JP4607272B2 - How to remove malodorous components - Google Patents

How to remove malodorous components Download PDF

Info

Publication number
JP4607272B2
JP4607272B2 JP35557899A JP35557899A JP4607272B2 JP 4607272 B2 JP4607272 B2 JP 4607272B2 JP 35557899 A JP35557899 A JP 35557899A JP 35557899 A JP35557899 A JP 35557899A JP 4607272 B2 JP4607272 B2 JP 4607272B2
Authority
JP
Japan
Prior art keywords
discharge
malodorous components
wire
tube
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35557899A
Other languages
Japanese (ja)
Other versions
JP2001170441A (en
Inventor
幸子 岡崎
益弘 小駒
忠明 猪俣
邦翁 田中
Original Assignee
幸子 岡崎
益弘 小駒
イーシー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸子 岡崎, 益弘 小駒, イーシー化学株式会社 filed Critical 幸子 岡崎
Priority to JP35557899A priority Critical patent/JP4607272B2/en
Publication of JP2001170441A publication Critical patent/JP2001170441A/en
Application granted granted Critical
Publication of JP4607272B2 publication Critical patent/JP4607272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気中に存在するアンモニア、NOx、NO2等の悪臭ガス成分を除去する悪臭成分の除去方法に関する。
【0002】
【従来技術】
現在、家庭からでる生ごみやトイレあるいは自動車の排気ガス等の排気中にはいろいろな悪臭の元となっているアンモニア、NOx或いはNO2等、またこれらの混合物が空気中に混入し、いわゆる悪臭ガスの形で空気中に拡散し我々の生活の中に悪影響を及ぼし、特に環境問題で良く論じられている所である。
これらの悪臭ガスは人為的に作り出されるもの、また動物やその他、自然現象で発生したものなど種々雑多であり、これらの悪臭を除去する方法もいろいろと提案されているが、現実には困難な場合が多い。例えば、各種の香料による消臭や、またヒノキチオールによる方法などが提案されているが、これらの方法は単に臭気に近い芳香によって悪臭があっても他の臭気を強める事で悪臭を弱めたり、中和するものであって根本的に悪臭源である有機物を除去するものではない。
【0003】
一方、高温の中に悪臭を含んだガスを吹き込んだり、触媒を使用した分解方法も例示されているが、これらはすべて悪臭源のアンモニアや亜硝酸のガスを酸化によって分解するものであり、これらは酸やアルカリに変化するだけで又変化した酸やアルカリを処理しなければならなくなる。
【0004】
【発明が解決しようとする課題】
本発明者は従来の悪臭源のアンモニア、NOx或いはNO2等の成分を除去する方法の欠点を改良した新規な悪臭成分の除去方法について種々検討した結果、本発明を完成したもので、本発明はチューブ中に設けた細線上に負のコロナ放電を発生させ、その中を悪臭源のガスを含有する空気を通過させて、コロナ放電の放電電流を制限することによって空気中に含有せる悪臭成分ガス、例えばNH3或いはNOx等を還元することによって窒素原子に戻し、且つ、同時に空気中の窒素を解離することなく、更に有害オゾン副成量を1/10以下に抑制しつつ悪臭源のガスを除去する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本願の第1の発明は、一方向に長いステンレスチューブの中心に細線を設置し、この細線を負電極として接地し、ステンレスチューブを正電極とした放電管を形成し、該放電管内にアンモニア悪臭成分を含有する空気を送入すると共に、直流または交流の高電圧を印加し、電流密度を0.067mA/cm以下に制限することにより細線に負のコロナ放電を発生せしめて、該空気中の悪臭成分をO3の発生を抑制しつつ還元することにより悪臭成分を除去することを特徴とする悪臭成分の除去方法であり、第2の発明は、一方向に長いステンレス円柱の長手方向に複数の穴を穿設し、各穴の中心に1本の細線を設置して複数個の放電管を形成し、各放電管内にNOx悪臭成分を含有する空気を送入すると共に、直流または交流の高電圧を印加し、放電電流密度を0.020mA/cm以下に制限する事により負のコロナ放電を複数個の細線上に発生せしめて、空気中の悪臭成分を除去することを特徴とする悪臭成分の除去方法である。
【0006】
即ち、本発明は放電の中に悪臭成分含有のガスを通過させることにより、通常の方法では酸化反応が生じて除去出来ないものが、負のコロナ放電をある条件下においてはすべて原子状の酸素、窒素となり、更に空気成分の窒素や酸素が解離しないので再結合を起こすことなく処理するのであって、特にアンモニア成分は100%まで除去することが出来るのである。
本発明における負コロナ放電とはコロナ電極(尖った先端又は細線側)を負電極としてコロナ放電させたことをいうのである。正コロナ放電はその反対をいうのであるが、放電が起こったときの違いは前者の場合、電子は外部電極(本願発明の管状電極)に向かって電子雪崩を生じるのに対し、後者の場合は中心細線に向かう。放電領域は両者共高高数十μmであるから、発生した電子が外の電極に向かう前者の方が反応領域が広く、電子と分子間との反応確率は大きくなる。即ち、反応速度は大きくなるのである。従って、交流電流ではNH3の分解速度は負コロナ放電に比して遅くなる。更に、大気圧負コロナ放電の尖端電極付近での放電機構は低気圧グロー放電の場合の陰極部分と同様であるといわれている。即ち、陰極、陰極暗部、負グロー部分だけが存在していることが知られている。一般にグロー放電には正規グローと異常グローという状態があり、前者は一定圧力下では放電電圧又は陰極降下電圧は一定とみなされるが、後者では放出電圧は電流の関数であるから、電流上昇と共に平均電子エネルギーは上昇する。負コロナ放電は異常グローとされている為、電流値を下げてやれば全体に平均電子エネルギー値は下降できる。本発明は平均電子エネルギー値を下降させることに基づく。
具体的に本発明においては、ステンレスチューブもしくは穿設された穴内の細線を負電極として接地し、ステンレスチューブもしくはステンレス円柱を正電極として放電管を構成し、細線上に負のコロナ放電を行なうのである。
なお、負コロナ放電に替えて正コロナ放電を行なったところNOxについては負コロナ放電と同様の分解が見られたが、その分解速度は遅く実用的ではない。
【0007】
本願では単細線の放電管(以下、SWCという場合がある)を使用する第1の発明と複数の細線を含む放電管(以下、MWCという場合がある)を使用する第2の発明を含んでいるが、これらについて次の実験を行ない各現象を確認した。
参考例 1
図1に示したような長さ330mm、内径22mmのステンレスチューブ1のの両端にフランジタイプの栓3を施して密封し、それぞれの栓の中央には直径10mmのガラス管4を封入しガス送入口5及びガス排出口6を形成する。ステンレスチューブ1の中心に直径50μmのタングステン細線2をガラス管4の外側まで延ばして設置する。このような装置において、ステンレスチューブ1を正電極とし、中心に位置せしめたタングステン細線2を負電極とし、かつ接地して単細線の放電管SWCを形成した。タングステン細線2とステンレスチューブ1とを図3に示す回路図に従って結線した。ブリッジ回路部分は細線温度制御用である。得られた回路に直流高電圧または商用周波数50Hz、1kHz、3kHzの交流電圧を印加した。なお、負電極となるタングステン細線には電流を通じて若干の加熱を行えるようにした。
上記のSWCに600ml/分の割合でアンモニアの濃度が105〜110ppm含有の空気を送入した。
【0008】
実験は細線に酸化ニッケル触媒を担持させたものと無担持のものとについて行なった。担持方法としては、予めII、III黒色酸化ニッケルの微粉末を用意し、別にセメダイン50gとアセトン250ccを混合し、これを250ccのメスシリンダーに入れその中にタングステン細線を入れゆっくり引き上げて放置し、アセトンが蒸発したときに表面に酸化ニッケルの微粉末を付着担持させた。また、ステンレスチューブの内壁も同様にして酸化ニッケルを担持させた。
この実験では50μmのタングステン細線を使用したが、細線が太くなるほど電流も流れやすく電子雪崩を起こし、放電が糸状になるストリーマ放電を起こし空気中の酸素からオゾンを生成したり、窒素を解離してNOxの生成が見られるようになる。放電電流とO3生成率との関係を50Hzの場合について図4に示す。また、その際の反応を反応式で示すと次ぎのようになる。
【0009】
【数1】
2+e→2O+e (1)
O+O2+M(O2,N2)→O3+M(O2,N2) (2)
M:第3体物質
図4に示されているように、O3の収率は電流の1次関数として表される。反応式(2)は負の活性化エネルギーを有するので高温ではO3の収率は減少する。交流電流の場合、非塗装−非加熱ワイヤー電極は比較的高いO3収率を示し、塗装−加熱ワイヤー電極は最も低い収率を示す。塗装−加熱ワイヤー電極を使用した場合、非塗装−非加熱ワイヤー電極の場合に比して1/10のO3収率を達成することが出来る。酸化ニッケル触媒を担持させた場合オゾンの生成量が著しく減少している事は、オゾンの発生が極力おさえられているものと思われる。
参考例 2
図1に示したSWCを用い、印加電圧を変化させた。即ち、印加電圧を下げ電流が1〜2mAになると細線の表面のみコロナ放電が発生して微かに光る。この状態において、放電管中にアンモニア、NOx或いはNO2のような悪臭ガス成分を入れると還元されて次のような反応が起こる。
【0010】
【数2】
NH3+e→1/2N+2/3H2 (3)
N+N→N2 (4)
NO+e→N+O+e (5)
NO+O3→NO2+O2 (6)
NO+O2→NO2+O (7)
本発明の主要な点は、悪臭成分であるNH3やNOが解離するに必要な電子エネルギーであって、NH3の場合は4.5eV、NOの場合は約6.5eVであり、それに対して空気中の窒素が解離するのが9eV以上と極めて高い。従って悪臭成分のみ分解し窒素が解離しないような電界強度にすれば電子エネルギー値も必然的に下がり、悪臭成分のみが分解する。電流が小さくなると中心電極付近の電界強度が高くならない。これは細線の長さ当りの電流密度を小さく保ってやれば実現できる。従って通過中のアンモニア、NOxやNO2は解離するが、空気のN2は解離しないためにNH3やNOx濃度を増加させるN原子はほとんど生成されず分解のみ進んでアンモニアやNOx濃度が減少して行くと考えられる。
【0011】
そこで、参考例1において使用した放電管及び電源回路を用いて上記単細線放電管(SWC)にアンモニアと空気の混合物を流入してアンモニアの除去率及び分解されたアンモニアからNOxの生成の有無について測定した。アンモニアの検出装置はガステックコーポレーション製検出管を使用し、NOx検出装置は蛍光タイプ(photo luminescent type)NOxメーター(島津NOA305)を使用した。測定に使用した電源は直流と周波数が50Hzの商用周波数、1kHz、3kHzで、測定温度は常温及び250℃であった。その結果を図5に示す。この結果から250℃に細線を加熱した場合直流の負コロナによる分解はほぼ100%のアンモニアが除去出来る。また50Hzの商用周波数も1kHz、3kHzもそれぞれに一定の除去効果があり細線の加熱が有効な事も分かった。
【0012】
参考例 3
放電管として図2に示す複細線放電管(MWC)を使用して放電電流に対するアンモニア除去率を測定した。この放電管は、ステンレス円柱11の中に内径10mmの穴12を複数個穿設し、すべて完全にくりぬいて複数個の電極を作る。この中に中心電極として直径50ミクロン長さ320mmのタングステン細線2を配置した。これは前述した単細線放電管(SWC)と同様のものを複数個作る事に相当し、単細線放電管(SWC)に比較すると大量の処理が可能となる。細線には単細線と全く同様の酸化ニッケル触媒を担持させた。担持方法は単細線と全く同様の方法である。測定方法は参考例2の場合と同様である。MWCでは細線上だけでなく、ステンレス円柱内表面とオゾン分解触媒で覆う事により細線を加熱する事なくオゾン生成を抑制できる。その結果を図6に示す。この結果によれば、触媒を予め担持させた複細線放電管の場合は加熱する必要なく、常温の25℃でオゾン副成を抑制しつつアンモニアを100%除去し、アンモニア混合空気の流量を2倍の1200ccにしても90%以上の高い除去効率を持っている。 これは単に単細線放電管を複数個用意しただけでなくアンモニアの除去に大きな効果がある事が分かった。
【0013】
参考例 4
上記参考例2及び参考例3の実験において、更にNOxの生成について測定した。NOxの検出装置として蛍光タイプ(photo luminescenttype)NOxメーター(島津NOA305)を使用した。その結果を図7に示した。この結果よりSWCの場合、放電電流が1mA以下の直流ではNOxの生成が全く認められず、1mAを過ぎるとNOxの生成が見られた。交流(3kHz)の場合も0.5mAまでは生成されなかった。なお、窒素、酸素の種類によりこれらの分子を解離するために必要な最高エネルギーはそれぞれ異なってはいるが今回実験を行ったSWCの場合、アンモニアは2mAで100%近く除去されるが(第6図参照)、逆にNOxの生成が見られる。そのために電圧を下げた結果アンモニアも除去されNOxも生成しない条件の許容放電電流は1mA以下の電流値が良いことが判明した。この条件を出す為には電圧の変化は勿論であるが細線を長くしても同様に電流値を下げる事が出来る。実験で確かめた結果、NH3の分解を主目的とすれば単線放電管の場合、250℃の加熱を行い放電電流は2mA以下が良く、NOxの副成をさけるために更に好ましくは1mA以下が好ましい。これをコロナ細線の長さcm当たりに換算すれば0.067mA/cmである。
MWCの場合はNOxの除去に大きな効果がある事が分かった。即ち、図2のように放電管が6個あるMWCの場合、放電電流が直流2mAなってもNOxの生成が起こらないと言う大きな特徴を持っている事が分かった。この時cm当りに換算すれば0.01mA/cmにする事ができた。単細線(SWC)でこの様な低電流密度にするためには数m以上の管長が必要となり、細線を安定に維持する事は困難で、製作できない。つまりこのような複数の放電管は細線の長さを更に長くしたと同様の効果が見られ、先に示したように、アンモニア混合空気の流量を2倍の1200mlにしても90%以上の高い除去効果を奏することが見出された。
また、交流電流についても放電電流を小さくすればNH3の分解効率は落ちるが、NOxの副成を最小限に抑えることが出来る。
【0014】
【本発明の実施の形態】
次に本発明について詳細に説明する。
本発明ではステンレスチューブまたはステンレス円柱を使用する。他の金属でも良いが、耐酸化性あるいは耐触性の点で優れているので本発明ではステンレスを使用する。ステンレスチューブまたはステンレス円柱の大きさとして特に制限はないが、通常、長さは10〜100cm、径は0.5〜5.0cmであって、このチューブの中に細線を設ける。そして本願の第1の発明ではこのチューブの中に1本の細線を、第2の発明では円柱は直径約10〜12mmの穴を複数個、例えば数個〜数百個程度穿設し、各穴の中心に細線を設ける。
細線の径としては、第1発明及び第2発明の何れの場合も特に規定されるものではなく、極細線から数百ミクロンくらいまでのものが使用できる。具体的には20〜500ミクロン程度のものが好ましく、更に30〜300ミクロンのものが好ましい。細線の直径が30μm以下では耐久性の問題で好ましくなく、また、250μm以上の太いものを使用すると、ストリーマ状の放電が起き易くなり、除却効率が低下する。この細線を負電極として接地し、ステンレスチューブを正電極とし、直流または交流の高電圧を印加する。この際、第1の発明では高電圧として約7kVの電圧を印加し、放電電流として2mA程度にする。又、第2の発明では放電電流は、0.20mA/cm以下、好ましくは0.10mA/cm以下で0.2mAを越えると異状放電(ストリーマ等)が発生し、細線が破断する事がある。
処理される悪臭が含まれている空気の通過量としては、第1の発明も第2の発明も異ならず、凡そ600ml/min〜6000ml/minである。
更に、本発明では除去触媒として黒色酸化ニッケルを細線又は/及び放電管の内壁に付着させることが好ましい。付着手段としては通常の有機接着剤もしくは水ガラスのような無機接着剤を用いる。なお、放電管は作業中に次第に温度が上昇するので無機接着剤を使用することが好ましい。
【0015】
【実施例】
次に実施例により本発明を更に具体的に説明する。
実施例1
先に述べたと同様な方法で複細線放電管を使ってNOの除去を行った。
直流の負コロナが発生している時にNOを50ppm含有した空気を通し電流のmAとNO除去率を調べた。通電と共に、NOの解離と、空気中のN2分子の解離及びN2分子の解離に伴い生じたNとOとの結合によるNOxの生成との反応が拮抗するのであるが、放電電流が2.00mAまでの範囲では空気中のN2分子が解離するに要する電子エネルギ−(9.8eV)に達せず、その結果NOの解離(解離に必要な電子エネルギ−は6.5eV)のみが行なわれ、その結果、表1に示すようにNOの初濃度の50ppmが減少し放電電流0.8以上になるとNOxは0となる。
【0016】
【表1】

Figure 0004607272
【0017】
この実施例ではNOが完全に除去され、更に電流を大きくしても2mAではNOの解離反応が優先し、N2の解離に伴い新しくNOが生成されない事が良く分かり複細線放電管における負コロナの効果が良く発揮された。なお、2.00mA以上の場合は異常放電により細線が切断する。なお、この実施例ではステンレス円柱に内径10mmの穴を穿設した場合であるが、内径10mmを12mmにすることにより最大4.0mAの放電までNOが除去されることが判った。4.0mAの放電では電流密度は0.020mA/cmとなった。なお、4.0mA以上でも放電は可能であったが、NO生成が顕著になり、実用上は4.0mA以下以下、即ち電流密度は0.02mA/cm以下とするこことが望ましい。
NOに替えてNO2を用いても同様の結果を得た。
【0018】
実施例2
次に大気中ではなく窒素中にNOを50ppm混合して全く同様の実験を行った。その結果を表2に示す。
【0019】
【表2】
Figure 0004607272
【0020】
1.60mA以上では、放電が不安定になり続行が不能となった。このように窒素が非常に多い状態の中でも、窒素自身は解離することもなくNOxは減少を続けている。以上の結果を図示すると、図8のようになる。
【0021】
【発明の効果】
図1及び2に示す装置で負のコロナ放電を発生せしめ、この中にアンモニア、NOx等に代表される悪臭成分が含まれた気体を通過させて還元することにより悪臭成分が完全に除去できた。
【図面の簡単な説明】
【図1】 単細線電極放電管の概略図。
【図2】 複細線電極放電管の概略図(説明のため一本のみを示す)。
【図3】 コロナ放電管とその回路図。
【図4】 放電電流に対するオゾン生成に与える触媒の影響を示した図。
【図5】 単細線放電管における放電電流に対するアンモニア除去率を示した図。
【図6】 複細線放電管における放電電流に対するアンモニアの除去率を単細線放電管と比較して示した図。
【図7】 放電電流とNOx生成との関係について示した図。
【図8】 MWC放電管における放電電流とNOとNOxの濃度との関係図
【符号の説明】
1 ステンレスチューブ 11 ステンレス円柱 12 穴
2 タングステン細線 3 栓 4 ガラス管
5 ガス送入口 6 ガス排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing malodorous components that remove malodorous gas components such as ammonia, NOx, and NO 2 present in the air.
[0002]
[Prior art]
At present, exhausts such as garbage, toilets, and automobile exhaust from homes are mixed with ammonia, NOx, NO 2, etc., which are the source of various odors, and so-called odors. It diffuses into the air in the form of gas and has an adverse effect on our lives, especially where environmental issues are well discussed.
These malodorous gases are artificially created, and are miscellaneous such as animals and other natural phenomena, and various methods for removing these malodors have been proposed, but in reality they are difficult. There are many cases. For example, deodorization with various fragrances and methods using hinokitiol have been proposed, but these methods simply weaken bad odors by strengthening other odors, even if there are odors close to odors. It does not remove organic substances that are mild and that are fundamentally a source of malodor.
[0003]
On the other hand, there are also examples of decomposition methods in which a gas containing bad odor is blown into a high temperature or a catalyst is used, but these all decompose ammonia and nitrous acid gas, which are bad odor sources, by oxidation. Can only be converted to acid or alkali, and the changed acid or alkali must be treated.
[0004]
[Problems to be solved by the invention]
The present inventors have result of various investigations on a method of removing the new malodorous components having improved disadvantage of the process of removing ammonia conventional malodor, the components such as NOx or NO 2, and completed the present invention, the present invention malodor generates a negative corona discharge on fine line provided in the tube, through the by pass air containing malodorous source of gas to containing organic into the air by limiting the discharge current of the corona discharge By reducing the component gas, such as NH 3 or NOx, to return to the nitrogen atom, and at the same time, dissociating the nitrogen in the air, further reducing the harmful ozone by-product to 1/10 or less, An object is to provide a method for removing gas.
[0005]
[Means for Solving the Problems]
In the first invention of the present application, a thin wire is installed at the center of a stainless steel tube that is long in one direction, the thin wire is grounded as a negative electrode, a discharge tube is formed with the stainless tube as a positive electrode, and an ammonia malodor is formed in the discharge tube. Injecting air containing the components , applying a high voltage of direct current or alternating current, and limiting the current density to 0.067 mA / cm or less to generate a negative corona discharge in the thin wire, The malodorous component removal method is characterized in that the malodorous component is removed by reducing the malodorous component while suppressing generation of O 3. The second invention is a method of removing a plurality of malodorous components in the longitudinal direction of a stainless steel cylinder that is long in one direction. A single thin wire is installed at the center of each hole to form a plurality of discharge tubes, air containing NOx malodorous components is fed into each discharge tube, and direct current or alternating current High voltage applied By removing the malodorous component in the air by generating negative corona discharge on a plurality of fine wires by limiting the discharge current density to 0.020 mA / cm or less, is there.
[0006]
That is, according to the present invention, a gas containing a malodorous component is allowed to pass through the discharge, so that an oxidation reaction occurs in a normal method and cannot be removed. Nitrogen and nitrogen and oxygen of the air component are not dissociated, so that the treatment is performed without causing recombination. In particular, the ammonia component can be removed up to 100%.
The negative corona discharge in the present invention means that corona discharge is performed using a corona electrode (pointed tip or thin wire side) as a negative electrode. The normal corona discharge is the opposite, but the difference when the discharge occurs is that in the former case, electrons cause an electron avalanche toward the external electrode (the tubular electrode of the present invention), whereas in the latter case Head toward the center thin line. Since both discharge regions are high and several tens of micrometers, the reaction region is wider in the former where the generated electrons go to the outer electrode, and the reaction probability between electrons and molecules increases. That is, the reaction rate increases. Therefore, the decomposition rate of NH 3 is slower than that of negative corona discharge in alternating current. Furthermore, it is said that the discharge mechanism in the vicinity of the tip electrode of the atmospheric pressure negative corona discharge is the same as that of the cathode portion in the case of the low pressure glow discharge. That is, it is known that only a cathode, a cathode dark part, and a negative glow part exist. In general, the glow discharge has a normal glow state and an abnormal glow state. In the former, the discharge voltage or the cathode fall voltage is regarded as constant at a constant pressure, but in the latter, the discharge voltage is a function of the current. The electron energy rises. Since negative corona discharge is considered to be abnormal glow, the average electron energy value can be lowered as a whole if the current value is lowered. The present invention is based on lowering the average electron energy value.
Specifically, in the present invention, a stainless steel tube or a fine wire in the drilled hole is grounded as a negative electrode, and a stainless steel tube or a stainless steel cylinder is used as a positive electrode to form a discharge tube, and negative corona discharge is performed on the fine wire. is there.
When positive corona discharge was performed instead of negative corona discharge, NOx was decomposed in the same manner as negative corona discharge, but its decomposition rate was slow and impractical.
[0007]
The present application includes a first invention that uses a single thin wire discharge tube (hereinafter may be referred to as SWC) and a second invention that uses a discharge tube including a plurality of thin wires (hereinafter may be referred to as MWC). However, the following experiments were conducted on these to confirm each phenomenon.
Reference example 1
A stainless steel tube 1 having a length of 330 mm and an inner diameter of 22 mm as shown in FIG. 1 is sealed with a flange-type plug 3 provided at both ends, and a glass tube 4 having a diameter of 10 mm is sealed in the center of each plug. An inlet 5 and a gas outlet 6 are formed. A tungsten thin wire 2 having a diameter of 50 μm is extended to the outside of the glass tube 4 at the center of the stainless tube 1. In such an apparatus, the stainless steel tube 1 was used as a positive electrode, the tungsten thin wire 2 positioned at the center was used as a negative electrode, and grounded to form a single thin wire discharge tube SWC. The tungsten fine wire 2 and the stainless steel tube 1 were connected according to the circuit diagram shown in FIG. The bridge circuit portion is used for fine wire temperature control. A DC high voltage or a commercial frequency of 50 Hz, 1 kHz, 3 kHz AC voltage was applied to the obtained circuit. It should be noted that the tungsten thin wire serving as the negative electrode can be slightly heated through current.
Air containing an ammonia concentration of 105 to 110 ppm was fed into the SWC at a rate of 600 ml / min.
[0008]
The experiment was carried out with and without a nickel oxide catalyst supported on a thin wire. As the loading method, II and III black nickel oxide fine powders are prepared in advance, 50 g of cemedine and 250 cc of acetone are mixed separately, this is put into a 250 cc graduated cylinder, a tungsten wire is put in it, and it is slowly left to stand, When acetone was evaporated, nickel oxide fine powder was adhered and supported on the surface. Further, nickel oxide was supported on the inner wall of the stainless tube in the same manner.
In this experiment, a 50 μm tungsten wire was used. However, the thicker the wire, the easier the current to flow, causing an electron avalanche, causing a streamer discharge that discharges into a string, generating ozone from oxygen in the air, or dissociating nitrogen. Generation of NOx can be seen. FIG. 4 shows the relationship between the discharge current and the O 3 generation rate in the case of 50 Hz. Moreover, the reaction at that time is represented by the following reaction formula.
[0009]
[Expression 1]
O 2 + e → 2O + e (1)
O + O 2 + M (O 2 , N 2 ) → O 3 + M (O 2 , N 2 ) (2)
M: Third-body material As shown in FIG. 4, the yield of O 3 is expressed as a linear function of current. Since reaction formula (2) has negative activation energy, the yield of O 3 decreases at high temperatures. In the case of alternating current, the unpainted-unheated wire electrode shows a relatively high O 3 yield and the painted-heated wire electrode shows the lowest yield. When a painted-heated wire electrode is used, an O 3 yield of 1/10 can be achieved compared to a non-painted-nonheated wire electrode. It is considered that the generation of ozone is suppressed as much as possible when the amount of generated ozone is remarkably reduced when the nickel oxide catalyst is supported.
Reference example 2
The applied voltage was changed using the SWC shown in FIG. That is, when the applied voltage is lowered and the current becomes 1 to 2 mA, corona discharge is generated only on the surface of the thin wire and the light is slightly shined. In this state, when a malodorous gas component such as ammonia, NOx or NO 2 is put into the discharge tube, it is reduced and the following reaction occurs.
[0010]
[Expression 2]
NH 3 + e → 1 / 2N + 2 / 3H 2 (3)
N + N → N 2 (4)
NO + e → N + O + e (5)
NO + O 3 → NO 2 + O 2 (6)
NO + O 2 → NO 2 + O (7)
The main point of the present invention is the electronic energy required for dissociation of the malodorous components NH 3 and NO, which is 4.5 eV for NH 3 and about 6.5 eV for NO. Therefore, the dissociation of nitrogen in the air is extremely high at 9 eV or more. Therefore, if the electric field intensity is such that only the malodorous component is decomposed and nitrogen is not dissociated, the electron energy value is inevitably lowered, and only the malodorous component is decomposed. When the current decreases, the electric field strength near the center electrode does not increase. This can be realized if the current density per length of the thin wire is kept small. Therefore ammonia in passing, NOx and NO 2 dissociates but, N 2 of air is N atoms increase the NH 3 and NOx concentrations in order not dissociated ammonia or NOx concentration decreased proceed only hardly generated decomposed It is thought to go.
[0011]
Then, about the removal rate of ammonia and the presence or absence of NOx generation from the decomposed ammonia by flowing a mixture of ammonia and air into the single wire discharge tube (SWC) using the discharge tube and power supply circuit used in Reference Example 1 It was measured. A detection tube made by Gastec Corporation was used as the ammonia detection device, and a fluorescent type NOx meter (Shimadzu NOA305) was used as the NOx detection device. The power source used for the measurement was a commercial frequency of direct current and a frequency of 50 Hz, 1 kHz, 3 kHz, and the measurement temperatures were room temperature and 250 ° C. The result is shown in FIG. From this result, when the thin wire is heated to 250 ° C., the decomposition by the DC negative corona can remove almost 100% of ammonia. It was also found that the commercial frequency of 50 Hz and 1 kHz and 3 kHz had a certain removal effect, and heating of the thin wire was effective.
[0012]
Reference example 3
Using the double wire discharge tube (MWC) shown in FIG. 2 as the discharge tube, the ammonia removal rate relative to the discharge current was measured. In this discharge tube, a plurality of holes 12 having an inner diameter of 10 mm are formed in a stainless steel cylinder 11, and all of the holes are completely hollowed to form a plurality of electrodes. A tungsten fine wire 2 having a diameter of 50 microns and a length of 320 mm was disposed therein as a central electrode. This corresponds to making a plurality of the same single-wire discharge tubes (SWC) as described above, and a large amount of processing is possible as compared with the single-wire discharge tubes (SWC). The fine wire supported the same nickel oxide catalyst as the single fine wire. The carrying method is exactly the same as that for a single thin wire. The measurement method is the same as in Reference Example 2. In MWC, ozone generation can be suppressed without heating the fine wire by covering not only the fine wire but also the inner surface of the stainless steel cylinder and the ozone decomposition catalyst. The result is shown in FIG. According to this result, in the case of a multi-wire discharge tube preloaded with a catalyst, 100% ammonia is removed while suppressing ozone byproduct at 25 ° C. at room temperature, and the flow rate of ammonia mixed air is 2 Even with double the 1200 cc, it has a high removal efficiency of 90% or more. It was found that this not only provided a plurality of single wire discharge tubes, but also had a great effect on ammonia removal.
[0013]
Reference example 4
In the experiments of Reference Example 2 and Reference Example 3, the production of NOx was further measured. A fluorescence type NOx meter (Shimadzu NOA305) was used as a NOx detection device. The results are shown in FIG. From this result, in the case of SWC, NOx was not generated at all with a direct current having a discharge current of 1 mA or less, and generation of NOx was observed after 1 mA. Even in the case of alternating current (3 kHz), it was not generated up to 0.5 mA. Although the maximum energy required to dissociate these molecules differs depending on the types of nitrogen and oxygen, in the case of SWC in which this experiment was conducted, ammonia was removed by nearly 100% at 2 mA (No. 6 On the contrary, the generation of NOx can be seen. Therefore, it has been found that the allowable discharge current under the condition that ammonia is removed and NOx is not generated as a result of lowering the voltage has a good current value of 1 mA or less. In order to satisfy this condition, the current value can be lowered in the same manner even if the voltage is changed but the fine line is lengthened. As a result of experiments, if the main purpose is decomposition of NH 3 , in the case of a single-line discharge tube, heating at 250 ° C. and the discharge current should be 2 mA or less, and more preferably 1 mA or less to avoid NOx by-product. preferable. This is 0.067 mA / cm when converted per cm length of the corona fine wire.
In the case of MWC, it has been found that NOx removal has a great effect. That is, it was found that the MWC having six discharge tubes as shown in FIG. 2 has a great feature that NOx is not generated even when the discharge current is 2 mA DC. At this time, it could be 0.01 mA / cm when converted per cm. In order to achieve such a low current density with a single thin wire (SWC), a tube length of several meters or more is required, and it is difficult to stably maintain the thin wire and it cannot be manufactured. In other words, a plurality of such discharge tubes have the same effect as if the length of the thin wire is further increased. As described above, even if the flow rate of the ammonia mixed air is doubled to 1200 ml, it is 90% or higher. It was found to have a removal effect.
Also, with regard to alternating current, if the discharge current is reduced, the decomposition efficiency of NH 3 is reduced, but NOx byproduct can be minimized.
[0014]
[Embodiments of the Invention]
Next, the present invention will be described in detail.
In the present invention, a stainless tube or a stainless cylinder is used. Other metals may be used, but stainless steel is used in the present invention because it is excellent in terms of oxidation resistance or touch resistance. Although there is no restriction | limiting in particular as a magnitude | size of a stainless steel tube or a stainless steel cylinder, Usually, length is 10-100 cm and a diameter is 0.5-5. 0 cm, and a thin wire is provided in the tube. In the first invention of the present application, one thin wire is formed in the tube, and in the second invention, the cylinder has a plurality of holes having a diameter of about 10 to 12 mm, for example, about several to several hundreds. A thin line is provided at the center of the hole.
The diameter of the thin wire is not particularly defined in either case of the first invention or the second invention, and a wire having a diameter of very fine wire to several hundred microns can be used. Specifically, those having a thickness of about 20 to 500 microns are preferable, and those having a thickness of 30 to 300 microns are more preferable. If the diameter of the thin wire is 30 μm or less, it is not preferable due to the problem of durability, and if a thick wire having a diameter of 250 μm or more is used, streamer-like discharge is likely to occur, and the removal efficiency is lowered. This thin wire is grounded as a negative electrode, a stainless steel tube is used as a positive electrode, and a DC or AC high voltage is applied. At this time, in the first invention, a voltage of about 7 kV is applied as a high voltage, and the discharge current is set to about 2 mA. In the second invention, when the discharge current is 0.20 mA / cm or less, preferably 0.10 mA / cm or less and exceeds 0.2 mA, abnormal discharge (streamer or the like) may occur, and the thin wire may be broken. .
The passing amount of the air containing the malodor to be treated is not different between the first invention and the second invention, and is approximately 600 ml / min to 6000 ml / min.
Furthermore, in the present invention, it is preferable that black nickel oxide is attached to the fine wire or / and the inner wall of the discharge tube as a removal catalyst. As an attaching means, an ordinary organic adhesive or an inorganic adhesive such as water glass is used. In addition, since the temperature of the discharge tube gradually increases during the operation, it is preferable to use an inorganic adhesive.
[0015]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Example 1
NO was removed by using a double-wire discharge tube in the same manner as described above.
When a DC negative corona was generated, air containing 50 ppm NO was passed through and the current mA and NO removal rate were examined. Along with energization, the reaction between the dissociation of NO, the dissociation of N 2 molecules in the air, and the generation of NO x due to the bond of N and O generated by the dissociation of N 2 molecules antagonizes, but the discharge current is 2 In the range up to 0.000 mA, the electron energy required for dissociation of N 2 molecules in the air (9.8 eV) is not reached. As a result, only NO dissociation (electron energy required for dissociation is 6.5 eV) is performed. As a result, as shown in Table 1, when the initial concentration of NO is reduced by 50 ppm and the discharge current becomes 0.8 or more, NOx becomes zero.
[0016]
[Table 1]
Figure 0004607272
[0017]
In this embodiment, NO is completely removed, and even when the current is increased, the dissociation reaction of NO is prioritized at 2 mA. The effect of was demonstrated well. In addition, in the case of 2.00 mA or more, a fine wire cut | disconnects by abnormal discharge. In this example, a hole with an inner diameter of 10 mm was drilled in a stainless steel cylinder, but it was found that NO was removed up to a maximum discharge of 4.0 mA by setting the inner diameter to 10 mm. With a discharge of 4.0 mA, the current density was 0.020 mA / cm. In addition, although discharge was possible even at 4.0 mA or more, NO generation becomes remarkable, and it is desirable that practically 4.0 mA or less, that is, the current density is 0.02 mA / cm or less.
Similar results were obtained when NO 2 was used instead of NO.
[0018]
Example 2
Next, exactly the same experiment was conducted by mixing 50 ppm of NO in nitrogen, not in the atmosphere. The results are shown in Table 2.
[0019]
[Table 2]
Figure 0004607272
[0020]
At 1.60 mA or more, the discharge became unstable and it was impossible to continue. Even in such a state where nitrogen is extremely high, nitrogen itself does not dissociate and NOx continues to decrease. The above results are illustrated in FIG.
[0021]
【The invention's effect】
The apparatus shown in FIGS. 1 and 2 generated a negative corona discharge, and by passing a gas containing a malodorous component typified by ammonia, NOx, etc. through this, the malodorous component could be completely removed. .
[Brief description of the drawings]
FIG. 1 is a schematic view of a single-wire electrode discharge tube.
FIG. 2 is a schematic view of a multi-wire electrode discharge tube (only one is shown for explanation).
FIG. 3 is a corona discharge tube and its circuit diagram.
FIG. 4 is a graph showing the influence of a catalyst on ozone generation with respect to a discharge current.
FIG. 5 is a graph showing an ammonia removal rate with respect to a discharge current in a single thin wire discharge tube.
FIG. 6 is a graph showing the ammonia removal rate relative to the discharge current in a double-wire discharge tube compared to a single-wire discharge tube.
FIG. 7 is a diagram showing the relationship between discharge current and NOx generation.
FIG. 8 is a diagram showing the relationship between the discharge current and the concentrations of NO and NOx in the MWC discharge tube.
