JP2001151894A - Electroconductive fine particle and electroconductive joint structure - Google Patents

Electroconductive fine particle and electroconductive joint structure

Info

Publication number
JP2001151894A
JP2001151894A JP33649599A JP33649599A JP2001151894A JP 2001151894 A JP2001151894 A JP 2001151894A JP 33649599 A JP33649599 A JP 33649599A JP 33649599 A JP33649599 A JP 33649599A JP 2001151894 A JP2001151894 A JP 2001151894A
Authority
JP
Japan
Prior art keywords
fine particles
particles
conductive
electroconductive
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33649599A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nagai
康彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP33649599A priority Critical patent/JP2001151894A/en
Publication of JP2001151894A publication Critical patent/JP2001151894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a monodispersion organic electroconductive fine particles having uniform shapes and a narrow particle diameter distribution, and further to provide an electroconductive joint structure by using the electroconductive fine particles. SOLUTION: This electroconductive fine particles are obtained by using polymer articles having 0.1-10 μm particle diameters as seed particles, allowing the seed particles to absorb a monomer in an amount of 10-500 times as much as that of the seed particles expressed in terms of weight, polymerizing the monomer to provide monodispersion fine particles, and subjecting the resultant monodispersion fine particles to a treatment for making the particles electroconductive. The electroconductive joint structure is obtained by using the electroconductive fine particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性微粒子に関す
るものであり、更に詳細には、マイクロ素子実装用の導
電性接着剤、異方導電性接着剤、又は異方導電性シート
の導電材料として用いられる導電性微粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive fine particles, and more particularly, to a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive, or a conductive material for an anisotropic conductive sheet. The present invention relates to conductive fine particles used.

【0002】[0002]

【従来の技術】エレクトロニクス実装分野では、相対す
る微細電極を接続するために、金、銀、ニッケル等の金
属粒子とバインダー樹脂とを混合して導電性ペーストを
調整し、このペーストを相対する微細電極間に充填する
ことにより微細電極間を接続させることが行われる。し
かし、このような金属粒子は形状が不均一であり、且つ
バインダー樹脂に比べて比重が大きいためにバインダー
樹脂に均一に分散させることが困難であった。
2. Description of the Related Art In the field of electronic packaging, in order to connect opposing fine electrodes, a conductive paste is prepared by mixing metal particles such as gold, silver, and nickel and a binder resin, and the paste is mixed with the corresponding fine electrodes. The connection between the fine electrodes is performed by filling between the electrodes. However, it is difficult to uniformly disperse such metal particles in the binder resin because of their non-uniform shape and higher specific gravity than the binder resin.

【0003】一方、有機高分子を重合させて微粒子を合
成し、その表面に、金属メッキ層を設けて導電性微粒子
を作ることも報告されているが、通常の微粒子の重合や
造粒では粒子径分布の広い粒子ができるため、そのまま
では導電性微粒子の基材としては使用することが出来な
かった。そのため分級という工程によって均一な微粒子
を作り、導電性微粒子の基材としていた。しかし、分級
は製品を作る時のリードタイムが長くかかったり、基材
によっては、膨潤や比重の関係で単分散粒子が得られに
くい等の欠点があった。
On the other hand, it has been reported that fine particles are synthesized by polymerizing an organic polymer and a metal plating layer is formed on the surface of the fine particles to form conductive fine particles. Since particles having a wide diameter distribution were formed, they could not be directly used as a base material for conductive fine particles. Therefore, uniform fine particles were produced by a classifying process and used as a base material for the conductive fine particles. However, classification has drawbacks such as a long lead time when producing a product, and difficulty in obtaining monodispersed particles due to swelling and specific gravity depending on the base material.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を鑑みてなされたものであり、形状が均一でか
つ粒子径分布の狭い、単分散有機導電性微粒子及び該導
電性微粒子を用いた導電接続構造体を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is intended to provide monodispersed organic conductive fine particles having a uniform shape and a narrow particle size distribution, and the conductive fine particles. It is an object to provide a conductive connection structure used.

【0005】[0005]

【課題を解決するための手段】本発明は、導電性微粒子
の基材として用いるのに好適な有機微粒子に導電化処理
した導電性微粒子及び該導電性微粒子を用いた導電接続
構造体である。
SUMMARY OF THE INVENTION The present invention relates to conductive fine particles obtained by conducting conductive treatment on organic fine particles suitable for use as a base material for conductive fine particles, and a conductive connection structure using the conductive fine particles.

【0006】請求項1記載の発明は、粒子径が0. 1〜
10μmの重合体粒子を種粒子とし、該種粒子に重量比
にして10〜500倍の単量体及び開始剤を吸収させ
た、単量体を重合させてなる単分散微粒子を導電化処理
して得られる導電性微粒子である。
[0006] The invention according to claim 1 has a particle diameter of 0.1 to 0.1.
The polymer particles of 10 μm are used as seed particles, and the monodispersed fine particles obtained by polymerizing the monomers, in which the monomer and the initiator are absorbed in a weight ratio of 10 to 500 times the seed particles, are subjected to a conductive treatment. The conductive fine particles obtained by the above method.

【0007】請求項2記載の発明は、種粒子のCV値が
8%以下である請求項1記載の導電性微粒子である。
According to a second aspect of the present invention, there is provided the conductive fine particles according to the first aspect, wherein the seed particles have a CV value of 8% or less.

【0008】請求項3記載の発明は、単分散微粒子のC
V値が8%以下である請求項1又は2記載の導電性微粒
子である。
[0008] The invention according to claim 3 is a method for preparing monodispersed fine particles of C
3. The conductive fine particles according to claim 1, having a V value of 8% or less.

【0009】請求項4記載の発明は、請求項1〜3いず
れかに記載の導電性微粒子を用いてなる導電接続構造体
である。
According to a fourth aspect of the present invention, there is provided a conductive connection structure using the conductive fine particles according to any one of the first to third aspects.

【0010】本発明において種粒子の製造に用いられる
重合性単量体としては、特に限定されないが、例えば、
スチレン、α‐メチルスチレン、p‐メチルスチレン、
p‐クロロスチレン、クロロメチルスチレン等のスチレ
ン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニ
ル等のビニルエステル類;アクリロニトリル等の不飽和
ニトリル類;(メタ)アクリル酸メチル、(メタ)アク
リル酸エチル、(メタ)アクリル酸ブチル、(メタ)ア
クリル酸2- エチルヘキシル、(メタ)アクリル酸ステ
アリル、エチレングリコール(メタ)アクリレート、ト
リフルオロエチル(メタ)アクリレート、ペンタフルオ
ロプロピル(メタ)アクリレート、シクロヘキシル(メ
タ)アクリレート等の(メタ)アクリル酸エステル誘導
体等が挙げられる。これら単量体は単独で用いてもよ
く、2種以上を併用しても良い。
In the present invention, the polymerizable monomer used for producing the seed particles is not particularly limited.
Styrene, α-methylstyrene, p-methylstyrene,
styrene derivatives such as p-chlorostyrene and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate; Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, cyclohexyl (meth) (Meth) acrylic acid ester derivatives such as acrylate and the like can be mentioned. These monomers may be used alone or in combination of two or more.

【0011】本発明で用いられる種粒子の粒子径は、最
終的に必要とする粒子径に応じて適宜選択できるが、
0. 1〜10μmである。種粒子の粒子径が、0. 1〜
10μmであれば、マイクロ素子実装用の導電性接着
剤、異方導電性接着剤又は異方導電性シートに好適に用
いられる導電性微粒子が得られ。種粒子の粒子径が0.
1μm未満の場合は、得られる導電性微粒子の粒子径が
小さすぎて、電極間を接続する際に、良好な接続が得ら
れず導通不良を起こしやすくなり、種粒子の粒子径が1
0μmを越えると、得られる導電性微粒子の粒子径が大
きすぎて、隣接する電極間でリークが起こったり、バイ
ンダーに混ぜる場合に、沈降しやすく均一な導電接着剤
が作りにくいという問題が発生しやすくなる。更に、種
粒子の製造の際に、粒子径が0. 1〜10μmの範囲で
あれば、ソープフリー重合及び分散重合にて単分散な重
合体粒子を容易に得ることが出来るが、この範囲を逸脱
すると、粒子径分布の狭い粒子を得ることは困難にな
る。
The particle size of the seed particles used in the present invention can be appropriately selected according to the finally required particle size.
0.1 to 10 μm. When the particle diameter of the seed particles is 0.1 to 1
If it is 10 μm, conductive fine particles suitably used for a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive or an anisotropic conductive sheet can be obtained. The particle size of the seed particles is 0.
When the particle diameter is less than 1 μm, the particle diameter of the obtained conductive fine particles is too small, and when connecting between the electrodes, good connection is not obtained, and poor conduction is likely to occur.
If it exceeds 0 μm, the resulting conductive fine particles will have a too large particle diameter, causing a leak between adjacent electrodes, or causing a problem that when mixed with a binder, it is easy to settle and it is difficult to produce a uniform conductive adhesive. It will be easier. Furthermore, when producing the seed particles, if the particle diameter is in the range of 0.1 to 10 μm, monodisperse polymer particles can be easily obtained by soap-free polymerization and dispersion polymerization. If it deviates, it will be difficult to obtain particles having a narrow particle size distribution.

【0012】上記種粒子の粒子径分布は、特に限定はさ
れないが、単量体を吸収させて重合(シード重合)させ
て得られる微粒子の粒子径分布に反映されるため、請求
項2に記載の如く、種粒子のCV値は8%以下であるの
が好ましく、さらに好ましくは5%以下である。尚、上
記のCV値は下記の式で表される。 CV(%)=(標準偏差(σ)/平均粒子径(Dn))× 100
The particle size distribution of the seed particles is not particularly limited, but is reflected in the particle size distribution of fine particles obtained by absorbing and polymerizing a monomer (seed polymerization). As described above, the CV value of the seed particles is preferably 8% or less, more preferably 5% or less. The above CV value is represented by the following equation. CV (%) = (standard deviation (σ) / average particle diameter (Dn)) × 100

【0013】上記の種粒子はソープフリー重合、分散重
合、乳化重合等の通常の重合方法により合成することが
できるが、中でも粒子系分布の狭い粒子の合成に適して
いるソープフリー重合、分散重合等が望ましい。
The above-mentioned seed particles can be synthesized by ordinary polymerization methods such as soap-free polymerization, dispersion polymerization, and emulsion polymerization. Among them, soap-free polymerization, dispersion polymerization, and dispersion polymerization suitable for synthesis of particles having a narrow particle distribution. Is desirable.

【0014】上記種粒子に吸収させる単量体の種類は、
特に限定されず、導電性微粒子の物性に応じて適宜選択
されうる。具体的には、下記の様な単量体が例として挙
げられる。即ち、スチレン、α‐メチルスチレン、p‐
メチルスチレン、p‐クロロスチレン、クロロメチルス
チレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、
プロピオン酸ビニル等のビニルエステル類;アクリロニ
トリル等の不飽和ニトリル類;(メタ)アクリル酸メチ
ル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブ
チル、(メタ)アクリル酸2‐エチルヘキシル、(メ
タ)アクリル酸ステアリル、エチレングリコール(メ
タ)アクリレート、トリフルオロエチル(メタ)アクリ
レート、ペンタフルオロプロピル(メタ)アクリレー
ト、シクロヘキシル(メタ)アクリレート等の(メタ)
アクリル酸エステル誘導体が挙げられる。
The type of the monomer to be absorbed by the seed particles is as follows:
There is no particular limitation, and it can be appropriately selected according to the physical properties of the conductive fine particles. Specifically, the following monomers are mentioned as examples. That is, styrene, α-methylstyrene, p-
Styrene derivatives such as methylstyrene, p-chlorostyrene, chloromethylstyrene; vinyl chloride; vinyl acetate;
Vinyl esters such as vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) (Meth) such as stearyl acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate
Acrylic ester derivatives may be mentioned.

【0015】上記単量体としては更に、ジビニルベンゼ
ン、;1,6‐ヘキサンジオールジ(メタ)アクリレー
ト、エチレングリコールジ(メタ)アクリレート等のポ
リエチレングリコールジ(メタ)アクリレート、プロピ
レングリコールジ(メタ)アクリレート等のポリプロピ
レングリコールジ(メタ)アクリレート、ポリテトラメ
チレングリコールジ(メタ)アクリレート、ネオペンチ
ルグリコールジ(メタ)アクリレート、1,3‐ブチレ
ングリコールジ(メタ)アクリレート、2,2‐ビス
[4‐(メタクリロキシエトキシ)フェニル]プロパン
ジ(メタ)アクリレート等の2,2‐ビス[4‐(メタ
クリロキシポリエトキシ)フェニル]プロパンジ(メ
タ)アクリレート、2,2‐水添ビス[4‐(アクリロ
キシポリエトキシ)フェニル]プロパンジ(メタ)アク
リレート、2,2‐ビス[4‐(アクリロキシエトキシ
ポリプロポキシ)フェニル]プロパンジ(メタ)アクリ
レート等のジ(メタ)アクリレート類;ブタジエン、イ
ソプレン等の共役ジエン類;ジアリルフタレート及びそ
の異性体;トリメチロールプロパントリ(メタ)アクリ
レート及びその誘導体、テトラメチロールメタントリ
(メタ)アクリレート、ペンタエリスリトールトリ(メ
タ)アクリレート、テトラメチロールプロパンテトラ
(メタ)アクリレート、ペンタエリスリトールテトラ
(メタ)アクリレート、ジペンタエリスリトールヘキサ
(メタ)アクリレート等の3官能以上の(メタ)アクリ
レート類;トリアリルイソシアヌレート及びその誘導体
等が挙げられる。これら単量体は、単独で用いても良
く、2種以上を併用しても良い。
The above monomers further include divinylbenzene, polyethylene glycol di (meth) acrylate such as 1,6-hexanediol di (meth) acrylate and ethylene glycol di (meth) acrylate, and propylene glycol di (meth) acrylate. Polypropylene glycol di (meth) acrylate such as acrylate, polytetramethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 2,2-bis [4- 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propanedi (meth) acrylate such as (methacryloxyethoxy) phenyl] propanedi (meth) acrylate, 2,2-hydrogenated bis [4- (acryloxypoly) Ethoxy) Nyl] propanedi (meth) acrylate, di (meth) acrylates such as 2,2-bis [4- (acryloxyethoxypolypropoxy) phenyl] propanedi (meth) acrylate; conjugated dienes such as butadiene and isoprene; diallyl phthalate And its isomers; trimethylolpropane tri (meth) acrylate and derivatives thereof, tetramethylolmethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate And trifunctional or more (meth) acrylates such as dipentaerythritol hexa (meth) acrylate; triallyl isocyanurate and derivatives thereof. These monomers may be used alone or in combination of two or more.

【0016】上記種粒子に吸収させる単量体の量は、種
粒子に対して重量比で10〜500倍であり、好ましく
は20〜100倍である。この範囲であれば、マイクロ
素子実装用の導電性接着剤、異方導電性接着剤又は異方
導電性シートに好適に用いられる導電性微粒子が得られ
るが、10倍未満では種粒子と単量体成分が相分離をお
こし、多孔質や中空などの不均一な粒子となり、500
倍を越えると種粒子に吸収しきれない単量体が発生し、
粒子径分布が広がったり、粒子同士の凝集が発生する。
The amount of the monomer to be absorbed by the seed particles is 10 to 500 times, preferably 20 to 100 times, the weight ratio of the seed particles. Within this range, conductive fine particles suitable for use in conductive adhesives for mounting microelements, anisotropic conductive adhesives or anisotropic conductive sheets can be obtained. The body component undergoes phase separation, resulting in non-uniform particles such as porous and hollow,
If it exceeds twice, monomers that cannot be absorbed by the seed particles will be generated,
The particle size distribution is widened, and aggregation of particles occurs.

【0017】本発明では上記単量体を開始剤と共に水中
で微分散させて単量体乳化液を調整した後に種粒子に吸
収させる。具体的には、例えば、乳化剤を水に溶解した
後に、単量体と開始剤を添加し、混合物を調整する。こ
の混合物をホモジナイザーや超音波処理、ナノマイザー
等の微細乳化機により乳化すれば良い。本発明において
は、上記の単量体乳化液を種粒子の分散水溶液と混合
し、種粒子に該単量体及び開始剤を吸収させた後に重合
を行う。この吸収過程は、通常種粒子と単量体乳化液と
を混合して1〜24時間撹拌することにより達成され
る。なお、吸収の終了は光学顕微鏡で観察することで確
認できる。
In the present invention, the above monomer is finely dispersed in water together with an initiator to prepare a monomer emulsion, which is then absorbed by seed particles. Specifically, for example, after dissolving an emulsifier in water, a monomer and an initiator are added to prepare a mixture. This mixture may be emulsified by a fine emulsifier such as a homogenizer, ultrasonic treatment, or a nanomizer. In the present invention, the above-mentioned monomer emulsion is mixed with an aqueous dispersion of seed particles, and polymerization is carried out after the monomer and the initiator are absorbed in the seed particles. This absorption process is usually achieved by mixing the seed particles and the monomer emulsion and stirring for 1 to 24 hours. The end of absorption can be confirmed by observing with an optical microscope.

【0018】単量体乳化液に添加され、シード重合時に
使用される重合開始剤としては、例えば、過酸化ベンゾ
イル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイ
ル、オルソメトキシ過酸化ベンゾイル、3,5,5‐ト
リメチルヘキサノイルパーオキサイド、t‐ブチルパー
オキシ‐2‐エチルヘキサノエート、ジ‐t‐ブチルパ
ーオキサイド等の有機過酸化物、アゾビスイソブチロニ
トリル、アゾビスシクロヘキサカルボニトリル、アゾビ
ス(2,4‐ジメチルバレロニトリル)等のアゾ系化合
物が挙げられる。なお重合開始剤の使用量は通常、単量
体100重量部に対して、0. 1〜10重量部が好まし
い。
The polymerization initiator added to the monomer emulsion and used at the time of seed polymerization includes, for example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5 Organic peroxides such as -trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide, azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis ( Azo compounds such as 2,4-dimethylvaleronitrile). Usually, the amount of the polymerization initiator used is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the monomer.

【0019】またシード重合に際しては必要に応じて分
散安定剤を用いることもできる。そのような分散安定剤
は、一般に媒体中に可溶の高分子であり、例えば、ポリ
ビニルアルコール、ポリビニルピロリドン、メチルセル
ロース、エチルセルロース、ポリアクリル酸、ポリアク
リルアミド、ポリエチレンオキシド等が挙げられる。ま
たノニオン性あるいはイオン性の界面活性剤も適宜使用
される。
At the time of seed polymerization, a dispersion stabilizer can be used if necessary. Such a dispersion stabilizer is generally a polymer that is soluble in a medium, and examples thereof include polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, ethyl cellulose, polyacrylic acid, polyacrylamide, and polyethylene oxide. A nonionic or ionic surfactant is also used as appropriate.

【0020】本発明の単分散微粒子のCV値は、8%以
下が好ましい。CV値が8%を越えると、過剰に粒子径
の大きな粒子や小さい粒子が存在することになり使用時
において好ましくない。即ち、過剰に粒子径の大きな粒
子が存在すると電極間隙が狭い場合に隣接する電極間で
リークが起こったり、接続の際に大きなプレス圧画筆用
になり基板を傷つけやすくなる。一方、過剰に粒子径の
小さい粒子がを存在すると、導通に関与しない粒子が増
加し好ましくない。
The CV value of the monodisperse fine particles of the present invention is preferably 8% or less. When the CV value exceeds 8%, particles having an excessively large or small particle size are present, which is not preferable during use. That is, when particles having an excessively large particle diameter are present, a leak occurs between adjacent electrodes when the electrode gap is small, or a large press-press brush is used for connection, which easily damages the substrate. On the other hand, if particles having an excessively small particle size are present, particles not involved in conduction increase, which is not preferable.

【0021】本発明の単分散微粒子の導電化処理方法に
関しては、特に限定されないが、例えば、上記単分散微
粒子を基材粒子として、その表面を導電材料で被覆して
導電層を形成することにより得られる。導電層に使用さ
れる金属としては特に限定されず、例えばニッケル、
金、銀、銅、コバルト、錫、インジウム、ITO等また
はこれらを主成分とする合金などが挙げられる。
There is no particular limitation on the method for imparting conductivity to the monodisperse fine particles of the present invention. For example, the monodisperse fine particles may be used as base particles, and the surface thereof may be coated with a conductive material to form a conductive layer. can get. The metal used for the conductive layer is not particularly limited, for example, nickel,
Examples include gold, silver, copper, cobalt, tin, indium, ITO, and alloys containing these as main components.

【0022】上記単分散微粒子の表面に金属層を形成す
る方法としては特に限定されず、例えば、無電解メッキ
による方法、金属微粉を単独またはバインダーに混ぜ合
わせて得られるペーストを微粒子にコーティングする方
法、真空蒸着、イオンプレーティング、イオンスパッタ
リング等の物理的蒸着方法等が挙げられる。上記無電解
メッキ法による金属層の形成方法を、金置換メッキの場
合を例に挙げて、以下に説明する。
The method of forming a metal layer on the surface of the above-mentioned monodisperse fine particles is not particularly limited. For example, a method of electroless plating, a method of coating a fine particle with a paste obtained by mixing a metal fine powder alone or with a binder, or the like. And physical vapor deposition methods such as vacuum vapor deposition, ion plating, and ion sputtering. A method of forming a metal layer by the above-described electroless plating method will be described below, taking the case of gold displacement plating as an example.

【0023】この方法は、以下のエッチング工程、アク
チベーション工程、化学ニッケルメッキ工程及び金置換
メッキ工程に分けられる。エッチング工程は、微粒子の
表面に凹凸を形成させることによりメッキ層の微粒子に
対する密着性を向上させるための前処理工程であり、エ
ッチング液としては例えば、カセイソーダ水溶液、濃塩
酸、濃硫酸または無水クロム酸が含まれる。アクチベー
ション工程は、エッチングされた微粒子の表面に触媒層
を形成させると共に、この触媒層を活性化させるための
工程である。触媒層の活性化により後述の化学ニッケル
メッキ工程における金属ニッケルの析出が促進される。
微粒子を触媒液に分散させることにより、微粒子表面の
Pd2+及びSn2+を含む触媒層が濃硫酸または濃塩酸で
処理され、Pd2+が金属化され微粒子表面に析出する。
金属化されたパラジウムは、カセイソーダ濃厚溶液等の
パラジウム活性剤により活性化されて増感される。
This method is divided into the following etching step, activation step, chemical nickel plating step, and gold displacement plating step. The etching step is a pretreatment step for improving the adhesion of the plating layer to the fine particles by forming irregularities on the surface of the fine particles. Examples of the etching solution include caustic soda aqueous solution, concentrated hydrochloric acid, concentrated sulfuric acid, and chromic anhydride. Is included. The activation step is a step for forming a catalyst layer on the surface of the etched fine particles and activating the catalyst layer. The activation of the catalyst layer promotes the deposition of metallic nickel in a chemical nickel plating step described below.
By dispersing the fine particles in the catalyst solution, the catalyst layer containing Pd 2+ and Sn 2+ on the surface of the fine particles is treated with concentrated sulfuric acid or concentrated hydrochloric acid, and Pd 2+ is metallized and deposited on the surface of the fine particles.
The metallized palladium is activated and sensitized by a palladium activator such as a concentrated solution of sodium hydroxide.

【0024】化学ニッケルメッキ工程は、触媒層が形成
された微粒子の表面に、さらに金属ニッケル層を形成さ
せる工程であり、例えば、塩化ニッケルを次亜リン酸ナ
トリウムによって還元し、ニッケルを微粒子の表面に析
出させる。金属置換メッキ工程では、このようにしてニ
ッケルで被覆された微粒子を金シアン化カリウム溶液に
入れ、昇温させながらニッケルを溶出させ、金を微粒子
表面に析出させる。上記導電層(ニッケル層と金層をあ
わせた層)の厚みは0.02〜5μmが好ましい。導電
層の厚みが0.02μm未満であると、所望の導電性が
得られ難く、5μmを越えると、製造時に導電性微粒子
同士の凝集が起こりやすくなると共に、導電性微粒子を
相対する電極間に挟んで両電極を加圧する際に、導電性
微粒子の柔軟性が有効に発現され難くなってしまう。
In the chemical nickel plating step, a metal nickel layer is further formed on the surface of the fine particles on which the catalyst layer has been formed. For example, nickel chloride is reduced with sodium hypophosphite, and nickel is reduced on the surface of the fine particles. To precipitate. In the metal displacement plating step, the fine particles coated with nickel in this way are placed in a potassium gold cyanide solution, and while elevating the temperature, nickel is eluted to deposit gold on the surface of the fine particles. The thickness of the conductive layer (the combined layer of the nickel layer and the gold layer) is preferably 0.02 to 5 μm. When the thickness of the conductive layer is less than 0.02 μm, desired conductivity is hardly obtained. When the thickness exceeds 5 μm, aggregation of the conductive fine particles easily occurs at the time of manufacturing, and the conductive fine particles are disposed between the electrodes facing each other. When both electrodes are pressurized by sandwiching them, the flexibility of the conductive fine particles is hardly effectively exhibited.

【0025】上記導電性微粒子は、マイクロ素子実装用
の導電性接着剤、異方導電性接着剤、異方導電性シート
等の導電材料として用いられ、基板又は部品の接合に用
いられる。基板又は部品の接合方法としては、導電性微
粒子を用いて接合する方法であれば特に限定はされず、
例えば、以下のような方法が考えられる。表面に電極が
形成された基板又は部品の上に、異方導電性シートを載
せた後、もう一方の電極面を有する基板又は部品を置
き、加熱、加圧して接合する方法。異方導電性シートを
用いる代わりに、異方導電性接着剤をスクリーン印刷や
ディスペンサー等の手段で異方導電性接着剤を供給し接
合する方法。さらには、例えば、導電性粒子を介して張
り合わせた二つの電極部の間隙に液状のバインダーを供
給した後に硬化させて接合する方法。上記のようにして
得られた基板又は部品の接合体を、本発明では、導電接
続構造体という。
The conductive fine particles are used as a conductive material such as a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive, and an anisotropic conductive sheet, and are used for bonding substrates or parts. The method for joining the substrate or component is not particularly limited as long as it is a method of joining using conductive fine particles,
For example, the following method can be considered. A method in which an anisotropic conductive sheet is placed on a substrate or component having an electrode formed on the surface, and then a substrate or component having the other electrode surface is placed, and heated and pressed for joining. Instead of using an anisotropic conductive sheet, a method in which an anisotropic conductive adhesive is supplied by means of screen printing, a dispenser or the like, and joined. Further, for example, a method in which a liquid binder is supplied to a gap between two electrode portions bonded to each other with conductive particles interposed therebetween, followed by curing and bonding. In the present invention, the joined body of substrates or components obtained as described above is referred to as a conductive connection structure.

【0026】[0026]

【実施例】以下に実施例を掲げて本発明をさらに詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。 (種粒子Aの作製)冷却管、撹拌羽根、窒素導入管を備
えたセパラブルフラスコ反応器中で、ポリビニルピロリ
ドン(重量平均分子量:3万、和光純薬製:K‐30)
4重量部、アニオン界面活性剤(エアロゾルOT、和光
純薬社製)0. 6重量部、2, 2'‐アゾビス‐2, 4
‐ジメチルバレロニトリル(和光純薬製:V‐65)4
重量部を、メタノール82重量部とイオン交換水2部と
の混合液に溶解させ、この溶液を撹拌しながら窒素気流
下で、スチレン18重量部とα‐メチルスチレン2重量
部との混合物を滴下した。その後、60℃に昇温して、
24時間反応を行った。反応終了後、遠心分離にて重合
体微粒子を単離し、メタノールにて数回洗浄を行って種
粒子Aを得た。種粒子Aの粒子径及び粒子径分布をコー
ルターカウンターにて測定したところ平均粒子径(D
n)は2. 1μm、Cv値は3. 0%であった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Preparation of Seed Particle A) Polyvinylpyrrolidone (weight average molecular weight: 30,000, manufactured by Wako Pure Chemical Industries, Ltd .: K-30) in a separable flask reactor equipped with a cooling tube, a stirring blade, and a nitrogen introducing tube.
4 parts by weight, 0.6 parts by weight of anionic surfactant (Aerosol OT, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis-2,4
-Dimethylvaleronitrile (V-65, manufactured by Wako Pure Chemical Industries)
Parts by weight was dissolved in a mixture of 82 parts by weight of methanol and 2 parts by weight of ion-exchanged water, and a mixture of 18 parts by weight of styrene and 2 parts by weight of α-methylstyrene was added dropwise while stirring the solution under a nitrogen stream. did. Then, the temperature was raised to 60 ° C,
The reaction was performed for 24 hours. After the completion of the reaction, polymer fine particles were isolated by centrifugation, and washed with methanol several times to obtain seed particles A. When the particle size and the particle size distribution of the seed particles A were measured with a Coulter counter, the average particle size (D
n) was 2.1 μm, and the Cv value was 3.0%.

【0027】(種粒子Bの作製)仕込み組成をV‐65
を3重量部とし、単量体をスチレン14重量部のみとし
た以外は種粒子Aの作製法と同様の操作を行った。Dn
は1. 4μm、Cv値は3. 2%であった。
(Preparation of Seed Particle B)
Was changed to 3 parts by weight, and the same operation as in the preparation method of the seed particles A was performed except that the monomer was only 14 parts by weight of styrene. Dn
Was 1.4 μm and the Cv value was 3.2%.

【0028】(種粒子Cの作製)冷却管、撹拌羽根、窒
素導入管を備えたセパラブルフラスコ反応器に、イオン
交換水90重量部、スチレン10重量部、オクチルメル
カプタン2. 5重量部、塩化ナトリウム0. 02重量部
を投入し、1時間窒素を流し反応器内の窒素置換を行っ
た。続いて攪拌しながら、70℃まで昇温し、さらに1
時間窒素置換を行った。 次に、0. 1重量部の過硫酸
カリウムを10重量部の水に溶解し添加した。この後7
0℃で24時間反応させた。反応終了後、遠心分離にて
重合体微粒子を単離し、メタノールにて数回洗浄を行っ
て種粒子Cを得た。得られた粒子を透過型電子顕微鏡
(TEM)を用いて観察し、撮影された写真の任意粒子
500個の粒子径を計り、平均粒子径と粒子径分布を求
めた。Dnは0. 67μm、Cv値は3. 0%であっ
た。
(Preparation of Seed Particle C) In a separable flask reactor equipped with a cooling pipe, a stirring blade, and a nitrogen introducing pipe, 90 parts by weight of ion-exchanged water, 10 parts by weight of styrene, 2.5 parts by weight of octyl mercaptan, 0.02 parts by weight of sodium was charged, and nitrogen was supplied for 1 hour to replace the inside of the reactor with nitrogen. Then, with stirring, the temperature was raised to 70 ° C.,
The atmosphere was replaced with nitrogen for hours. Next, 0.1 part by weight of potassium persulfate was dissolved in 10 parts by weight of water and added. After this 7
The reaction was performed at 0 ° C. for 24 hours. After completion of the reaction, polymer fine particles were isolated by centrifugation, and washed several times with methanol to obtain seed particles C. Obtained particles were observed using a transmission electron microscope (TEM), and the particle diameter of 500 arbitrary particles in the photographed photograph was measured to determine the average particle diameter and the particle diameter distribution. Dn was 0.67 μm and Cv value was 3.0%.

【0029】(種粒子Dの作製)仕込み組成をスチレン
14重量部の代わりに、メチルメタクリレート14重量
部とした以外は種粒子Aの作製法と同様の操作を行っ
た。Dnは2. 4μm、Cv値は3. 2%であった。
(Preparation of Seed Particle D) The same operation as in the preparation method of seed particle A was performed except that the charged composition was changed to 14 parts by weight of methyl methacrylate instead of 14 parts by weight of styrene. Dn was 2.4 μm and Cv value was 3.2%.

【0030】実施例1 ジビニルベンゼン17. 5重量部、過酸化ベンゾイル
(25%含水)1. 2重量部、イオン交換水175重量
部、ラウリル硫酸ナトリウム0. 35重量部を混合して
ホモジナイザーで微分散乳化し、単量体乳化液を調整し
た。冷却管、撹拌羽根、窒素導入管を備えたセパラブル
フラスコ反応器に、上記反応で得られた種粒子A0. 5
重量部、イオン交換水50重量部、ラウリル硫酸ナトリ
ウム0. 05重量部を加え、均一に分散させ、さらにポ
リビニルアルコール(PVA)の3重量%水溶液を20
重量部加え、種粒子分散液を調整した。ついで、単量体
乳化液を種粒子分散液に添加し、25℃、100rpm
で24時間撹拌して単量体乳化液を種粒子に吸収させ
た。
Example 1 17.5 parts by weight of divinylbenzene, 1.2 parts by weight of benzoyl peroxide (containing 25% water), 175 parts by weight of ion-exchanged water, and 0.35 parts by weight of sodium lauryl sulfate were mixed and finely mixed with a homogenizer. The mixture was dispersed and emulsified to prepare a monomer emulsion. The seed particles A0.5 obtained in the above reaction were placed in a separable flask reactor equipped with a cooling pipe, a stirring blade, and a nitrogen introduction pipe.
Parts by weight, 50 parts by weight of ion-exchanged water and 0.05 parts by weight of sodium lauryl sulfate were added and dispersed uniformly, and a 3% by weight aqueous solution of polyvinyl alcohol (PVA) was added to 20 parts by weight.
A seed particle dispersion was prepared by adding parts by weight. Next, the monomer emulsion was added to the seed particle dispersion, and 25 ° C and 100 rpm.
For 24 hours to allow the monomer emulsion to be absorbed by the seed particles.

【0031】ついで窒素を系内に1時間流して窒素置換
を行った後、200rpmで攪拌しながら70℃で24
時間重合を行った。重合終了後、遠心分離により微粒子
を単離した。続いてエタノール、エタノールと水の混合
媒体、水の順序で各2回ずつ洗浄と遠心分離を行い、余
分な開始剤、単量体、界面活性剤等を取り除き微粒子を
得た。得られた粒子について、コールターカウンターに
て粒子径と粒子径分布を、電子顕微鏡にて外観観察を行
った。結果を表1に示す。
Next, nitrogen was purged by flowing nitrogen into the system for 1 hour, and then stirred at 200 rpm at 70 ° C. for 24 hours.
Polymerization was carried out for hours. After completion of the polymerization, fine particles were isolated by centrifugation. Subsequently, washing and centrifugation were performed twice each in the order of ethanol, a mixed medium of ethanol and water, and water to remove extra initiator, monomer, surfactant, and the like, thereby obtaining fine particles. About the obtained particles, the particle diameter and the particle diameter distribution were observed with an electron microscope using a Coulter counter. Table 1 shows the results.

【0032】実施例2〜6、比較例1〜2 表1に示す様に、種粒子、単量体の種類、単量体と種粒
子の比率を変えて実施例1と同様な操作を行った。結果
を表1に記す。
Examples 2 to 6 and Comparative Examples 1 and 2 As shown in Table 1, the same operation as in Example 1 was carried out by changing the seed particles, the kind of the monomer, and the ratio of the monomer to the seed particles. Was. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】請求項1記載の導電性微粒子は、粒子径
が0. 1〜10μmの重合体粒子を種粒子とし、該種粒
子に重量比にして10〜500倍の単量体及び開始剤を
吸収させ、単量体を重合させてなる単分散微粒子を導電
化処理して得られるので形状が均一で、粒子径分布の狭
い導電性微粒子である。請求項2記載の導電性微粒子
は、種粒子のCV値が8%以下であるので請求項1記載
の効果をより確実に奏することができる。請求項3記載
の導電性微粒子は、単分散微粒子のCV値が8%以下で
あるので請求項1又は2記載の効果をより確実に奏する
ことができる。請求項4記載の導電接続構造体は、請求
項1〜3いずれかに記載の導電性微粒子を用いてなるの
で、導電性、接続信頼性に優れた導電接続構造体であ
る。
According to the first aspect of the present invention, the conductive fine particles have polymer particles having a particle diameter of 0.1 to 10 .mu.m as seed particles, and a monomer and an initiator having a weight ratio of 10 to 500 times the seed particles. Monodisperse fine particles obtained by absorbing an agent and polymerizing a monomer are obtained by conducting treatment, so that the conductive fine particles have a uniform shape and a narrow particle size distribution. In the conductive fine particles according to the second aspect, since the CV value of the seed particles is 8% or less, the effect according to the first aspect can be more reliably achieved. In the conductive fine particles according to the third aspect, since the monodisperse fine particles have a CV value of 8% or less, the effect according to the first or second aspect can be more reliably achieved. The conductive connection structure according to claim 4 is a conductive connection structure excellent in conductivity and connection reliability since the conductive fine particles according to any one of claims 1 to 3 are used.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子径が0. 1〜10μmの重合体粒子
を種粒子とし、該種粒子に重量比にして10〜500倍
の単量体及び開始剤を吸収させ、単量体を重合させてな
る単分散微粒子を導電化処理して得られることを特徴と
する導電性微粒子。
1. Polymer particles having a particle size of 0.1 to 10 μm are used as seed particles, and the seed particles absorb a monomer and an initiator in a weight ratio of 10 to 500 times to polymerize the monomer. Conductive fine particles obtained by subjecting the monodispersed fine particles obtained to a conductive treatment.
【請求項2】 種粒子のCV値が8%以下であることを
特徴とする請求項1記載の導電性微粒子。
2. The conductive fine particles according to claim 1, wherein the CV value of the seed particles is 8% or less.
【請求項3】 単分散微粒子のCV値が8%以下である
ことを特徴とする請求項1又は2記載の導電性微粒子。
3. The conductive fine particles according to claim 1, wherein the monodisperse fine particles have a CV value of 8% or less.
【請求項4】 請求項1〜3いずれかに記載の導電性微
粒子を用いてなることを特徴とする導電接続構造体。
4. A conductive connection structure comprising the conductive fine particles according to claim 1.
JP33649599A 1999-11-26 1999-11-26 Electroconductive fine particle and electroconductive joint structure Pending JP2001151894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33649599A JP2001151894A (en) 1999-11-26 1999-11-26 Electroconductive fine particle and electroconductive joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33649599A JP2001151894A (en) 1999-11-26 1999-11-26 Electroconductive fine particle and electroconductive joint structure

Publications (1)

Publication Number Publication Date
JP2001151894A true JP2001151894A (en) 2001-06-05

Family

ID=18299730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33649599A Pending JP2001151894A (en) 1999-11-26 1999-11-26 Electroconductive fine particle and electroconductive joint structure

Country Status (1)

Country Link
JP (1) JP2001151894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058050A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Composite metal nanoparticle and method for producing the same, and multiphoton absorption material or multiphoton absorption reaction auxiliary containing composite metal nanoparticle
KR20210110078A (en) * 2020-02-28 2021-09-07 한국화학연구원 Molecular weight adjustable polymer synthetic process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058050A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Composite metal nanoparticle and method for producing the same, and multiphoton absorption material or multiphoton absorption reaction auxiliary containing composite metal nanoparticle
KR20210110078A (en) * 2020-02-28 2021-09-07 한국화학연구원 Molecular weight adjustable polymer synthetic process
KR102311012B1 (en) 2020-02-28 2021-10-08 한국화학연구원 Molecular weight adjustable polymer synthetic process

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
KR100667374B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
JP2007184278A (en) Method of manufacturing conductive metal-coated particulate and its manufactured product
JP2000319309A (en) Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP2014192051A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
JPH0689069B2 (en) Conductive microsphere
JP2001151894A (en) Electroconductive fine particle and electroconductive joint structure
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JP5235305B2 (en) Protruding conductive fine particles, anisotropic conductive material, and manufacturing method of protruding conductive fine particles
JP6397552B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2001216840A (en) Conductive particulates and conductive connecting fabric
JPH04147513A (en) Electrically conductive particulates and manufacture thereof
JPH0689068B2 (en) Method for producing conductive microspheres
KR20070010809A (en) Monodisperse polymer particles and conductive particles for anisotropic conductive packaging applications
JP2002093240A (en) Conductive fine particle and conductive connecting structure
JP2000309715A (en) Polymer microparticle and conductive microparticle
JPH0850808A (en) Producing method for conductive particulate
JPH04226110A (en) Fine cross-linked polymer particle
TW202200750A (en) Method for producing conductive composite particles, conductive composite particles, and adhesive film for circuit connection