JPH10325A - Device for removing volatile organic compound in air by using discharge plasma - Google Patents

Device for removing volatile organic compound in air by using discharge plasma

Info

Publication number
JPH10325A
JPH10325A JP8157778A JP15777896A JPH10325A JP H10325 A JPH10325 A JP H10325A JP 8157778 A JP8157778 A JP 8157778A JP 15777896 A JP15777896 A JP 15777896A JP H10325 A JPH10325 A JP H10325A
Authority
JP
Japan
Prior art keywords
plasma
air
volatile organic
removing volatile
needle electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8157778A
Other languages
Japanese (ja)
Other versions
JP4010580B2 (en
Inventor
Hitoshi Kono
仁志 河野
Shigeo Honda
重夫 本田
Changu Jen-C
チャング ジェン−シー
A Berezin Alexander
エ ベレジン アレキサンダ
Toshiaki Yamamoto
俊昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP15777896A priority Critical patent/JP4010580B2/en
Publication of JPH10325A publication Critical patent/JPH10325A/en
Application granted granted Critical
Publication of JP4010580B2 publication Critical patent/JP4010580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To crack treating gases under and at the atm. pressure and ordinary temp. and to make the secondary products of discharge non-polluting by arranging needle electrodes in the inlets and outlets of respective capillary discharge tubes so as to face these inlets and outlets and connecting a high-voltage source between these needle electrodes. SOLUTION: The treating gases contg. volatile org. compds. are supplied to the inlet header 11 of a plasma reactor 10. When the gases pass the respective capillary discharge tubes 13, the gases are ionized to plasma by the impulsive DC high voltages impressed between the needle electrodes 15 and 16 and are cracked by ions and the generated ozone. The cracked gas flow to an outlet header 12 and are removed by an active carbon filter device 21. The NOx in the secondary products of the plasma generated in the plasma reactor 10 is removed as well. If there is much carbon monoxide formed by the plasma cracking, CO is converted to CO, by a shift converter 22. If the concn. of particulates, such as dust, is high, the particulates are removed by an air filter 23. As a result, the volatile org. compds. included in the treating gases are easily cracked and removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気中に含まれる
揮発性有機化合物を除去するための放電プラズマを用い
た空気中揮発性有機化合物除去装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing volatile organic compounds in air using discharge plasma for removing volatile organic compounds contained in air.

【0002】[0002]

【従来の技術】空気中に含まれる、トルエン,トリクロ
ロエチレン,トリクロロエタン等揮発性有機化合物(以
下VOC (Volatile organic compound)という)の処
理、例えば新改築後の居住前の室内で建材から揮発する
VOC、クリーンルーム循環空気内に含まれる極微量V
OC等の処理は、処理対象ガスをプラズマ空間に通して
分解して排気するようにしている。
2. Description of the Related Art Treatment of volatile organic compounds (hereinafter referred to as VOCs) such as toluene, trichloroethylene, and trichloroethane contained in air, for example, VOCs volatilized from building materials in a room before living after new remodeling, Trace V contained in circulating air in clean room
In the treatment of OC and the like, the gas to be treated is decomposed and exhausted through a plasma space.

【0003】例えば、高温プラズマによるフロン分解で
は、プラズマトーチなどを用いて高電流、高温場のプラ
ズマを作りフロンガスを分解するようにしている。また
低圧プラズマによるプロセスガス処理では、半導体製造
プロセスのCVDで用いたプロセスガスを真空ライン中
で浄化するようにしている。大気圧低温プラズマによる
排気処理では、パルス及び直流コロナまたは交流バリア
放電を用いて排気ガス中のVOCを分解するようにして
いる。
For example, in the decomposition of chlorofluorocarbon using high-temperature plasma, a high-current, high-temperature field plasma is generated by using a plasma torch or the like to decompose chlorofluorocarbon gas. In the process gas treatment using low-pressure plasma, a process gas used in CVD in a semiconductor manufacturing process is purified in a vacuum line. In the exhaust treatment using the atmospheric pressure low-temperature plasma, VOC in the exhaust gas is decomposed by using a pulse and a DC corona or an AC barrier discharge.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の処理方法は、高濃度ガス処理、あるいは高温での処
理、真空での処理であり、大気圧、常温下での処理は行
われていない。また大気圧、常温下で処理を行うと十分
なプラズマが得られない問題がある。また、プラズマに
よる放電生成物には、オゾン、窒素酸化物、一酸化炭
素、ホスゲン等有害なものが微量発生するので、その処
理が問題となっている。
However, these processing methods are high-concentration gas processing, high-temperature processing, and vacuum processing, and are not performed under atmospheric pressure and normal temperature. Further, there is a problem that if the treatment is carried out at atmospheric pressure and normal temperature, sufficient plasma cannot be obtained. In addition, a small amount of harmful substances such as ozone, nitrogen oxides, carbon monoxide, and phosgene are generated in plasma discharge products, so that their treatment is a problem.

【0005】そこで、本発明の目的は、上記課題を解決
し、大気圧、常温下で、放電を用いてプラズマを発生さ
せ、かつ処理ガスとプラズマを有効に接触させて処理ガ
スを分解すると同時に、活性炭やシフトコンバータを用
いて、放電二次生成物を無害化できる空気中揮発性有機
化合物除去装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to generate plasma using discharge at atmospheric pressure and normal temperature, and to make the processing gas and plasma effectively contact to decompose the processing gas. Another object of the present invention is to provide an apparatus for removing volatile organic compounds in air, which can make secondary products of discharge harmless using activated carbon or a shift converter.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、処理ガス入口ヘッダと出口ヘッダ
間に多数のキャピラリー放電管を接続し、その各キャピ
ラリー放電管の出入口に針電極を対向して配置すると共
に、その針電極間に直流、交流またはパルス高圧電源を
接続した放電プラズマを用いた空気中揮発性有機化合物
除去装置である。
In order to achieve the above object, according to the first aspect of the present invention, a number of capillary discharge tubes are connected between a processing gas inlet header and an outlet header, and needles are provided at the entrance and exit of each of the capillary discharge tubes. An apparatus for removing volatile organic compounds in air using discharge plasma in which electrodes are arranged to face each other and a direct current, alternating current or pulse high voltage power supply is connected between the needle electrodes.

【0007】請求項2の発明は、キャピラリー放電管
は、ガラスあるいはセラミックス製の絶縁円筒細管から
なる請求項1記載の放電プラズマを用いた空気中揮発性
有機化合物除去装置である。
According to a second aspect of the present invention, there is provided the apparatus for removing volatile organic compounds in air using discharge plasma according to the first aspect, wherein the capillary discharge tube comprises an insulating cylindrical thin tube made of glass or ceramics.

【0008】請求項3の発明は、出口ヘッダに活性炭フ
ィルタ装置が接続される請求項1又は2記載の放電プラ
ズマを用いた空気中揮発性有機化合物除去装置である。
According to a third aspect of the present invention, there is provided the apparatus for removing volatile organic compounds in air using discharge plasma according to the first or second aspect, wherein an activated carbon filter device is connected to the outlet header.

【0009】請求項4の発明は、活性炭フィルタ装置
に、さらにシフトコンバータが接続される請求項3記載
の放電プラズマを用いた空気中揮発性有機化合物除去装
置である。
According to a fourth aspect of the present invention, there is provided the apparatus for removing volatile organic compounds in air using discharge plasma according to the third aspect, wherein a shift converter is further connected to the activated carbon filter device.

【0010】上記構成によれば、処理ガスを多数のキャ
ピラリー放電管に導入し、そこで針電極間に形成される
プラズマ領域を通すことで、処理ガス中に含まれるVO
Cを容易に分解して除去できる。
According to the above configuration, the processing gas is introduced into a large number of capillary discharge tubes and passes therethrough through the plasma region formed between the needle electrodes.
C can be easily decomposed and removed.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1において、10は、VOCを含んだ処
理ガスを導入してVOCを分解するプラズマ反応器で、
入口ヘッダ11と出口ヘッダ12間に多数のキャピラリ
ー放電管13が接続されて反応器本体14が形成され、
そのキャピラリー放電管13の出入口に針電極15,1
6が対向して配置されると共に、その針電極15,16
間に、ピーク電圧が、−15〜−50kVのパルス状の
直流高電圧を印加する直流高圧電源17が接続される。
In FIG. 1, reference numeral 10 denotes a plasma reactor for introducing a processing gas containing VOC to decompose VOC.
A number of capillary discharge tubes 13 are connected between the inlet header 11 and the outlet header 12 to form a reactor body 14,
Needle electrodes 15, 1 are connected to the entrance and exit of the capillary discharge tube 13.
6 are arranged facing each other, and the needle electrodes 15, 16 thereof
A DC high voltage power supply 17 for applying a pulsed DC high voltage having a peak voltage of -15 to -50 kV is connected therebetween.

【0013】キャピラリー放電管13は、外径約10m
m,内径が2〜3mmφ、長さ約100mmの石英ガラ
スやセラミックス等の絶縁管からなり、管1本当たりコ
ンマ数L/min〜数十L/minの流量の処理ガスが
流れるように、処理する処理ガス量に応じてその本数を
設定する。
The capillary discharge tube 13 has an outer diameter of about 10 m.
m, an insulating tube made of quartz glass or ceramics having an inner diameter of 2 to 3 mm and a length of about 100 mm, and a processing gas having a flow rate of several L / min to several tens L / min per one tube. The number is set according to the processing gas amount to be processed.

【0014】針電極15,16は、キャピラリー放電管
13の軸心に位置するように、かつ電極ギャップが数十
mm、好ましくは約20mmとなるように対向配置し、
その入口側の針電極15が接地18され、出口側の針電
極16が安定抵抗19を介して一方が接地20された直
流高圧電源17に接続される。
The needle electrodes 15 and 16 are opposed to each other so as to be located at the axis of the capillary discharge tube 13 and to have an electrode gap of several tens mm, preferably about 20 mm.
The needle electrode 15 on the inlet side is grounded 18, and the needle electrode 16 on the outlet side is connected to a DC high voltage power supply 17, one of which is grounded 20, via a stabilizing resistor 19.

【0015】このプラズマ反応器10の出口ヘッダ12
には活性炭フィルタ装置21が接続され、活性炭フィル
タ装置21に適宜COをCO2 に転換するシフトコンバ
ータ22が接続され、さらにエアフィルタ23が接続さ
れる。
The outlet header 12 of the plasma reactor 10
Is connected to a shift converter 22 for appropriately converting CO into CO 2 , and an air filter 23 is connected to the activated carbon filter device 21.

【0016】以上において、VOCを含む処理ガスがプ
ラズマ反応器10の入口ヘッダ11に供給され、各キャ
ピラリー放電管13を通ると、針電極15,16間に印
加されるパルス状の直流高電圧で電離されてプラズマ化
され、そこでVOCは、イオンや発生したオゾンにより
分解されて出口ヘッダ12に流れて活性炭フィルタ装置
21で除去される。また、プラズマ反応器10で生じた
プラズマ二次反応生成物中のNOX も除去される。
In the above, the processing gas containing the VOC is supplied to the inlet header 11 of the plasma reactor 10 and passes through each of the capillary discharge tubes 13 so as to generate a pulsed DC high voltage applied between the needle electrodes 15 and 16. It is ionized and turned into plasma, where the VOC is decomposed by ions and generated ozone, flows to the outlet header 12 and is removed by the activated carbon filter device 21. Further, NO x in the plasma secondary reaction product generated in the plasma reactor 10 is also removed.

【0017】プラズマ分解により生成した一酸化炭素が
多い場合は、シフトコンバータ22にてCOをCO2
転換し、またダスト等の微粒子の濃度が高い場合には、
最終段に設けたエアフィルタ23にて除去する。
When the amount of carbon monoxide generated by the plasma decomposition is large, CO is converted into CO 2 by the shift converter 22. When the concentration of fine particles such as dust is high,
It is removed by the air filter 23 provided at the last stage.

【0018】このキャピラリー放電管13内で発生する
プラズマは、キャピラリー放電管13の内径が小さいた
め、プラズマ密度が高く、かつキャピラリー放電管13
を通る処理ガスは確実にプラズマと接すると共に滞留時
間も長いため、VOCの分解反応率が高くできる。
The plasma generated in the capillary discharge tube 13 has a high plasma density and a small diameter because the inside diameter of the capillary discharge tube 13 is small.
Since the processing gas passing through the gas surely comes into contact with the plasma and has a long residence time, the decomposition reaction rate of VOC can be increased.

【0019】次に、図2〜図5により実験例を説明す
る。
Next, an experimental example will be described with reference to FIGS.

【0020】図2は、処理ガス流量(0.5,1,4,
10L/min)に対して、プラズマを安定して生成で
きる平均電流−電圧の関係を示したもので、図3は、電
流を1mAとし、処理ガス中のVOC濃度(サンプル;
トルエン,濃度580〜1200ppm)での処理ガス
流量を変えたときの滞留時間と分解効率の関係を示した
ものである。
FIG. 2 shows the processing gas flow rates (0.5, 1, 4,
FIG. 3 shows the relationship between the average current and the voltage that can stably generate plasma with respect to 10 L / min. FIG. 3 shows that the current is 1 mA and the VOC concentration in the processing gas (sample;
It shows the relationship between the residence time and the decomposition efficiency when the flow rate of the processing gas at toluene (concentration: 580 to 1200 ppm) is changed.

【0021】図により、滞留時間が長ければ分解効率も
比例して上がり、滞留時間23msec、初期濃度12
00ppmの処理ガスでは、分解効率を86%にでき
た。また、後段の活性炭通過後には、ほぼ100%の除
去率が得られた。
As shown in the figure, if the residence time is long, the decomposition efficiency is increased in proportion to the residence time, the residence time is 23 msec, and the initial concentration is 12
With a treatment gas of 00 ppm, the decomposition efficiency could be made 86%. After passing the activated carbon in the latter stage, a removal rate of almost 100% was obtained.

【0022】図4,図5,図6は、処理ガスのプラズマ
処理の前後及び活性炭フィルタ後の赤外線吸光スペクト
ルを示したもので、図4は処理前、図5は処理後、図6
は活性炭フィルタ後のスペクトルを示している。
FIGS. 4, 5 and 6 show the infrared absorption spectra before and after the plasma treatment of the processing gas and after the activated carbon filter. FIG.
Shows the spectrum after the activated carbon filter.

【0023】図4に示すように、処理ガス中には、VO
Cとしてのトルエンの吸光スペクトルが、3000,7
00cm-1にあるが、図5に示すようにその透過率が上
がっており、分解されている。また、図6に示すよう
に、プラズマにより発生したNOx や未反応のトルエン
は後段の活性炭フィルタにより除去できている。さら
に、後工程のシフトコンバータでCOを除去する。
As shown in FIG. 4, VO is contained in the processing gas.
The absorption spectrum of toluene as C is 3000,7
Although it is at 00 cm -1 , its transmittance is increased as shown in FIG. 5 and it has been decomposed. Further, as shown in FIG. 6, NO x and unreacted toluene generated by the plasma can be removed by the activated carbon filter at the subsequent stage. Further, CO is removed by a shift converter in a subsequent process.

【0024】[0024]

【発明の効果】以上要するに本発明によれば、処理ガス
を多数のキャピラリー放電管に導入し、そこで針電極間
に形成されるプラズマ領域を通すことで、処理ガス中に
含まれるVOCを容易に分解して除去できる。
In summary, according to the present invention, the processing gas is introduced into a large number of capillary discharge tubes, where it passes through the plasma region formed between the needle electrodes, so that the VOC contained in the processing gas can be easily reduced. Can be disassembled and removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】本発明において、処理ガスの流量に対する平均
電流−電圧の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an average current and a voltage with respect to a flow rate of a processing gas in the present invention.

【図3】本発明において、処理ガスの濃度に対する流量
と分解効率の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a flow rate and a decomposition efficiency with respect to a concentration of a processing gas in the present invention.

【図4】図3で、用いた処理ガスのプラズマ処理前の赤
外線吸光スペクトルを示す図である。
FIG. 4 is a view showing an infrared absorption spectrum of the processing gas used in FIG. 3 before plasma processing.

【図5】図3で、用いた処理ガスのプラズマ処理後の赤
外線吸光スペクトルを示す図である。
FIG. 5 is a view showing an infrared absorption spectrum of the processing gas used in FIG. 3 after the plasma processing.

【図6】図3で、用いた処理ガスのプラズマ処理後のガ
スの活性炭フィルタ通過後の赤外線吸光スペクトルを示
す図である。
FIG. 6 is a view showing an infrared absorption spectrum of a gas after a plasma treatment of a used treatment gas after passing through an activated carbon filter in FIG. 3;

【符号の説明】[Explanation of symbols]

10 プラズマ反応器 11 入口ヘッダ 12 出口ヘッダ 13 キャピラリー放電管 15,16 針電極 17 直流高圧電源 DESCRIPTION OF SYMBOLS 10 Plasma reactor 11 Inlet header 12 Outlet header 13 Capillary discharge tube 15, 16 Needle electrode 17 DC high voltage power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ジェン−シー チャング カナダ国 オンタリオ州 ハミルトン メ インストリートウエスト 1280 マックマ スター,ユニバーシティ内 (72)発明者 アレキサンダ エ ベレジン カナダ国 オンタリオ州 ハミルトン メ インストリートウエスト 1280 マックマ スター,ユニバーシティ内 (72)発明者 山本 俊昭 アメリカ合衆国 ノースカロライナ州 チ ャペルヒル ホワイトフィールドロード 3212 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jen-Chang, 1280 McMastar, University of Hamilton-Main Street West, Ontario, Canada (72) Inventor Alexander e Belezin 1280 Macma, Hamilton Main Street West, Ontario, Canada Star, University (72) Inventor Toshiaki Yamamoto Chapel Hill, North Carolina, USA Whitefield Road 3212

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 処理ガス入口ヘッダと出口ヘッダ間に多
数のキャピラリー放電管を接続し、その各キャピラリー
放電管の出入口に針電極を対向して配置すると共に、そ
の針電極間に直流、交流またはパルス高圧電源を接続し
たことを特徴とする放電プラズマを用いた空気中揮発性
有機化合物除去装置。
1. A large number of capillary discharge tubes are connected between a processing gas inlet header and an outlet header, needle electrodes are arranged at the entrance and exit of each of the capillary discharge tubes, and a direct current, alternating current or An apparatus for removing volatile organic compounds in air using discharge plasma, which is connected to a pulse high-voltage power supply.
【請求項2】 キャピラリー放電管は、ガラスあるいは
セラミックス製の絶縁円筒細管からなる請求項1記載の
放電プラズマを用いた空気中揮発性有機化合物除去装
置。
2. The apparatus for removing volatile organic compounds in air using discharge plasma according to claim 1, wherein the capillary discharge tube comprises an insulating cylindrical thin tube made of glass or ceramics.
【請求項3】 出口ヘッダに活性炭フィルタ装置が接続
される請求項1又は2記載の放電プラズマを用いた空気
中揮発性有機化合物除去装置。
3. The apparatus for removing volatile organic compounds in air using discharge plasma according to claim 1, wherein an activated carbon filter device is connected to the outlet header.
【請求項4】 活性炭フィルタ装置に、さらにシフトコ
ンバータが接続される請求項3記載の放電プラズマを用
いた空気中揮発性有機化合物除去装置。
4. The apparatus for removing volatile organic compounds in air using discharge plasma according to claim 3, wherein a shift converter is further connected to the activated carbon filter device.
JP15777896A 1996-06-19 1996-06-19 Device for removing volatile organic compounds in air using discharge plasma Expired - Lifetime JP4010580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15777896A JP4010580B2 (en) 1996-06-19 1996-06-19 Device for removing volatile organic compounds in air using discharge plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15777896A JP4010580B2 (en) 1996-06-19 1996-06-19 Device for removing volatile organic compounds in air using discharge plasma

Publications (2)

Publication Number Publication Date
JPH10325A true JPH10325A (en) 1998-01-06
JP4010580B2 JP4010580B2 (en) 2007-11-21

Family

ID=15657097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15777896A Expired - Lifetime JP4010580B2 (en) 1996-06-19 1996-06-19 Device for removing volatile organic compounds in air using discharge plasma

Country Status (1)

Country Link
JP (1) JP4010580B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087622A (en) * 1999-09-24 2001-04-03 Anzai Setsu Exhaust gas cleaning apparatus
WO2001091896A1 (en) * 2000-05-29 2001-12-06 Three Tec Co., Ltd. Object processing apparatus and plasma facility comprising the same
KR20030001987A (en) * 2001-06-28 2003-01-08 (주) 티엔케이텍 Analysis Device For Treating The Food Wastes
US6621227B1 (en) 2000-02-08 2003-09-16 Canon Kabushiki Kaisha Discharge generating apparatus and discharge generating method
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
JP2013255475A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
WO2017183326A1 (en) * 2016-04-20 2017-10-26 日産自動車株式会社 Deodorizing device
CN108854488A (en) * 2018-06-25 2018-11-23 深圳市前海泓远控股有限公司 A kind of VOCs gas processing method of plasma combination ozone
CN111974180A (en) * 2020-06-17 2020-11-24 金华市中荷环保科技有限公司 Large-scale reactor of low temperature plasma
CN113230841A (en) * 2021-06-02 2021-08-10 北京基亚特环保科技有限公司 Plasma and active carbon adsorption all-in-one machine
CN113785119A (en) * 2019-03-11 2021-12-10 南加利福尼亚大学 Systems and methods for plasma-based abatement
JP2022508750A (en) * 2018-10-12 2022-01-19 ヴラドレノヴィッチ ミスラフスキー,ボリス Methods and equipment for plasma chemical gas / gas mixture conversion

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
JP2001087622A (en) * 1999-09-24 2001-04-03 Anzai Setsu Exhaust gas cleaning apparatus
JP4559563B2 (en) * 1999-09-24 2010-10-06 安斎 節 Exhaust gas purification device
US6621227B1 (en) 2000-02-08 2003-09-16 Canon Kabushiki Kaisha Discharge generating apparatus and discharge generating method
JP4796733B2 (en) * 2000-05-29 2011-10-19 株式会社アドテック プラズマ テクノロジー Gas decomposition apparatus and plasma equipment using the same
WO2001091896A1 (en) * 2000-05-29 2001-12-06 Three Tec Co., Ltd. Object processing apparatus and plasma facility comprising the same
KR20030001987A (en) * 2001-06-28 2003-01-08 (주) 티엔케이텍 Analysis Device For Treating The Food Wastes
JP2013255475A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
WO2017183326A1 (en) * 2016-04-20 2017-10-26 日産自動車株式会社 Deodorizing device
CN108854488A (en) * 2018-06-25 2018-11-23 深圳市前海泓远控股有限公司 A kind of VOCs gas processing method of plasma combination ozone
JP2022508750A (en) * 2018-10-12 2022-01-19 ヴラドレノヴィッチ ミスラフスキー,ボリス Methods and equipment for plasma chemical gas / gas mixture conversion
CN113785119A (en) * 2019-03-11 2021-12-10 南加利福尼亚大学 Systems and methods for plasma-based abatement
CN111974180A (en) * 2020-06-17 2020-11-24 金华市中荷环保科技有限公司 Large-scale reactor of low temperature plasma
CN111974180B (en) * 2020-06-17 2022-04-22 金华市中荷环保科技有限公司 Large-scale reactor of low temperature plasma
CN113230841A (en) * 2021-06-02 2021-08-10 北京基亚特环保科技有限公司 Plasma and active carbon adsorption all-in-one machine

Also Published As

Publication number Publication date
JP4010580B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US6224653B1 (en) Electrostatic method and means for removing contaminants from gases
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
CN100446849C (en) Synchronous gas-liquid purifying high voltage DC/pulse discharge method and device
JPH10325A (en) Device for removing volatile organic compound in air by using discharge plasma
JP4016134B2 (en) Gas processing equipment
US6576573B2 (en) Atmospheric pressure plasma enhanced abatement of semiconductor process effluent species
US6905577B1 (en) Method for oxidation of volatile organic compounds contained in gaseous effluents and device thereof
KR100487544B1 (en) Air pollutant destruction apparatus having plasma filter with three dimensional cell structure and its cleaning method
JP3679280B2 (en) Gas separator
Chang et al. Removal of carbon tetrachloride from air stream by a corona torch plasma reactor
CN218235209U (en) Electric field device and VOCs gas treatment device
JPH0226804A (en) Process and apparatus for generating atomic oxygen
KR100830790B1 (en) Processing apparatus
KR20180129490A (en) High-voltage pulsed power, Plasma reactor, apparatus and method for removing contamination air
KR102059265B1 (en) Pollutant processing apparatus from semiconductor manufacturing process
RU2071816C1 (en) Method of cleaning air from organic impurities
US7229589B2 (en) Method for decontamination
JP2001247485A (en) Method for decomposition process of gas and apparatus for treating exhaust gas with atmospheric pressure plasma
JP2003340242A (en) Device and method for gas treatment
CN219701535U (en) VOCs desorption system
CN214345475U (en) Experimental device for low temperature plasma and wet-type washing jointly get rid of VOCs
US20230038863A1 (en) Methods and apparatus for decomposing constituent elements of fluids
KR200264686Y1 (en) Apparatus for abating a abolishing gas occuring semiconductor manufacturing process
US20090308730A1 (en) Hollow cathode plasma source for bio and chemical decotaminiation of air and surfaces
Lee et al. Destruction of VOCs via silent discharge plasmas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term