DESCRIPTION OF SYMBOLS 1 Stainless tube 11 Stainless steel cylinder 12 Hole 2 Tungsten thin wire 3 Plug 4 Glass tube 5 Gas inlet 6 Gas outlet

Claims (6)

一方向に長いステンレスチューブの中心に細線を設置し、この細線を負電極として接地し、ステンレスチューブを正電極とした放電管を形成し、該放電管内にアンモニア悪臭成分を含有する空気を送入すると共に、直流または交流の高電圧を印加し、電流密度を0.067mA/cm以下に制限することにより細線に負のコロナ放電を発生せしめて、該空気中の悪臭成分をO3の発生を抑制しつつ還元することにより悪臭成分を除去することを特徴とする悪臭成分の除去方法。A thin wire is installed at the center of a stainless steel tube that is long in one direction, this thin wire is grounded as a negative electrode, a discharge tube is formed with the stainless tube as a positive electrode, and air containing ammonia malodorous components is fed into the discharge tube. In addition, by applying a high voltage of direct current or alternating current and limiting the current density to 0.067 mA / cm or less, negative corona discharge is generated in the fine wire, and the malodorous component in the air is generated as O 3 . A method for removing malodorous components, which comprises removing malodorous components by reducing while suppressing. 一方向に長いステンレス円柱の長手方向に複数の穴を穿設し、各穴の中心に1本の細線を設置して複数個の放電管を形成し、各放電管内にNOx悪臭成分を含有する空気を送入すると共に、直流または交流の高電圧を印加し、放電電流密度を0.020mA/cm以下に制限する事により負のコロナ放電を複数個の細線上に発生せしめて、空気中の悪臭成分を除去することを特徴とする悪臭成分の除去方法。A plurality of holes are drilled in the longitudinal direction of a long stainless steel cylinder in one direction, and a plurality of discharge tubes are formed by installing one thin wire at the center of each hole, and each discharge tube contains NOx malodorous components . In addition to supplying air, applying a high voltage of direct current or alternating current and limiting the discharge current density to 0.020 mA / cm or less causes negative corona discharge to occur on a plurality of fine wires, A method for removing malodorous components, comprising removing malodorous components. 細線の直径は30ミクロンから250ミクロンであることを特徴とする請求項1及び2の何れかの項に記載の悪臭成分の除去方法。The method for removing malodorous components according to any one of claims 1 and 2, wherein the diameter of the thin wire is 30 to 250 microns. 交流電流の周波数を商用周波数から5kHzの範囲にすることを特徴とする請求項1及び2の何れかの項に記載の悪臭成分の除去方法。The method for removing malodorous components according to any one of claims 1 and 2, wherein the frequency of the alternating current is within a range of 5 kHz from the commercial frequency. 前記細線が除去触媒としての黒色酸化ニッケル担体を付着せしめたものであるすることを特徴とする請求項1及び2の何れかの項に記載の悪臭成分の除去方法。3. The method for removing malodorous components according to claim 1, wherein the fine wire is formed by adhering a black nickel oxide carrier as a removal catalyst. 細線の温度は常温から250℃である請求項1及び2の何れかの項に記載の悪臭成分の除去方法。The method for removing malodorous components according to any one of claims 1 and 2, wherein the temperature of the fine wire is from room temperature to 250 ° C.
JP35557899A 1999-12-15 1999-12-15 How to remove malodorous components Expired - Fee Related JP4607272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35557899A JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35557899A JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Publications (2)

Publication Number Publication Date
JP2001170441A JP2001170441A (en) 2001-06-26
JP4607272B2 true JP4607272B2 (en) 2011-01-05

Family

ID=18444706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35557899A Expired - Fee Related JP4607272B2 (en) 1999-12-15 1999-12-15 How to remove malodorous components

Country Status (1)

Country Link
JP (1) JP4607272B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029709A (en) * 2000-07-11 2002-01-29 Ec Kagaku Kk Manufacturing method of ozone
JP4640344B2 (en) * 2007-01-23 2011-03-02 株式会社デンソー Exhaust purification device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207812A (en) * 1989-02-06 1990-08-17 Univ Komenskeho Bratislav Apparatus for continuously reducing concentration of carbon monoxide and other harmful waste
JPH08323147A (en) * 1995-05-15 1996-12-10 Air Prod And Chem Inc Decomposition of noxious gas by corona formation reactor
JPH09148046A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Method for generating corona discharge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207812A (en) * 1989-02-06 1990-08-17 Univ Komenskeho Bratislav Apparatus for continuously reducing concentration of carbon monoxide and other harmful waste
JPH08323147A (en) * 1995-05-15 1996-12-10 Air Prod And Chem Inc Decomposition of noxious gas by corona formation reactor
JPH09148046A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Method for generating corona discharge

Also Published As

Publication number Publication date
JP2001170441A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
TWI244879B (en) Apparatus for generating low temperature plasma at atmospheric pressure
US10207926B2 (en) Ozone generator
US10098687B2 (en) Nano discharges in liquids
JP2004359537A (en) Ozone generator and ozone generation method
US5147516A (en) NOx reduction by sulfur tolerant coronal-catalytic apparatus and method
Pashaie et al. Electrical characteristics of a coaxial dielectric barrier discharge
JP2006247507A (en) Exhaust gas treatment apparatus and method
JP4607272B2 (en) How to remove malodorous components
Samaranayake et al. Pulsed power production of ozone using nonthermal gas discharges
Němcová et al. Chemical Efficiency of $\hbox {H} _ {2}\hbox {O} _ {2} $ Production and Decomposition of Organic Compounds Under Action of DC Underwater Discharge in Gas Bubbles
JP4010580B2 (en) Device for removing volatile organic compounds in air using discharge plasma
EP1542792A2 (en) Charging and capture of particles in coronas irradiated by in-situ x-rays
JP2020185532A (en) Ultraviolet irradiation device and gas treatment apparatus comprising the same
Chaichanawong et al. High-temperature simultaneous removal of acetaldehyde and ammonia gases using corona discharge
KR20160134008A (en) electrode for ozonizer using dielectric barrier discharge and ozonizer using it
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
Pekárek et al. Ozone generation by hollow-needle to plate electrical discharge in an ultrasound field
JP4431720B2 (en) Chemical decomposition and reaction method
Nasonova et al. Simultaneous removal of NO and SO 2 in a plasma reactor packed with TiO 2-coated glass beads
Feng et al. The study of active atoms in high-voltage pulsed coronal discharge by optical diagnostics
CN208642211U (en) A kind of novel light is from composite purification device
JP2540049B2 (en) Active species generator
KR100880900B1 (en) Electrode cell of ozone supplier in the form of slient discharge and manufacturing method of the cell
ANGHEL NONTHERMAL PLASMA IN CONTACT WITH LIQUIDS
JP3892428B2 (en) Two-stage ozone generation method and generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees