悪臭成分の除去方法であり、第2の発明は、
一方向に長いステンレス円柱の長手方向に複数の穴を穿
設し、各穴の中心に1本の細線を設置して複数個の放電
管を形成し、各放電管内にNOx或いはNO2等に代表
される悪臭成分を含有する空気を送ると共に、直流また
は交流の高電圧を印加し、電流密度を0.020A/c
m以下に制限する事により負のコロナ放電を複数個の細
線上に発生せしめて、空気中の悪臭成分を除去すること
を特徴とする悪臭成分の除去方法である。
According to a first aspect of the present invention, a thin line is provided at the center of a stainless steel tube that is long in one direction,
This fine wire is grounded as a negative electrode, a discharge tube is formed with a stainless tube as a positive electrode, air containing a malodorous component represented by ammonia or the like is fed into the discharge tube, and a DC or AC high voltage is applied. Is applied and the current density is set to 0.
067 mA / cm or less, a negative corona discharge is generated in the fine wire, and the malodorous component in the air is reduced to O 3.
A method for removing malodorous components, characterized in that removal is performed by reducing while suppressing the generation of odor components.
Drilled a plurality of holes in the longitudinal direction of the long stainless cylinder in one direction to form a plurality of discharge tube by installing a single thin line in the center of each hole, NOx or NO 2 or the like to each discharge tube and sends the air you contain malodorous components typified, by applying a high voltage of DC or AC, the current density 0.020A / c
This is a method for removing malodorous components, characterized in that a negative corona discharge is generated on a plurality of fine wires by limiting it to m or less, thereby removing malodorous components in the air.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】[0014]

【本発明の実施の形態】次に本発明について詳細に説明
する。本発明ではステンレスチューブまたはステンレス
円柱を使用する。他の金属でも良いが、耐酸化性あるい
は耐触性の点で優れているので本発明ではステンレスを
使用する。ステンレスチューブまたはステンレス円柱の
大きさとして特に制限はないが、通常、長さは10〜1
00cm、径は0.5〜5.0cmであって、このチュ
ーブの中に細線を設ける。そして本願の第1の発明では
このチューブの中に1本の細線を、第2の発明では円柱
は直径約10〜12mmの穴を複数個、例えば数個〜数
百個程度穿設し、各穴の中心に細線を設ける。細線の径
としては、第1発明及び第2発明の何れの場合も特に規
定されるものではなく、極細線から数百ミクロンくらい
までのものが使用できる。具体的には20〜500ミク
ロン程度のものが好ましく、更に30〜300ミクロン
のものが好ましい。細線の直径が30μm以下では耐久
性の問題で好ましくなく、また、250μm以上の太い
ものを使用すると、ストリーマ状の放電が起き易くな
り、除却効率が低下する。この細線を負電極として接地
し、ステンレスチューブを正電極とし、直流または交流
の高電圧を印加する。この際、第1の発明では高電圧と
して約7kVの電圧を印加し、放電電流として2mA程
度にする。又、第2の発明では放電電流は、0.20m
A/cm以下、好ましくは0.10mA/cm以下で
0.2mAを越えると異状放電(ストリーマ等)が発生
し、細線が破断する事がある。処理される悪臭が含まれ
ている空気の通過量としては、第1の発明も第2の発明
も異ならず、凡そ600ml/min〜6000ml/
minである。更に、本発明では除去触媒として黒色酸
化ニッケルを細線又は/及び放電管の内壁に付着させる
ことが好ましい。付着手段としては通常の有機接着剤も
しくは水ガラスのような無機接着剤を用いる。なお、放
電管は作業中に次第に温度が上昇するので無機接着剤を
使用することが好ましい。
Next, the present invention will be described in detail. In the present invention, a stainless steel tube or a stainless steel cylinder is used. Other metals may be used, but stainless steel is used in the present invention because it is excellent in oxidation resistance or touch resistance. There is no particular limitation on the size of the stainless steel tube or the stainless steel cylinder, but the length is usually 10 to 1
00cm, diameter 0.5 ~ 5. 0 cm and a thin line is provided in this tube. In the first invention of the present application, one thin wire is bored in this tube, and in the second invention, the cylinder is formed by drilling a plurality of holes having a diameter of about 10 to 12 mm, for example, several to several hundreds. A thin line is provided at the center of the hole. The diameter of the fine wire is not particularly limited in any of the first and second inventions, and a diameter from a fine wire to about several hundred microns can be used. Specifically, the size is preferably about 20 to 500 microns, more preferably 30 to 300 microns. When the diameter of the fine wire is 30 μm or less, it is not preferable because of the problem of durability. When a fine wire having a diameter of 250 μm or more is used, a streamer-like discharge is likely to occur and the removal efficiency is reduced. The thin wire is grounded as a negative electrode, the stainless tube is used as a positive electrode, and a high DC or AC voltage is applied. At this time, in the first invention, a voltage of about 7 kV is applied as a high voltage, and a discharge current is set to about 2 mA. In the second invention, the discharge current is 0.20 m
If the current exceeds 0.2 mA at A / cm or less, preferably 0.10 mA / cm or less, an abnormal discharge (such as a streamer) is generated, and the thin wire may be broken. The passing amount of the air containing the malodor to be treated does not differ between the first invention and the second invention, and is approximately 600 ml / min to 6000 ml / min.
min. Further, in the present invention, it is preferable to attach black nickel oxide as a removal catalyst to the thin wire and / or the inner wall of the discharge tube. As an attaching means, a normal organic adhesive or an inorganic adhesive such as water glass is used. It is preferable to use an inorganic adhesive since the temperature of the discharge tube gradually increases during the operation.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】この実施例ではNOが完全に除去され、更
に電流を大きくしても2mAではNOの解離反応が優先
し、N2の解離に伴い新しくNOが生成されない事が良
く分かり複細線放電管における負コロナの効果が良く発
揮された。なお、2.00mA以上の場合は異常放電
より細線が切断する。なお、この実施例ではステンレス
円柱に内径10mmの穴を穿設した場合であるが、内径
10mmを12mmにすることにより最大4.0mAの
放電までNOが除去されることが判った。4.0mAの
放電では電流密度は0.020mA/cmとなった。な
お、4.0mA以上でも放電は可能であったが、NO生
成が顕著になり、実用上は4.0mA以下以下、即ち電
流密度は0.02mA/cm以下とするこことが望まし
い。NOに替えてNO2を用いても同様の結果を得た。
In this embodiment, NO is completely removed, and even when the current is further increased, the dissociation reaction of NO takes precedence at 2 mA, and it is clearly understood that no new NO is generated with the dissociation of N 2. The effect of the negative corona in was well exhibited. If the current is 2.00 mA or more, abnormal discharge may occur .
More thin line cut. Note that, in this example, a hole having an inner diameter of 10 mm was formed in the stainless steel cylinder. However, it was found that NO was removed up to a maximum discharge of 4.0 mA by setting the inner diameter to 10 mm. At a discharge of 4.0 mA, the current density was 0.020 mA / cm. Although discharge was possible even at 4.0 mA or more, NO generation became remarkable, and in practice, it is desirable that the current density be 4.0 mA or less, that is, the current density is 0.02 mA / cm or less. Similar results were obtained when NO 2 was used instead of NO.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小駒 益弘 埼玉県和光市下新倉843−15 (72)発明者 猪俣 忠明 東京都渋谷区神宮前3−17−4 (72)発明者 田中 邦翁 東京都杉並区成田東5−2−3−202 Fターム(参考) 4D002 AA12 AA13 AB02 BA07 GB11 GB12 GB20 HA03 4D048 AA08 AA22 AB02 BA38X BA38Y BA41X BA41Y DA13 EA03 4G069 AA01 AA15 BB04A BB04B BC68A BC68B CA08 CA17 EE03 FB71  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masuhiro Kokoma 843-15 Shimo-Aikura, Wako-shi, Saitama (72) Inventor Tadaaki Inomata 3-17-4 Jingumae, Shibuya-ku, Tokyo (72) Inventor Kunio Tanaka Tokyo 5-2-3-202, Narita-Higashi, Suginami-ku

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一方向に長いステンレスチューブの中心に
細線を設置し、この細線を負電極として接地し、ステン
レスチューブを正電極とした放電管を形成し、該放電管
内にアンモニア等に代表される悪臭成分を含有する空気
を送入すると共に、直流または交流の高電圧を印加し、
電流密度を0.067mA/cmに制限することにより
細線に負のコロナ放電を発生せしめて、該空気中の悪臭
成分をO3の発生を抑制しつつ還元することにより悪臭
成分を除去することを特徴とする悪臭成分の除去方法。
1. A thin wire is placed at the center of a stainless steel tube that is long in one direction, and the thin wire is grounded as a negative electrode to form a discharge tube using the stainless tube as a positive electrode. The discharge tube is typified by ammonia or the like. While introducing air containing odorous components, and applying high DC or AC voltage,
By limiting the current density to 0.067 mA / cm to generate a negative corona discharge in the fine wire and reducing the malodorous components in the air while suppressing the generation of O 3 , it is possible to remove the malodorous components. Characteristic method of removing odorous components.
【請求項2】一方向に長いステンレス円柱の長手方向に
複数の穴を穿設し、各穴の中心に1本の細線を設置して
複数個の放電管を形成し、各放電管内にNOx等に代表
される悪臭成分を含有する空気を送入すると共に、直流
または交流の高電圧を印加し、放電電流密度を0.02
0mA/cm以下に制限する事により負のコロナ放電を
複数個の細線上に発生せしめて、空気中の悪臭成分を除
去することを特徴とする悪臭成分の除去方法。
2. A plurality of discharge tubes are formed by drilling a plurality of holes in the longitudinal direction of a stainless steel cylinder long in one direction, and setting a single thin line at the center of each hole to form a plurality of discharge tubes. And the like, and at the same time, applying high voltage of direct current or alternating current to discharge air having a discharge current density of 0.02
A method of removing malodorous components, wherein a negative corona discharge is generated on a plurality of fine wires by limiting the corona discharge to 0 mA / cm or less to remove malodorous components in the air.
【請求項3】細線の直径は30ミクロンから250ミク
ロンであることを特徴とする請求項1及び2の何れかの
項に記載の悪臭成分の除去方法。
3. The method for removing malodorous components according to claim 1, wherein the diameter of the fine wire is 30 to 250 microns.
【請求項4】交流電流の周波数を商用周波数から5kH
zの範囲にすることを特徴とする請求項1及び2の何れ
かの項に記載の悪臭成分の除去方法。
4. The frequency of the alternating current is 5 kHz from the commercial frequency.
The method for removing malodorous components according to any one of claims 1 and 2, wherein the range is z.
【請求項5】前記細線が除去触媒としての黒色酸化ニッ
ケル担体を付着せしめたものであるすることを特徴とす
る請求項1及び2の何れかの項に記載の悪臭成分の除去
方法。
5. The method for removing malodorous components according to claim 1, wherein the fine wire is formed by attaching a black nickel oxide carrier as a removal catalyst.
【請求項6】細線の温度は常温から250℃である請求
項1及び2の何れかの項に記載の悪臭成分の除去方法。
6. The method for removing malodorous components according to claim 1, wherein the temperature of the thin wire is from room temperature to 250 ° C.
JP35557899A 1999-12-15 1999-12-15 How to remove malodorous components Expired - Fee Related JP4607272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35557899A JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35557899A JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Publications (2)

Publication Number Publication Date
JP2001170441A true JP2001170441A (en) 2001-06-26
JP4607272B2 JP4607272B2 (en) 2011-01-05

Family

ID=18444706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35557899A Expired - Fee Related JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Country Status (1)

Country Link
JP (1) JP4607272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029709A (en) * 2000-07-11 2002-01-29 Ec Kagaku Kk Manufacturing method of ozone
JP2008180109A (en) * 2007-01-23 2008-08-07 Denso Corp Exhaust emission control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207812A (en) * 1989-02-06 1990-08-17 Univ Komenskeho Bratislav Apparatus for continuously reducing concentration of carbon monoxide and other harmful waste
JPH08323147A (en) * 1995-05-15 1996-12-10 Air Prod And Chem Inc Decomposition of noxious gas by corona formation reactor
JPH09148046A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Method for generating corona discharge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207812A (en) * 1989-02-06 1990-08-17 Univ Komenskeho Bratislav Apparatus for continuously reducing concentration of carbon monoxide and other harmful waste
JPH08323147A (en) * 1995-05-15 1996-12-10 Air Prod And Chem Inc Decomposition of noxious gas by corona formation reactor
JPH09148046A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Method for generating corona discharge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029709A (en) * 2000-07-11 2002-01-29 Ec Kagaku Kk Manufacturing method of ozone
JP2008180109A (en) * 2007-01-23 2008-08-07 Denso Corp Exhaust emission control device
JP4640344B2 (en) * 2007-01-23 2011-03-02 株式会社デンソー Exhaust purification device
DE102007047808B4 (en) * 2007-01-23 2014-12-24 Denso Corporation Exhaust emission control device for purifying waste gas component, has catalyst apparatus promoting reductive reaction of waste gas component by reducing agent, and discharge device arranged in downstream than catalyst apparatus

Also Published As

Publication number Publication date
JP4607272B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
Zhu et al. Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect
Futamura et al. Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene
US20100021340A1 (en) Method and device for the disinfection of objects
JP2002525798A (en) Glow plasma discharge device having an electrode covered with a dielectric having an opening
CA2462614A1 (en) Sterilization and decontamination system using a plasma discharge and a filter
US20040037756A1 (en) Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
KR101973819B1 (en) Device and method for the treatment of a gaseous medium and use of the device for the treatment of a gaseous medium, liquid, solid, surface or any combination thereof
Burlica et al. Effects of the voltage and current waveforms and discharge power on hydrogen peroxide formation in water-spray gliding arc reactors
US7521026B2 (en) Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor
CN112441563A (en) Concentrated transmission type xenon excimer light source ozone generator
JP2006247507A (en) Exhaust gas treatment apparatus and method
US5240575A (en) NOx reduction by sulfur tolerant coronal-catalytic apparatus and method
JP2001170441A (en) Malodorous component removing method
US20060222577A1 (en) Plasma generating electrode and plasma reactor
Okumoto et al. Dilution effect with inert gases in direct synthesis of methanol from methane using nonthermal plasma
JPH10325A (en) Device for removing volatile organic compound in air by using discharge plasma
Chaichanawong et al. High-temperature simultaneous removal of acetaldehyde and ammonia gases using corona discharge
JP2020185532A (en) Ultraviolet irradiation device and gas treatment apparatus comprising the same
KR20160134008A (en) electrode for ozonizer using dielectric barrier discharge and ozonizer using it
Kogoma et al. Ozone, ammonia and NOx destruction in corona discharge tubes coated with ozone catalyst
US7279845B2 (en) Plasma processing method and apparatus
JP2018531876A (en) Multiple oxygen allotrope generator
CN209188456U (en) One kind being based on microwave plasma malodorous gas processing system
Feng et al. The study of active atoms in high-voltage pulsed coronal discharge by optical diagnostics
Yagi et al. Silent discharges in ozonisers and CO2 lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees