JP2006247507A - Exhaust gas treatment apparatus and method - Google Patents

Exhaust gas treatment apparatus and method Download PDF

Info

Publication number
JP2006247507A
JP2006247507A JP2005066730A JP2005066730A JP2006247507A JP 2006247507 A JP2006247507 A JP 2006247507A JP 2005066730 A JP2005066730 A JP 2005066730A JP 2005066730 A JP2005066730 A JP 2005066730A JP 2006247507 A JP2006247507 A JP 2006247507A
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
gas treatment
thermal plasma
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066730A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kikukawa
伸行 菊川
Yoshiaki Kindaichi
嘉昭 金田一
Hideaki Hamada
秀昭 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005066730A priority Critical patent/JP2006247507A/en
Publication of JP2006247507A publication Critical patent/JP2006247507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient exhaust gas treatment apparatus for generating non-thermal plasma and energy-saving in decomposing toxic gas in exhaust gas, and a method thereof. <P>SOLUTION: This exhaust gas treatment apparatus is provided with a non-thermal plasma reactor having the inlet/outlet port of exhaust gas, a linear electric conductive substance disposed in the reactor, and a non-thermal plasma generating means in the reactor. As the linear electric conductive substance, one or more kinds of substances selected from a metallic wire with an aspect ratio of 5 or more, carbon nanotube, a semiconductor thin wire and whisker or nanowire thereof are preferably used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大気汚染の防止にプラズマを利用する排ガス処理技術に係るものであり、詳しくは、排ガス中の有害成分を非熱プラズマを用いて分解させる排ガス処理装置及びその装置を用いる排ガス処理方法に関するものである。   The present invention relates to an exhaust gas treatment technology that uses plasma to prevent air pollution, and more specifically, an exhaust gas treatment device that decomposes harmful components in exhaust gas using non-thermal plasma, and an exhaust gas treatment method using the device. It is about.

従来、大気汚染を防止するために排ガス中の有害成分を無害化する排ガス処理については数多くの研究開発が行われており、それらの中にはプラズマと触媒を併用した排ガス処理装置も既に知られている。
このようなプラズマ及び触媒を利用するものとして、電極表面に触媒作用を有する金属などを被着した電極間にプラズマを発生させ,対象となる有害ガスを常温・常圧下で分解させるガス浄化装置(例えば、特許文献1参照)が提案されているが、この装置では、触媒として多種類の金属を使用できることが開示されているものの、これらの金属は電極上にメッキしたものに限られており、金属の形状に着目したものではない。
Conventionally, a lot of research and development has been conducted on exhaust gas treatment for detoxifying harmful components in exhaust gas in order to prevent air pollution. Among them, exhaust gas treatment devices using both plasma and catalyst are already known. ing.
A gas purification device that uses such plasma and catalyst to generate plasma between electrodes coated with catalytic metals on the electrode surface, and decomposes harmful gases of interest at normal temperature and pressure ( For example, Patent Document 1) has been proposed, but in this apparatus, although it is disclosed that many kinds of metals can be used as a catalyst, these metals are limited to those plated on electrodes, It does not focus on the shape of the metal.

また、鉄、金、白金をコーティングした電極を用いてその触媒作用について検討したこと(例えば、非特許文献1参照)が報告されているが、使用する触媒の形状は平面状のもののみである。さらに、DBD(Dielectric Barrier Discharge)プラズマの一方の電極を多数の針状電極とすることにより、開始電圧が低くなるとともにNO分解のエネルギー効率が向上すること(例えば、非特許文献2参照)が報告されている。しかし、その電極材質には真鍮の一種のみを用いるものであるうえに、金属の触媒作用には着目されていない。   Moreover, although it has been reported that the catalytic action was examined using an electrode coated with iron, gold, and platinum (see, for example, Non-Patent Document 1), the shape of the catalyst used is only planar. . Furthermore, it has been reported that by using one electrode of DBD (Dielectric Barrier Discharge) plasma as many needle-like electrodes, the starting voltage is lowered and the energy efficiency of NO decomposition is improved (see, for example, Non-Patent Document 2). Has been. However, in addition to using only one kind of brass as the electrode material, attention is not paid to the catalytic action of metal.

特許第2111722号Japanese Patent No. 2111172 Appl.Catal.A:General 219(2001) 25−31Appl. Catal. A: General 219 (2001) 25-31 IEEE Trans.Plasma Sci. 27(1999) 1137−45IEEE Trans. Plasma Sci. 27 (1999) 1137-45

ところで、排ガス処理にプラズマを用いれば有害ガスを分解できることは良く知られているが,従来,プラズマを発生させるエネルギーが大きいことが問題であった。すなわち、電極間隔を狭めるとプラズマ発生電圧を低くすることができるが、プラズマ体積が減少するため有害ガス処理量あたりの使用エネルギーを減少させることができなかった。
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、排ガス中の有害ガスの分解処理に、非熱プラズマを低電圧で発生させて省エネルギー化できる効率的な排ガス処理装置及びその処理方法を提供することにある。
By the way, although it is well known that harmful gases can be decomposed if plasma is used for exhaust gas treatment, conventionally, there has been a problem that the energy for generating plasma is large. That is, when the electrode interval is narrowed, the plasma generation voltage can be lowered, but the plasma volume is reduced, so that the energy used per harmful gas processing amount cannot be reduced.
This invention is made | formed in view of the above-mentioned actual condition in a prior art. That is, an object of the present invention is to provide an efficient exhaust gas treatment apparatus and a treatment method thereof that can save energy by generating non-thermal plasma at a low voltage for the decomposition treatment of harmful gas in the exhaust gas.

本発明者らは、前記課題を解決するべく鋭意検討を重ねた結果、非熱プラズマを発生させる電極間領域内に、金属線等の線状の導電性物質を配置すると、これらが中間電極となり非熱プラズマの体積を減少させることなくプラズマ発生電圧を大幅に低下させることができ、かつ,金属線等の触媒効果により効率的に有害ガスを分解させることができることを知見し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have arranged a linear conductive material such as a metal wire in an interelectrode region that generates non-thermal plasma. Discovered that plasma generation voltage can be greatly reduced without reducing the volume of non-thermal plasma, and that harmful gases can be efficiently decomposed by the catalytic effect of metal wires, etc., completing the present invention I came to let you.

すなわち、本発明は、排ガスの出入り口を設けた非熱プラズマ反応器と、その反応器の内部に配置された線状導電性物質と、その反応器内に非熱プラズマを発生させる手段とを備えたことを特徴とする排ガス処理装置である。
また、本発明は、非熱プラズマを用いる排ガス処理方法であって、排ガスを内部に線状導電性物質を設けた非熱プラズマ反応器内に導入し、その反応器に非熱プラズマを発生させて排ガス中の有害成分を分解させることを特徴とする排ガス処理方法である。
That is, the present invention includes a non-thermal plasma reactor provided with an exhaust gas inlet / outlet, a linear conductive substance disposed inside the reactor, and means for generating non-thermal plasma in the reactor. An exhaust gas treatment apparatus characterized by the above.
The present invention also relates to an exhaust gas treatment method using non-thermal plasma, wherein the exhaust gas is introduced into a non-thermal plasma reactor provided with a linear conductive substance therein, and non-thermal plasma is generated in the reactor. An exhaust gas treatment method characterized by decomposing harmful components in the exhaust gas.

本発明によれば、排ガス中の有害成分を従来よりも大幅に少ないエネルギーで効率的に分解させることができるから、各種排ガスの処理を低コストで簡易な装置を用いて行うことができ、工業的実施に有用である。   According to the present invention, harmful components in exhaust gas can be efficiently decomposed with much less energy than conventional, and therefore, various exhaust gases can be processed using a simple device at low cost. Useful for practical implementation.

本発明は、排ガス中に含まれる有害成分を非熱プラズマで処理する際に、反応器中の非熱プラズマを発生させる部位(プラズマ反応器内)に線状の導電性物質を配置し、その中に非処理成分である排ガスを流入させて、有害成分を従来よりも大幅に少ないエネルギーで分解させることができる排ガス処理装置及びその装置を用いる排ガス処理方法である。   In the present invention, when a harmful component contained in exhaust gas is treated with non-thermal plasma, a linear conductive material is disposed in a site (in the plasma reactor) where non-thermal plasma is generated in the reactor. An exhaust gas treatment apparatus capable of decomposing harmful components with much less energy than in the prior art by flowing exhaust gas, which is an untreated component, and an exhaust gas treatment method using the apparatus.

本発明によれば、従来の接触分解法を用いて処理されている各種排ガスの処理が可能である。処理できる排ガスとしては、揮発性有機溶剤、悪臭成分、ガス状無機酸化物などが含まれる工場等の排ガス、自動車等からの排ガスであって、例えば、ベンゼン、トルエン、キシレン等の炭化水素類、アルコール類、アルデヒド類、エステル類等の有機溶剤、硫化水素、メルカプタン類、アンモニア等の悪臭成分、窒素酸化物(NOx)、硫黄酸化物(SOx)、一酸化炭素等の無機酸化物等;を含むガスである。   According to the present invention, it is possible to treat various exhaust gases that have been treated using a conventional catalytic cracking method. Exhaust gas that can be treated is exhaust gas from factories and the like containing volatile organic solvents, malodorous components, gaseous inorganic oxides, etc., and exhaust gases from automobiles, for example, hydrocarbons such as benzene, toluene, xylene, Organic solvents such as alcohols, aldehydes and esters, malodorous components such as hydrogen sulfide, mercaptans, ammonia, inorganic oxides such as nitrogen oxides (NOx), sulfur oxides (SOx) and carbon monoxide; Contains gas.

本発明における非熱プラズマを用いた排ガス処理においては、プラズマ発生部分に金属線などの線状導電性物質を配置、好ましくはアスペクト比(長さと直径の比)が5以上の細い線状導電性物質を分散させて配置することにより、
その導電性物質の端部が新たな放電点となって排ガス中の有害成分を効率的に分解させることができる。さらに、線状導電性物質の端部は有害成分を分解させる触媒としての作用も行うものである。
In the exhaust gas treatment using non-thermal plasma in the present invention, a linear conductive material such as a metal wire is disposed in the plasma generation portion, preferably a thin linear conductivity having an aspect ratio (ratio of length to diameter) of 5 or more. By dispersing and arranging the substances,
The end portion of the conductive material becomes a new discharge point, and harmful components in the exhaust gas can be efficiently decomposed. Furthermore, the end of the linear conductive material also acts as a catalyst for decomposing harmful components.

用いられる導電性物質としては、電圧を印加すると非熱プラズマを発生する線状導電性部材であれば使用可能であって、通常の鉄、銅などの金属線のみならず、炭素材料、カーボンナノチューブ、半導体細線、それらのウィスカー、ナノワイアなどが挙げられる。これらの導電性物質は、細い線状のものであってアスペクト比(長さと直径の比)が5程度以上、好ましくは5〜100の微細な線状に切断したものを用いることが好ましい。また、これらの導電性物質は、反応器内で十分に分散されるように充填材中に保持されて配置することが好ましい。その充填材としては、ガスの通過を可能な限り妨げない多孔質のものが好ましく、例えば、ガラスウール、石英ウールなどが用いられる。   As the conductive material used, any linear conductive member that generates non-thermal plasma when a voltage is applied can be used. Not only a normal metal wire such as iron and copper, but also a carbon material, a carbon nanotube , Semiconductor fine wires, whiskers and nanowires thereof. It is preferable to use those conductive materials that are thin and have a fine line shape with an aspect ratio (length to diameter ratio) of about 5 or more, preferably 5 to 100. In addition, it is preferable that these conductive substances are disposed in a filler so as to be sufficiently dispersed in the reactor. The filler is preferably a porous material that does not obstruct the passage of gas as much as possible. For example, glass wool, quartz wool, or the like is used.

反応装置としては、従来公知のプラズマ装置において、電圧を印加して非熱プラズマを発生させるプラズマ反応器内に上記した線状の導電性物質を配置させたものであれば如何なる形状、構造のものも使用可能である。電圧印加方法としては、商用周波数乃至、低周波、高周波、マイクロ波が用いられる。   As a reaction apparatus, a conventional plasma apparatus having any shape and structure as long as the above-described linear conductive material is arranged in a plasma reactor that generates a non-thermal plasma by applying a voltage. Can also be used. As a voltage application method, a commercial frequency, a low frequency, a high frequency, or a microwave is used.

図1〜3は、本発明に用いられる一例のプラズマ反応器の構造を示す断面概略図を示す。図1には平行平板型のプラズマ反応器を示し、図2には平行平板型多段式プラズマ反応器を示し、また図3には同軸円筒型プラズマ反応器を示す。
実施例
以下、本発明について実施例などを用いてさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
1 to 3 are schematic cross-sectional views showing the structure of an example plasma reactor used in the present invention. 1 shows a parallel plate type plasma reactor, FIG. 2 shows a parallel plate type multistage plasma reactor, and FIG. 3 shows a coaxial cylindrical plasma reactor.
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

図4に示すプラズマ実験装置を用いて、NOを含むガスの分解を行った。この装置のプラズマチャンバは、2枚のAl製電極(80mmφ)のそれぞれを石英ガラスで覆い、10mm間隔で対向させ、その電極間空間内に敷いた石英ウールの中に、導電性物質として素線0.1mmφのSUSメッシュを斜めに1〜2mm幅で切断したもの(SUS細線)1.9gを分散させた。
次に、その2つの電極間に50Hz交流で電圧18〜25kVを印加してプラズマを発生させた。
その装置内に、NO1000ppm、酸素2.7%を含む窒素ガスを流量20ml/min.で導入し、NOの分解反応を行った。この反応後の流出ガスについて2台のガスクロマトグラフ、NOx計, 質量分析計で分析した。比較のため、SUS細線を用いないものについても同様に分析した。
得られた結果を図5に示した。図5には、印加電圧とNO分解率との関係を示す。図5に見るように、SUS細線を用いた場合には、SUS細線無しの場合に比べてはるかに高いNOx分解率を得た。ただし、SUS細線無しでもさらに高電圧にすれば同等の分解率を達成できるが、プラズマ処理にSUS細線を加えることにより低電圧で効率的に有害ガスを分解できることがわかる。
The gas containing NO was decomposed using the plasma experimental apparatus shown in FIG. The plasma chamber of this device covers each of two Al electrodes (80 mmφ) with quartz glass and faces each other at intervals of 10 mm, and a strand as a conductive substance in quartz wool laid in the space between the electrodes. 1.9 g of a SUS mesh of 0.1 mmφ cut diagonally with a width of 1 to 2 mm (SUS fine wire) was dispersed.
Next, a voltage of 18 to 25 kV was applied between the two electrodes at 50 Hz alternating current to generate plasma.
In the apparatus, nitrogen gas containing 1000 ppm NO and 2.7% oxygen was supplied at a flow rate of 20 ml / min. The NO decomposition reaction was carried out. The effluent gas after the reaction was analyzed by two gas chromatographs, NOx meters, and mass spectrometers. For comparison, the same analysis was also performed on a sample not using the SUS fine wire.
The obtained results are shown in FIG. FIG. 5 shows the relationship between the applied voltage and the NO decomposition rate. As shown in FIG. 5, when the SUS fine wire was used, a much higher NOx decomposition rate was obtained compared to the case without the SUS fine wire. However, it can be seen that even if no SUS fine wire is used, an equivalent decomposition rate can be achieved by further increasing the voltage, but by adding the SUS fine wire to the plasma treatment, harmful gases can be efficiently decomposed at a low voltage.

実施例1において、装置のプラズマチャンバに用いたSUS細線に代えて、導電性物質として直径0.05mmφのPd線を2〜3mmに切断したもの(Pdワイヤ)0.045gを用いたこと以外は、実施例1と同じ装置を用い、同様にプラズマを発生させた。その装置内に、反応ガスとしてNO1000ppmを含み、かつそれぞれ酸素濃度を2.7%、4.1%及び6.3%を含む窒素ガスを流量20ml/min.で導入し、NOの分解反応を行った。この反応後の流出ガスについて実施例1と同様にして分析した。比較のため、Pdワイヤ無しのもの、実験装置内にPd/Al(5%)0.94gを石英ウール中にまぶしたものについても同様に分析した。
得られた結果を図6に示した。図6には、反応ガス中の酸素濃度とNO分解率との関係を示す。図6に見るように、酸素濃度が高くなるといずれの場合もNOx分解率は低下するが、Pd線は全ての酸素濃度に対してNOx分解率は向上した。一方、Pd/Al触媒の場合には触媒無しの場合と同等以下であった。
In Example 1, instead of the SUS thin wire used for the plasma chamber of the apparatus, 0.045 g of Pd wire having a diameter of 0.05 mmφ cut into 2 to 3 mm (Pd wire) was used as the conductive material. Using the same apparatus as in Example 1, plasma was generated in the same manner. In the apparatus, nitrogen gas containing 1000 ppm of NO as a reaction gas and oxygen concentrations of 2.7%, 4.1% and 6.3% was supplied at a flow rate of 20 ml / min. The NO decomposition reaction was carried out. The effluent gas after this reaction was analyzed in the same manner as in Example 1. For comparison, the same analysis was performed for a sample without Pd wire and a sample in which 0.94 g of Pd / Al 2 O 3 (5%) was applied in quartz wool in an experimental apparatus.
The obtained results are shown in FIG. FIG. 6 shows the relationship between the oxygen concentration in the reaction gas and the NO decomposition rate. As shown in FIG. 6, the NOx decomposition rate decreased in any case as the oxygen concentration increased, but the NOx decomposition rate of the Pd line improved with respect to all oxygen concentrations. On the other hand, in the case of the Pd / Al 2 O 3 catalyst, it was equal to or less than that in the case of no catalyst.

実施例1において、装置のプラズマチャンバに用いたSUS細線に代えて、導電性物質として長さ2m、直径0.05mmφのPd線を逐次切断し、それぞれ1本、8本、32本、約600本を石英ウール内に分散させ、反応ガスとして実施例2に用いたと同じガスを同様に導入し、NOの分解反応を行った。この反応後の流出ガスについて分析した結果を図7に示した。
その結果、図7に見るように横軸を本数とすると、全長(したがってPd重量)は一定で変わらないにもかかわらず, NOx分解率は分散させたPdの本数とともに増加した。
In Example 1, instead of the SUS thin wire used in the plasma chamber of the apparatus, a Pd wire having a length of 2 m and a diameter of 0.05 mmφ was sequentially cut as a conductive material, and 1, 8, 32, and approximately 600, respectively. The book was dispersed in quartz wool, and the same gas as used in Example 2 was introduced as a reaction gas in the same manner to carry out NO decomposition reaction. The result of analyzing the effluent gas after this reaction is shown in FIG.
As a result, as shown in FIG. 7, when the horizontal axis is the number, the NOx decomposition rate increases with the number of dispersed Pd, although the total length (and hence the Pd weight) is constant and does not change.

実施例1に用いた装置において、導電性物質としてそれぞれNi(0.025φ、 10mを2〜3mmに切断したもの)0.029gまたはFe(ウール状物)0.35gを用い、同様にしてNOの分解反応を行った。この反応後の流出ガスについて分析した結果を図8に示した。その結果、使用した導電性物質は、ほぼ同等のNOx分解率を示したが、副生成物NOの生成は金属種による触媒効果の違いによる差異が大きく、PdとSUSが良好であることがわかった。 In the apparatus used in Example 1, 0.029 g of Ni (0.025φ, 10 m cut to 2 to 3 mm) or 0.35 g of Fe (wool-like material) was used as the conductive material, respectively. A decomposition reaction was performed. The result of analyzing the effluent gas after this reaction is shown in FIG. As a result, the conductive material used showed almost the same NOx decomposition rate, but the production of by-product N 2 O was largely different due to the difference in catalytic effect depending on the metal species, and Pd and SUS were good. I understood.

実施例1に用いた装置において、導電性物質としてウール状鉄0.35gを用い、NO1000ppmを含み、
酸素を含まない窒素ガスの分解反応を行った。また、導電性物質を用いない場合についても同様に分解反応を行った。
その生成ガスを分析した結果を図9に示した。その結果、ウール状鉄を用いた場合には、それを用いない場合に比べて、同一電圧ではるかに高いNOx分解率を与えた。触媒によって低電圧で効率的に有害ガスを分解できることがわかる。このときの電源出力を比較すると、NOxの98%を分解するのに要したパワーは触媒無しの場合に19Wであるのに対して、触媒有りでは9.0Wと1/2以下であった。
In the apparatus used in Example 1, using 0.35 g of wool-like iron as a conductive substance, containing NO 1000 ppm,
The decomposition reaction of nitrogen gas not containing oxygen was performed. Also, the decomposition reaction was performed in the same manner when no conductive material was used.
The result of analyzing the generated gas is shown in FIG. As a result, when wool iron was used, a much higher NOx decomposition rate was given at the same voltage than when it was not used. It can be seen that the catalyst can efficiently decompose harmful gases at a low voltage. Comparing the power output at this time, the power required to decompose 98% of NOx was 19 W in the absence of the catalyst, whereas it was 9.0 W with the catalyst and less than ½.

実施例1に用いた装置において、導電性物質としてウール状鉄0.35gを用いた。その装置に非処理ガスとして、ベンゼン50ppm、酸素10%、窒素10%を含むヘリウムガスを導入したこと以外は、実施例1と同様にして分解反応を行った。また比較のため、ウール鉄無しのものについても分解反応を行った。
その生成ガスを分析した結果を図10に示した。その結果、ウール状鉄ありの場合には、ウール鉄無し比べて同一電圧で極めて高いベンゼン分解率を与えた。ベンゼンの95%分解に必要な電源パワーはウール状鉄無しの場合6.7W、有りの場合4.3Wで、35%の省エネルギーとなっている。このことは、導電性物質の存在によって低電圧・低電力で効率的に有害ガスを分解できることがわかる。
In the apparatus used in Example 1, 0.35 g of wool-like iron was used as the conductive material. The decomposition reaction was performed in the same manner as in Example 1 except that helium gas containing 50 ppm of benzene, 10% oxygen, and 10% nitrogen was introduced into the apparatus as a non-treatment gas. For comparison, the decomposition reaction was also carried out for those without wool iron.
The result of analyzing the generated gas is shown in FIG. As a result, in the case with wool-like iron, an extremely high benzene decomposition rate was given at the same voltage compared to the case without wool iron. The power supply power required for 95% decomposition of benzene is 6.7 W without wool-like iron, and 4.3 W with it, which is 35% energy saving. This shows that harmful gas can be efficiently decomposed at low voltage and low power by the presence of a conductive substance.

本発明に用いられる一例のプラズマ反応器の要部構造を示す断面概略図である。It is a cross-sectional schematic diagram which shows the principal part structure of an example plasma reactor used for this invention. 本発明に用いられる他の一例のプラズマ反応器の要部構造を示す断面概略図である。It is a cross-sectional schematic diagram which shows the principal part structure of the plasma reactor of another example used for this invention. 本発明に用いられる他の一例のプラズマ反応器の要部構造を示す断面概略図である。It is a cross-sectional schematic diagram which shows the principal part structure of the plasma reactor of another example used for this invention. 本発明の実施例などに用いたプラズマ発生反応器の構造を示す断面概略図を示す。The cross-sectional schematic which shows the structure of the plasma generation reactor used for the Example of this invention etc. is shown. 実施例1で得られたNOx分解率と印加電圧との関係を示すグラフである。3 is a graph showing the relationship between the NOx decomposition rate obtained in Example 1 and the applied voltage. 実施例2で得られたNOx分解率と酸素濃度との関係を示すグラフである。6 is a graph showing the relationship between the NOx decomposition rate and oxygen concentration obtained in Example 2. 実施例3で得られたNOx分解率とPd線の本数との関係を示すグラフである。It is a graph which shows the relationship between the NOx decomposition rate obtained in Example 3, and the number of Pd lines. 実施例4で得られたNOx分解率及びNO生成率と酸素濃度との関係を示すグラフである。6 is a graph showing the relationship between the NOx decomposition rate and N 2 O production rate obtained in Example 4 and the oxygen concentration. 実施例5で得られたNOx分解率と印加電圧との関係を示すグラフである。6 is a graph showing the relationship between the NOx decomposition rate obtained in Example 5 and the applied voltage. 実施例6で得られたベンゼン分解率と印加電圧との関係を示すグラフである。It is a graph which shows the relationship between the benzene decomposition rate obtained in Example 6, and an applied voltage.

符号の説明Explanation of symbols

1・・・電極
2・・・誘電体(ガラス等)
3・・・充填材(ガラスウール等)
4・・・線状導電性物質
DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Dielectric material (glass etc.)
3 ... Filler (glass wool, etc.)
4 ... Linear conductive material

Claims (4)

排ガスの出入り口を設けた非熱プラズマ反応器と、その反応器の内部に配置された線状導電性物質と、その反応器内に非熱プラズマを発生させる手段とを備えたことを特徴とする排ガス処理装置。   A non-thermal plasma reactor provided with an exhaust gas inlet / outlet, a linear conductive material disposed inside the reactor, and means for generating non-thermal plasma in the reactor Exhaust gas treatment equipment. 前記線状導電性物質は、アスペクト比が5以上である金属線、カーボンナノチューブ、半導体細線、及びそれらのウィスカーまたはナノワイアから選ばれる1種以上からなるものである請求項1に記載の排ガス処理装置。   2. The exhaust gas treatment apparatus according to claim 1, wherein the linear conductive substance is composed of at least one selected from a metal wire having an aspect ratio of 5 or more, a carbon nanotube, a semiconductor fine wire, and a whisker or nanowire thereof. . 前記線状導電性物質は、充填材中に分散させたものである請求項1または2に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 1 or 2, wherein the linear conductive substance is dispersed in a filler. 非熱プラズマを用いる排ガス処理方法において、排ガスを内部に線状導電性物質を設けた非熱プラズマ反応器内に導入し、その反応器に非熱プラズマを発生させて排ガス中の有害成分を分解させることを特徴とする排ガス処理方法。
In an exhaust gas treatment method using non-thermal plasma, exhaust gas is introduced into a non-thermal plasma reactor provided with a linear conductive substance inside, and non-thermal plasma is generated in the reactor to decompose harmful components in the exhaust gas. An exhaust gas treatment method, characterized by comprising:
JP2005066730A 2005-03-10 2005-03-10 Exhaust gas treatment apparatus and method Pending JP2006247507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066730A JP2006247507A (en) 2005-03-10 2005-03-10 Exhaust gas treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066730A JP2006247507A (en) 2005-03-10 2005-03-10 Exhaust gas treatment apparatus and method

Publications (1)

Publication Number Publication Date
JP2006247507A true JP2006247507A (en) 2006-09-21

Family

ID=37088541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066730A Pending JP2006247507A (en) 2005-03-10 2005-03-10 Exhaust gas treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP2006247507A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190498A (en) * 2006-01-19 2007-08-02 Gunma Univ Gas treatment method and its device
WO2015108660A1 (en) * 2014-01-14 2015-07-23 Applied Materials, Inc. Nitrogen oxide abatement in semiconductor fabrication
CN105268125A (en) * 2015-03-17 2016-01-27 青岛瑞利特新材料科技有限公司 Silver nanowire PM 2.5 prevention mask filter element
JP2016093762A (en) * 2014-11-12 2016-05-26 愛知電機株式会社 Ammonia processing device and ammonia processing method using microwave nonequilibrium plasma
JP2016168581A (en) * 2015-03-16 2016-09-23 岩谷産業株式会社 Nitrous oxide gas decomposing apparatus, and method therefor
JP2018037213A (en) * 2016-08-30 2018-03-08 ダイハツ工業株式会社 Fuel cell system
JP2018137199A (en) * 2017-02-24 2018-08-30 ダイハツ工業株式会社 Fuel cell system
CN113440989A (en) * 2021-08-11 2021-09-28 河南三棵树新材料科技有限公司 Dielectric barrier discharge reactor for in-situ purification of pollutants by carbon nano tube and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326356U (en) * 1989-07-25 1991-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326356U (en) * 1989-07-25 1991-03-18

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190498A (en) * 2006-01-19 2007-08-02 Gunma Univ Gas treatment method and its device
WO2015108660A1 (en) * 2014-01-14 2015-07-23 Applied Materials, Inc. Nitrogen oxide abatement in semiconductor fabrication
JP2016093762A (en) * 2014-11-12 2016-05-26 愛知電機株式会社 Ammonia processing device and ammonia processing method using microwave nonequilibrium plasma
JP2016168581A (en) * 2015-03-16 2016-09-23 岩谷産業株式会社 Nitrous oxide gas decomposing apparatus, and method therefor
CN105268125A (en) * 2015-03-17 2016-01-27 青岛瑞利特新材料科技有限公司 Silver nanowire PM 2.5 prevention mask filter element
JP2018037213A (en) * 2016-08-30 2018-03-08 ダイハツ工業株式会社 Fuel cell system
JP2018137199A (en) * 2017-02-24 2018-08-30 ダイハツ工業株式会社 Fuel cell system
CN113440989A (en) * 2021-08-11 2021-09-28 河南三棵树新材料科技有限公司 Dielectric barrier discharge reactor for in-situ purification of pollutants by carbon nano tube and application

Similar Documents

Publication Publication Date Title
US6818193B2 (en) Segmented electrode capillary discharge, non-thermal plasma apparatus and process for promoting chemical reactions
JP2006247507A (en) Exhaust gas treatment apparatus and method
Du et al. Decomposition of toluene in a gliding arc discharge plasma reactor
US5609736A (en) Methods and apparatus for controlling toxic compounds using catalysis-assisted non-thermal plasma
Rosocha et al. Treatment of hazardous organic wastes using silent discharge plasmas
US6139694A (en) Method and apparatus utilizing ethanol in non-thermal plasma treatment of effluent gas
JP2009202137A (en) Air treatment apparatus
JPWO2004112940A1 (en) Gas processing method and gas processing apparatus using oxidation catalyst and low-temperature plasma
EP1287242A1 (en) Apparatus for removing soot and no x? in exhaust gas from diesel engines
Ge et al. Removal of low-concentration benzene in indoor air with plasma-MnO2 catalysis system
Ma et al. Decomposition of benzene using a pulse-modulated DBD plasma
Wang et al. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma
Bo et al. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition
Sivachandiran et al. DBD plasma reactor for oxidative decomposition of chlorobenzene
Piferi et al. A study on propane depletion by surface dielectric barrier discharges
JP6072007B2 (en) Device for processing gases using surface plasma
US6309610B1 (en) Non-thermal plasma apparatus utilizing dielectrically-coated electrodes for treating effluent gas
JP4235580B2 (en) Dielectric
Yan et al. Study of mechanism for hexane decomposition with gliding arc gas discharge
JP3838611B2 (en) Nitrogen oxide / sulfur oxide purification method and purification device
Abedi et al. Effect of TiO-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system
Pekárek et al. Ozone and nitrogen oxides generation in gas flow enhanced hollow needle to plate discharge in air
Mohapatro et al. Studies on $\hbox {NO} _ {\rm X} $ Removal From Diesel Engine Exhaust Using Duct-Type DBD Reactor
JP4448096B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP2005519729A (en) Chemical processing by non-thermal discharge plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525