JP2001135303A - Negative electrode and nonaqueous electrolyte battery - Google Patents

Negative electrode and nonaqueous electrolyte battery

Info

Publication number
JP2001135303A
JP2001135303A JP31589099A JP31589099A JP2001135303A JP 2001135303 A JP2001135303 A JP 2001135303A JP 31589099 A JP31589099 A JP 31589099A JP 31589099 A JP31589099 A JP 31589099A JP 2001135303 A JP2001135303 A JP 2001135303A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
conductive polymer
electrolyte battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31589099A
Other languages
Japanese (ja)
Other versions
JP4639410B2 (en
Inventor
Hiroshi Imoto
浩 井本
Shinichiro Yamada
心一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31589099A priority Critical patent/JP4639410B2/en
Publication of JP2001135303A publication Critical patent/JP2001135303A/en
Application granted granted Critical
Publication of JP4639410B2 publication Critical patent/JP4639410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery which can suppress deterioration of charging/discharging cycle and can realize high capacity and a long life. SOLUTION: The nonaqueous electrolyte battery includes a positive electrode which contains lithium composite oxide, a negative electrode which contains metal that can form an alloy together with lithium or an alloy of such metal and a conductive polymer, and a nonaqueous electrolyte interposed between the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極及びそれを用
いた非水電解質電池に関する。
TECHNICAL FIELD The present invention relates to a negative electrode and a non-aqueous electrolyte battery using the same.

【0002】[0002]

【従来の技術】近年、カメラ一体型ビデオテープレコー
ダ、携帯電話、ラップトップ型コンピュータ等のポータ
ブル電子機器が多く登場し、その小型軽量化が図られて
いる。そして、これら電子機器のポータブル電源とし
て、電池、特に二次電池について、エネルギー密度を向
上させるための研究開発が活発に進められている。中で
も、リチウムイオン二次電池は、従来の水系電解液二次
電池である鉛電池、ニッケルカドミウム電池と比較して
大きなエネルギー密度が得られるため、期待が大きい。
2. Description of the Related Art In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a portable telephone, and a laptop computer have appeared, and their size and weight have been reduced. Research and development for improving the energy density of batteries, particularly secondary batteries, as portable power sources for these electronic devices are being actively pursued. Above all, lithium ion secondary batteries are expected to have a large energy density as compared with conventional aqueous electrolyte secondary batteries such as lead batteries and nickel cadmium batteries.

【0003】リチウムイオン電池に使用される負極材料
としては、難黒鉛化炭素や、黒鉛等の炭素質材料が、比
較的高容量を示し良好なサイクル特性を発現することか
ら広く用いられている。
As negative electrode materials used in lithium ion batteries, non-graphitizable carbon and carbonaceous materials such as graphite are widely used because they exhibit a relatively high capacity and exhibit good cycle characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年の
高容量化に伴い、負極材料の更なる高容量化が課題とな
っている。特開平8−315825号公報には、炭素化
材料と作製条件とを選ぶことにより、炭素質材料負極で
高容量を達成している。しかしながら、負極放電電位が
対リチウム電位で0.8V〜1.0Vであり、電池を構
成した時の電池放電電圧が低くなり、電池エネルギー密
度では大きな向上が見込めなかった。さらに、充放電曲
線形状にヒステリシスが大きく、各充放電サイクルでの
エネルギー効率が低いという欠点があった。
However, with the recent increase in capacity, there has been an issue of further increasing the capacity of the negative electrode material. JP-A-8-315825 discloses that a carbonaceous material negative electrode achieves high capacity by selecting a carbonized material and manufacturing conditions. However, the negative electrode discharge potential was 0.8 V to 1.0 V with respect to lithium potential, the battery discharge voltage at the time of configuring the battery was low, and no significant improvement in battery energy density could be expected. Further, there is a disadvantage that the hysteresis is large in the shape of the charge / discharge curve and the energy efficiency in each charge / discharge cycle is low.

【0005】一方、高負荷容量としては、ある種のリチ
ウム合金が電気化学的に可逆的に生成/分解することを
応用した材料が広く研究されてきた。
On the other hand, as a high load capacity, a material which utilizes the fact that a certain kind of lithium alloy is electrochemically reversibly formed / decomposed has been widely studied.

【0006】Li−Al合金を用いた高容量負極が広く
研究され、US-Patent Number 4950566号には、Si合金
を用いた高容量負極が提案されている。しかし、充放電
に伴ってLi−Al合金又はLi−Si合金は膨張収縮
し、充放電サイクルを繰り返す毎に負極は微粉化し、サ
イクル特性が極めて劣る電池を与える。このサイクル特
性を改良するため、材料中にリチウムのドープ・脱ドー
プに伴う膨張収縮に関与しない元素を添加する等の方法
が検討されてきた。例えば特開平6−325765号公
報には、LixSiOy(x≧0、2>y>0)、特開平
7−230800号公報には、LixSi(1-y)y
z(x≧0、1>y>0、0<z<2)や、特開平7−
288130号公報には、Li−Ag−Te系合金が提
案されている。
A high capacity negative electrode using a Li-Al alloy has been widely studied, and US-Patent Number 4950566 proposes a high capacity negative electrode using a Si alloy. However, the Li-Al alloy or Li-Si alloy expands and contracts with charge and discharge, and each time the charge and discharge cycle is repeated, the negative electrode is pulverized to give a battery with extremely poor cycle characteristics. In order to improve the cycle characteristics, a method of adding an element which does not participate in expansion and contraction accompanying doping and undoping of lithium into a material has been studied. For example, JP-A-6-325765 discloses Li x SiO y (x ≧ 0, 2>y> 0), and JP-A-7-230800 discloses Li x Si (1-y) M y O
z (x ≧ 0, 1>y> 0, 0 <z <2), and
No. 288130 proposes a Li-Ag-Te alloy.

【0007】しかしながら、これらの方法によっても合
金の膨張収縮に由来する充放電サイクル劣化が大きく、
高容量負荷の特長を活かしきれていないのが実情であ
る。
However, even with these methods, the charge / discharge cycle deterioration resulting from the expansion and contraction of the alloy is large,
The fact is that the features of high capacity loads are not fully utilized.

【0008】1つ以上の非金属元素を含む、炭素以外の
4B族化合物を用いた高容量負極が特開平11−102
705号公報に報告されているが、上述の場合と同様に
充放電サイクル劣化が大きいという問題があった。
A high-capacity negative electrode using a Group 4B compound other than carbon, which contains one or more nonmetallic elements, is disclosed in JP-A-11-102.
As reported in Japanese Unexamined Patent Publication No. 705, there is a problem that charge / discharge cycle deterioration is large as in the case described above.

【0009】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、充放電サイクル劣化を抑制
し、高容量、高寿命を実現する負極及びそれを用いた非
水電解質電池を提供することを目的とする。
The present invention has been proposed in view of the above-described conventional circumstances, and has a negative electrode which suppresses deterioration of charge / discharge cycles and achieves high capacity and long life, and a non-aqueous electrolyte battery using the same. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明の負極は、リチウ
ムと合金を形成可能な金属又は当該金属の合金と、導電
性高分子とを含有することを特徴とする。
The negative electrode of the present invention is characterized by containing a metal capable of forming an alloy with lithium or an alloy of the metal, and a conductive polymer.

【0011】上述したような本発明に係る負極では、導
電性高分子を含有させることで、負極中の導電パスが安
定に形成されるとともに、リチウムのドープ・脱ドープ
に伴う負極の体積変化が抑えられる。
In the above-described negative electrode according to the present invention, by including a conductive polymer, a conductive path in the negative electrode is formed stably, and a change in volume of the negative electrode due to doping / dedoping of lithium is suppressed. Can be suppressed.

【0012】また、本発明の負極は、1つ以上の非金属
元素を含む、炭素以外の4B族化合物と、導電性高分子
とを含有することを特徴とする。
Further, the negative electrode of the present invention is characterized by containing a group 4B compound other than carbon, which contains one or more nonmetallic elements, and a conductive polymer.

【0013】上述したような本発明に係る負極では、上
述したような本発明に係る負極では、導電性高分子を含
有させることで、負極中の導電パスが安定に形成される
とともに、リチウムのドープ・脱ドープに伴う負極の体
積変化が抑えられる。
In the above-described negative electrode according to the present invention, the negative electrode according to the present invention includes a conductive polymer so that a conductive path in the negative electrode can be formed stably and lithium can be removed. The change in volume of the negative electrode due to doping and undoping is suppressed.

【0014】また、本発明の非水電解質電池は、リチウ
ム複合酸化物を含有する正極と、リチウムと合金を形成
可能な金属又は当該金属の合金と導電性高分子とを含有
する負極と、上記正極と上記負極との間に介在される非
水電解質とを備えることを特徴とする。
Further, the non-aqueous electrolyte battery of the present invention comprises a positive electrode containing a lithium composite oxide, a negative electrode containing a metal capable of forming an alloy with lithium or an alloy of the metal and a conductive polymer, A non-aqueous electrolyte is provided between the positive electrode and the negative electrode.

【0015】上述したような本発明に係る非水電解質電
池では、負極に導電性高分子を含有させることで、負極
中の導電パスが安定に形成されるとともに、リチウムの
ドープ・脱ドープに伴う負極の体積変化が抑えられる。
そして、このような負極を用いた本発明に係る非水電解
質電池は、サイクル特性に優れたものとなる。
In the non-aqueous electrolyte battery according to the present invention as described above, by including a conductive polymer in the negative electrode, a conductive path in the negative electrode is formed stably and the doping and undoping of lithium is caused. The change in volume of the negative electrode is suppressed.
The non-aqueous electrolyte battery according to the present invention using such a negative electrode has excellent cycle characteristics.

【0016】また、本発明の非水電解質電池は、リチウ
ム複合酸化物を含有する正極と、1つ以上の非金属元素
を含む、炭素以外の4B族化合物と導電性高分子とを含
有する負極と、上記正極と上記負極との間に介在される
非水電解質とを備えることを特徴とする。
Further, the non-aqueous electrolyte battery of the present invention comprises a positive electrode containing a lithium composite oxide, and a negative electrode containing a Group 4B compound other than carbon and containing one or more nonmetallic elements and a conductive polymer. And a nonaqueous electrolyte interposed between the positive electrode and the negative electrode.

【0017】上述したような本発明に係る非水電解質電
池では、負極に導電性高分子を含有させることで、負極
中の導電パスが安定に形成されるとともに、リチウムの
ドープ・脱ドープに伴う負極の体積変化が抑えられる。
そして、このような負極を用いた本発明に係る非水電解
質電池は、サイクル特性に優れたものとなる。
In the non-aqueous electrolyte battery according to the present invention as described above, by including a conductive polymer in the negative electrode, a conductive path in the negative electrode can be formed stably, and the doping and undoping of lithium can be caused. The change in volume of the negative electrode is suppressed.
The non-aqueous electrolyte battery according to the present invention using such a negative electrode has excellent cycle characteristics.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0019】本発明を適用した非水電解液電池の一構成
例を図1に示す。この非水電解液電池1は、負極2と、
負極2を収容する負極缶3と、正極4と、正極4を収容
する正極缶5と、正極4と負極2との間に配されたセパ
レータ6と、絶縁ガスケット7とを備え、負極缶3及び
正極缶5内に非水電解液が充填されてなる。
FIG. 1 shows an example of the configuration of a nonaqueous electrolyte battery according to the present invention. This non-aqueous electrolyte battery 1 includes a negative electrode 2,
A negative electrode can 3 containing the negative electrode 2, a positive electrode 4, a positive electrode can 5 containing the positive electrode 4, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and an insulating gasket 7; The positive electrode can 5 is filled with a non-aqueous electrolyte.

【0020】負極2は、負極集電体上に、上記負極活物
質を含有する負極活物質層が形成されてなる。負極集電
体としては、例えばニッケル箔等が用いられる。そし
て、本発明の非水電解液電池1では、後述するように、
負極2に、導電性高分子を含有している。
The negative electrode 2 is formed by forming a negative electrode active material layer containing the above-mentioned negative electrode active material on a negative electrode current collector. As the negative electrode current collector, for example, a nickel foil or the like is used. And in the nonaqueous electrolyte battery 1 of the present invention, as described later,
The negative electrode 2 contains a conductive polymer.

【0021】負極活物質としては、リチウムと合金を形
成可能な金属又は当該金属の合金化合物が挙げられる。
ここで言う合金化合物とは、リチウムと合金を形成可能
なある金属元素をMとしたとき、化学式MxM'yLi
z(M'はLi元素及びM元素以外の1つ以上の金属元素
である。また、xは0より大きい数値であり、y,zは
0以上の数値である。)で表される化合物である。さら
に、本発明では半導体元素であるB,Si,As等の元
素も金属元素に含めることとする。
Examples of the negative electrode active material include a metal capable of forming an alloy with lithium and an alloy compound of the metal.
The alloy compound referred to here is a chemical formula M x M ′ y Li where M is a metal element capable of forming an alloy with lithium.
z (M ′ is one or more metal elements other than the Li element and the M element. Further, x is a numerical value greater than 0, and y and z are numerical values of 0 or more.) is there. Further, in the present invention, semiconductor elements such as B, Si, and As are included in the metal elements.

【0022】負極活物質として具体的には、Mg,B,
Al,Ga,In,Si,Ge,Sn,Pb,Sb,B
i,Cd、Ag、Zn、Hf、Zr、Yの各金属とそれ
らの合金化合物、すなわち、例えばLi−Al,Li−
Al−M(Mは2A族、3B族、4B族遷移金属元素の
うち1つ以上からなる。)、AlSb、CuMgSb等
が挙げられる。
As the negative electrode active material, specifically, Mg, B,
Al, Ga, In, Si, Ge, Sn, Pb, Sb, B
i, Cd, Ag, Zn, Hf, Zr, Y and their alloy compounds, that is, for example, Li-Al, Li-
Al-M (M is composed of at least one of transition metal elements of Group 2A, 3B and 4B), AlSb, CuMgSb and the like.

【0023】上述したような元素の中でも、3B族典型
元素の他、SiやSn等の元素又はその合金を用いるの
が好ましい。その中でもSi又はSi合金が特に好適で
ある。Si又はSi合金として具体的には、MxSi、
xSn(MはSi又はSnを除く1つ以上の金属元
素)で表される化合物で、具体的にはSiB4、Si
6、Mg2Si、Mg2Sn、Ni2Si、TiSi2
MoSi2、CoSi2、NiSi2、CaSi2、CrS
2、Cu5Si、FeSi2、MnSi2、NbSi2
TaSi2、VSi2、WSi2、ZnSi2等が挙げられ
る。
Among the above-mentioned elements, it is preferable to use an element such as Si or Sn or an alloy thereof in addition to the group 3B typical element. Among them, Si or Si alloy is particularly preferred. Specifically, as Si or a Si alloy, M x Si,
A compound represented by M x Sn (M is one or more metal elements excluding Si or Sn), specifically, SiB 4 , Si
B 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 ,
MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrS
i 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 ,
TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 and the like can be mentioned.

【0024】さらに、本発明の非水電解液電池1では、
1つ以上の非金属元素を含む、炭素以外の4B族元素も
負極活物質として利用できる。本材料中には1種以上の
4B族炭素が含まれていてもよい。またリチウムを含む
4B族以外の金属元素が含まれていても良い。例示する
ならば、SiC、Si34、Si22O、Ge22O、
SiOx(式中、0<x≦2である。)、SnOx(式
中、0<x≦2である。)、LiSiO、LiSnO等
が挙げられる。
Further, in the non-aqueous electrolyte battery 1 of the present invention,
Group 4B elements other than carbon, including one or more nonmetallic elements, can also be used as the negative electrode active material. The material may contain one or more group 4B carbons. Further, a metal element other than Group 4B including lithium may be contained. For example, SiC, Si 3 N 4 , Si 2 N 2 O, Ge 2 N 2 O,
SiO x (where 0 <x ≦ 2), SnO x (where 0 <x ≦ 2), LiSiO, LiSnO, and the like.

【0025】上記の1つ以上の非金属元素を含む、炭素
以外の4B族元素は、リチウムを電気化学的にドープ・
脱ドープする能力を有する必要がある。好ましくは40
0mAh/cm3以上、更に好ましくは500mAh/
cm3以上の充放電容量を有することが好ましい。この
体積当たりの充放電容量を計算する際には、上記化合物
の真比重値が用いられる。
The group 4B element other than carbon, including one or more non-metallic elements, is electrochemically doped with lithium.
Must have the ability to undope. Preferably 40
0 mAh / cm 3 or more, more preferably 500 mAh / cm 3
It preferably has a charge / discharge capacity of at least cm 3 . When calculating the charge / discharge capacity per volume, the true specific gravity of the compound is used.

【0026】上述したような負極活物質の作成方法は限
定されないが、メカニカルアイロニング法、原料化合物
を混合して不活性雰囲気下あるいは還元性雰囲気下で加
熱処理する方法が採られる。
The method of preparing the negative electrode active material as described above is not limited, but a mechanical ironing method, a method of mixing raw material compounds and performing a heat treatment in an inert atmosphere or a reducing atmosphere may be employed.

【0027】上記負極活物質へのリチウムのドープは電
池作成後に電池内で電気化学的に行われても良く、電池
作成後あるいは電池作製前に、正極あるいは正極以外の
リチウム源から供給され電気化学的にドープされても構
わない。あるいは材料合成の際にリチウム含有材料とし
て合成され、電池作製時に負極に含有されても構わな
い。
The doping of the negative electrode active material with lithium may be performed electrochemically in the battery after the battery is prepared. After or before the battery is prepared, the lithium may be supplied from a positive electrode or a lithium source other than the positive electrode. It may be doped. Alternatively, it may be synthesized as a lithium-containing material at the time of material synthesis, and may be contained in the negative electrode at the time of battery production.

【0028】上述したような負極活物質は、粉砕して用
いてもよいし、粉砕しないで用いてもよい。
The negative electrode active material as described above may be used after being pulverized, or may be used without being pulverized.

【0029】負極活物質を粉砕して用いる場合には、最
大粒子径が負極活物質層の厚みを下回るように粉砕され
ればよく、粉砕の方法としては、限定されるものではな
いが、例えばボールミル粉砕、ジェットミル粉砕等が挙
げられる。具体的に、粉砕後の負極活物質の平均粒子径
(体積平均粒子径)は、好ましくは50μm以下であ
り、さらに好ましくは20μm以下である。
When the negative electrode active material is used after being pulverized, it may be pulverized so that the maximum particle diameter is smaller than the thickness of the negative electrode active material layer. The method of pulverization is not limited. Ball mill pulverization, jet mill pulverization and the like can be mentioned. Specifically, the average particle diameter (volume average particle diameter) of the pulverized negative electrode active material is preferably 50 μm or less, and more preferably 20 μm or less.

【0030】負極活物質が粉砕されずに用いられる場合
には、負極活物質層は、化学気相成長法、スパッタ法、
ホットプレス等により成形体として作製することができ
る。
When the negative electrode active material is used without being pulverized, the negative electrode active material layer is formed by chemical vapor deposition, sputtering,
It can be manufactured as a molded body by hot pressing or the like.

【0031】負極活物質層に含有される結着剤として
は、この種の非水電解液電池の負極活物質層の結着剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the negative electrode active material layer, a known resin material or the like which is generally used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used. .

【0032】また、負極活物質層には負極活物質、導電
性高分子、結着剤以外の材料を含んでいても良い。例え
ば導電材として炭素質材料を含んでいても良い。例示す
るならば、難黒鉛化炭素、人造黒鉛、天然黒鉛、熱分解
炭素、コークス類(ピッチコークス、ニードルコーク
ス、石油コークス等)、グラファイト類、ガラス状炭素
類、有機高分子化合物焼成体(フェノール樹脂、フラン
樹脂等を適当な温度で焼成し炭素質化したもの)、炭素
繊維、活性炭、カーボンブラック類等の炭素質材料を使
用することができる。また充放電に寄与しない材料を含
んでいても構わない。
Further, the negative electrode active material layer may contain a material other than the negative electrode active material, the conductive polymer, and the binder. For example, a carbonaceous material may be included as the conductive material. Examples include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired bodies (phenols). Resin, furan resin, etc., which are calcined at an appropriate temperature to be carbonized), carbon fibers, activated carbon, carbon blacks and other carbonaceous materials. Further, a material that does not contribute to charge and discharge may be included.

【0033】そして、本発明の非水電解液電池1では、
負極活物質層に、導電性高分子を含有している。
In the non-aqueous electrolyte battery 1 of the present invention,
The negative electrode active material layer contains a conductive polymer.

【0034】負極活物質層に、導電性高分子を含有させ
ることで、負極中の導電パスを安定に形成するととも
に、リチウムのドープ脱ドープに伴う負極の体積変化を
抑えることができる。その結果、この非水電解液電池1
は、サイクル特性に優れたものとなる。
By including a conductive polymer in the negative electrode active material layer, a conductive path in the negative electrode can be formed stably, and a change in volume of the negative electrode due to doping and undoping of lithium can be suppressed. As a result, the nonaqueous electrolyte battery 1
Has excellent cycle characteristics.

【0035】導電性高分子としては、カチオンがドープ
されて電子をキャリアとするn型、アニオンがドープさ
れてホールをキャリアとするp型のいずれであってもよ
い。
The conductive polymer may be either an n-type doped with cations and using electrons as carriers, or a p-type doped with anions and using holes as carriers.

【0036】導電性高分子は、例示するなら、ポリアセ
チレン等の脂肪族共役系高分子化合物、ポリパラフェニ
レン等の芳香族共役系高分子化合物、ポリピロールやポ
リチオフェン等の複素環式共役系高分子化合物、ポリア
ニリン等の含ヘテロ原子共役系高分子化合物、ポリフェ
ニレンビニレン等の混合共役系高分子化合物、フタロシ
アニンやポルフィリン等の金属フタロシアニン系高分子
化合物などが挙げられる。
Examples of the conductive polymer include aliphatic conjugated polymer compounds such as polyacetylene, aromatic conjugated polymer compounds such as polyparaphenylene, and heterocyclic conjugated polymer compounds such as polypyrrole and polythiophene. And hetero-atom conjugated polymer compounds such as polyaniline, mixed conjugated polymer compounds such as polyphenylenevinylene, and metal phthalocyanine-based polymer compounds such as phthalocyanine and porphyrin.

【0037】このような導電性高分子を負極活物質層に
含有させるには、負極活物質と、結着剤等を混合して負
極合剤を調製する際に、当該負極合剤中に導電性高分子
を添加すればよい。
In order for such a conductive polymer to be contained in the negative electrode active material layer, when the negative electrode active material is mixed with a binder and the like to prepare a negative electrode mixture, a conductive material is contained in the negative electrode mixture. The conductive polymer may be added.

【0038】導電性高分子を負極合剤中に添加する場合
には、導電性高分子の添加量が少ないと、サイクル特性
を向上させる効果が十分に得られない。また、導電性高
分子の添加量が多すぎると、反応に寄与しない不活性部
分の割合が増大し、その分、反応に寄与する活性部分の
割合が減少してしまい、負極当たりの充放電能力が低下
してしまう。そのため、導電性高分子の添加量は、負極
活物質の100重量部に対して、0.1重量部以上、2
0重量部以下の範囲とすることが好ましい。
When the conductive polymer is added to the negative electrode mixture, if the amount of the conductive polymer is small, the effect of improving the cycle characteristics cannot be sufficiently obtained. On the other hand, if the amount of the conductive polymer added is too large, the proportion of the inactive portion that does not contribute to the reaction increases, and the proportion of the active portion that contributes to the reaction decreases accordingly. Will decrease. Therefore, the amount of the conductive polymer to be added is at least 0.1 part by weight and 100 parts by weight of the negative electrode active material.
The content is preferably in the range of 0 parts by weight or less.

【0039】また、導電性高分子は、負極合剤中に添加
するだけではなく、成形された負極活物質層の表面に被
着させてもよい。
The conductive polymer may be applied not only to the negative electrode mixture but also to the surface of the formed negative electrode active material layer.

【0040】導電性高分子を負極活物質層の表面に被着
させる場合には、導電性高分子の被着量が少ないと、サ
イクル特性を向上させる効果が十分に得られない。ま
た、導電性高分子の被着量が多すぎると、反応に寄与し
ない不活性部分の割合が増大し、その分、反応に寄与す
る活性部分の割合が減少してしまい、負極当たりの充放
電能力が低下してしまう。そのため、導電性高分子を負
極活物質層の表面に被着させる場合には、導電性高分子
の膜厚が0.01μm以上、50μm以下の範囲となる
ように被着させることが好ましい。
When the conductive polymer is applied to the surface of the negative electrode active material layer, the effect of improving the cycle characteristics cannot be sufficiently obtained if the amount of the applied conductive polymer is small. On the other hand, if the amount of the conductive polymer applied is too large, the proportion of the inactive portion that does not contribute to the reaction increases, and the proportion of the active portion that contributes to the reaction decreases accordingly, and the charge / discharge per negative electrode Ability will be reduced. Therefore, when the conductive polymer is applied to the surface of the negative electrode active material layer, the conductive polymer is preferably applied so that the thickness of the conductive polymer is in the range of 0.01 μm or more and 50 μm or less.

【0041】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.

【0042】正極4は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極集電体と
しては、例えばアルミニウム箔等が用いられる。
The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode current collector, for example, an aluminum foil or the like is used.

【0043】正極活物質は、目的とする電池の種類に応
じて、金属酸化物、金属硫化物又は特定のポリマー等を
用いることができる。
As the positive electrode active material, a metal oxide, a metal sulfide, a specific polymer, or the like can be used depending on the type of the intended battery.

【0044】具体的に、正極活物質としては、Ti
2、MoS2、NbSe2、V25等のリチウムを含有
しない金属硫化物あるいは酸化物や、LixMO2(式
中、Mは一種以上の遷移金属を表し、xは電池の充放電
状態によって異なり、通常0.05≦x≦1.10であ
る。)を主体とするリチウム複合酸化物等を使用するこ
とができる。
Specifically, as the positive electrode active material, Ti
Lithium-free metal sulfides or oxides such as S 2 , MoS 2 , NbSe 2 , V 2 O 5 , or Li x MO 2 (where M represents one or more transition metals, and x represents the charge of the battery. It depends on the state of discharge, and usually satisfies 0.05 ≦ x ≦ 1.10).

【0045】このリチウム複合酸化物を構成する遷移金
属Mとしては、Co,Ni,Mn等が好ましい。このよ
うなリチウム複合酸化物の具体例としては、LiCoO
2、LiNiO2、LixNiyCo1-y2(式中、x、y
は電池の充放電状態によって異なり、通常0<x<1、
0.7<y<1.02である。)スピネル型構造を有す
るリチウムマンガン複合酸化物等を挙げることができ
る。これらリチウム複合酸化物は、高電圧を発生でき、
エネルギー密度的に優れた正極活物質となる。正極に
は、これらの正極活物質の複数種を混合して使用しても
良い。
The transition metal M constituting the lithium composite oxide is preferably Co, Ni, Mn, or the like. As a specific example of such a lithium composite oxide, LiCoO
2 , LiNiO 2 , Li x Ni y Co 1-y O 2 (where x, y
Depends on the charge / discharge state of the battery, and usually 0 <x <1,
0.7 <y <1.02. A) Lithium manganese composite oxide having a spinel structure. These lithium composite oxides can generate high voltage,
It becomes a positive electrode active material excellent in energy density. A plurality of these positive electrode active materials may be mixed and used for the positive electrode.

【0046】また、以上のような正極活物質を使用して
正極を形成するに際しては、公知の導電材や結着剤等を
添加することができる。
In forming a positive electrode using the above-described positive electrode active material, a known conductive material, a binder and the like can be added.

【0047】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0048】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えばポリプロピレンなどの高分子フィルムが
用いられる。また、リチウムイオン伝導度とエネルギー
密度との関係から、セパレータの厚みはできるだけ薄い
ことが必要である。具体的には、セパレータの厚みは例
えば50μm以下が適当である。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and may be formed of a known material which is generally used as a separator for this type of nonaqueous electrolyte battery. A polymer film is used. Also, from the relationship between lithium ion conductivity and energy density, it is necessary that the thickness of the separator be as small as possible. Specifically, the thickness of the separator is suitably, for example, 50 μm or less.

【0049】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is incorporated in the negative electrode can 3 and is integrated. The insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.

【0050】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used.

【0051】非水溶媒としては、この種の電池に用いら
れるものであればいずれも使用可能である。例示するな
らば、プロピレンカーボネート、エチレンカーボネー
ト、ジエチルカーボネート、ジメチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトリル、アニソール、酢酸エステル、酪酸エステ
ル、プロピオン酸エステル等が挙げられる。
As the non-aqueous solvent, any non-aqueous solvent can be used as long as it is used for this type of battery. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-
Methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, acetate, butyrate, propionate and the like.

【0052】また、電解質としては、この種の電池に用
いられるものであればいずれも使用することができる。
例示するならば、LiClO4、LiAsF6、LiPF
6、LiBF4、LiB(C654、CH3SO3Li、
CF3SO3Li、LiCl、LiBr等が挙げられる。
As the electrolyte, any electrolyte can be used as long as it is used for this type of battery.
For example, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li,
CF 3 SO 3 Li, LiCl, LiBr and the like can be mentioned.

【0053】以上のような構成を有する本発明の非水電
解液電池1では、負極活物質層に、導電性高分子が含有
されているので、負極中の導電パスが安定に形成される
とともに、リチウムのドープ脱ドープに伴う負極の体積
変化が抑えられる。その結果、本発明の非水電解液電池
1は、サイクル特性に優れたものとなる。
In the non-aqueous electrolyte battery 1 of the present invention having the above-described structure, since the negative electrode active material layer contains a conductive polymer, the conductive path in the negative electrode is formed stably. In addition, a change in volume of the negative electrode due to doping and undoping of lithium is suppressed. As a result, the nonaqueous electrolyte battery 1 of the present invention has excellent cycle characteristics.

【0054】なお、上述した実施の形態では、非水電解
液を用いた非水電解液電池を例に挙げて説明したが、本
発明はこれに限定されるものではなく、電解質塩を含有
させた固体電解質、或いは有機高分子に非水溶媒と電解
質塩を含浸させた固体電解質を用いた固体電解質電池
や、マトリクス高分子に非水溶媒と電解質塩を含浸させ
たゲル状電解質を用いたゲル状電解質電池についても適
用可能である。
In the above-described embodiment, a non-aqueous electrolyte battery using a non-aqueous electrolyte has been described as an example. However, the present invention is not limited to this. Solid electrolyte battery using a solid electrolyte in which a non-aqueous solvent and an electrolyte salt are impregnated in an organic polymer or a gel using a gel electrolyte in which a matrix polymer is impregnated with a non-aqueous solvent and an electrolyte salt The present invention is also applicable to a solid electrolyte battery.

【0055】固体電解質としては、リチウムイオン導電
性を有する材料であれば無機固体電解質、高分子固体電
解質いずれも用いることができる。無機固体電解質とし
て、窒化リチウム、ヨウ化リチウムが挙げられる。高分
子固体電解質は、電解質塩とそれを溶解する高分子化合
物からなり、その高分子化合物としては、ポリ(エチレ
ンオキサイド)や同架橋体などのエーテル系高分子、ポ
リ(メタクリレート)等のエステル系高分子や、アクリ
レート系高分子などを単独で、あるいは分子中に共重合
又は混合して用いることができる。
As the solid electrolyte, either an inorganic solid electrolyte or a polymer solid electrolyte can be used as long as the material has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt. Examples of the polymer compound include an ether polymer such as poly (ethylene oxide) and its crosslinked product, and an ester polymer such as poly (methacrylate). A polymer, an acrylate-based polymer, or the like can be used alone, or copolymerized or mixed in the molecule.

【0056】また、ゲル状電解質のマトリクス高分子と
しては、非水電解液を吸収してゲル化するものであれば
種々の高分子を使用することができる。マトリクス高分
子として具体的には、ポリ(ビニリデンフルオライド)
やポリ(ビニリデンフルオライド−co−ヘキサフルオ
ロプロピレン)などのフッ素系高分子、ポリ(エチレン
オキサイド)や同架橋体などのエーテル系高分子、ま
た、ポリ(アクリロニトリル)等が挙げられる。特に酸
化還元安定性から、フッ素系高分子を用いることが好ま
しい。電解質塩を含有させることによりイオン導電性を
付与する。
As the matrix polymer of the gel electrolyte, various polymers can be used as long as they absorb the non-aqueous electrolyte and gel. Specific examples of the matrix polymer include poly (vinylidene fluoride)
And poly (vinylidene fluoride-co-hexafluoropropylene), such as fluorine-based polymers, ether-based polymers such as poly (ethylene oxide) and crosslinked products thereof, and poly (acrylonitrile). In particular, it is preferable to use a fluoropolymer from the viewpoint of oxidation-reduction stability. Ionic conductivity is imparted by including an electrolyte salt.

【0057】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
Further, in the above-described embodiment, the description has been given by taking a secondary battery as an example. However, the present invention is not limited to this, and can be applied to a primary battery. In addition, the battery of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and its shape is not particularly limited,
In addition, various sizes such as a thin type and a large size can be used.

【0058】[0058]

【実施例】本発明の効果を確認すべく、上述したような
構成の電池を作製し、その特性を評価した。
EXAMPLES In order to confirm the effects of the present invention, a battery having the above-mentioned structure was manufactured and its characteristics were evaluated.

【0059】〈実施例1〉まず、負極を以下のようにし
て作製した。
<Example 1> First, a negative electrode was manufactured as follows.

【0060】Mg2Siを粉砕して平均粒径15μmと
した。このMg2Si粉末を50重量部と、人造黒鉛を
40重量部と、結着剤としてポリフッ化ビニリデンを1
0重量部とを混合して負極合剤とし、さらにこれをn−
メチルピロリドンに分散させてスラリー状とした。
Mg 2 Si was pulverized to an average particle size of 15 μm. 50 parts by weight of this Mg 2 Si powder, 40 parts by weight of artificial graphite, and 1 part of polyvinylidene fluoride as a binder.
And 0 parts by weight to obtain a negative electrode mixture.
It was dispersed in methylpyrrolidone to form a slurry.

【0061】次に、得られたスラリーを負極集電体とな
る銅箔の両面に均一に塗布し、乾燥後、ロールプレス機
で圧縮成型し、直径15.5mmのペレット状に打ち抜
いた。得られたペレット上にp型導電性高分子であるポ
リパラフェニレンを電気化学的に作製した。具体的に
は、塩化第二銅と、LiAsF6とを電解質とするベン
ゼンのニトロベンゼン溶液にペレットを浸漬し、1mA
/cm2の定電流条件下でペレット表面にポリパラフェ
ニレンを電解重合させた。
Next, the obtained slurry was uniformly applied to both surfaces of a copper foil as a negative electrode current collector, dried, compression-molded by a roll press, and punched into a pellet having a diameter of 15.5 mm. Polyparaphenylene, which is a p-type conductive polymer, was electrochemically produced on the obtained pellet. Specifically, the pellet was immersed in a benzene solution of benzene using cupric chloride and LiAsF 6 as electrolytes,
The polyparaphenylene was electrolytically polymerized on the pellet surface under a constant current condition of / cm 2 .

【0062】つぎに、正極を以下のようにして作製し
た。
Next, a positive electrode was produced as follows.

【0063】炭酸リチウムと炭酸コバルトとをモル比で
0.5:1の割合で混合し、空気中900℃で5時間焼
成することにより、正極活物質となるLiCoO2を得
た。
The lithium carbonate and the cobalt carbonate were mixed at a molar ratio of 0.5: 1 and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 as a positive electrode active material.

【0064】次に、得られたLiCoO2を91重量部
と、導電材としてグラファイトを6重量部と、結着剤と
してポリフッ化ビニリデンを3重量部とを混合して正極
合剤を調製し、さらにこれをn−メチルピロリドンに分
散させてスラリー状とした。
Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This was further dispersed in n-methylpyrrolidone to form a slurry.

【0065】次に、得られたスラリーを正極集電体とな
る厚さ20μmのアルミニウム箔の両面に均一に塗布
し、乾燥後、ロールプレス機で圧縮成型し、直径15.
5mmのペレット状に打ち抜いた。
Next, the obtained slurry was uniformly applied to both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then compression-molded with a roll press to obtain a slurry having a diameter of 15 μm.
Punched into 5 mm pellets.

【0066】一方、エチレンカーボネートとジエチルカ
ーボネートとの等容量混合溶媒中にLiPF6を1.0
mol/lの濃度で溶解させて非水電解液を調製した。
On the other hand, LiPF 6 was added to an equal volume mixed solvent of ethylene carbonate and diethyl carbonate in an amount of 1.0%.
A non-aqueous electrolyte was prepared by dissolving at a concentration of mol / l.

【0067】そして、得られた負極を負極缶に収容し、
正極を正極缶に収容し、負極と正極との間に、厚さ25
μmのポリプロピレン製多孔質膜からなるセパレータを
配した。負極缶及び正極缶内に非水電解液を注入し、絶
縁ガスケットを介して負極缶と正極缶とをかしめて固定
することにより、直径20mm、高さ2.5mmのコイ
ン型非水電解液電池を完成した。
Then, the obtained negative electrode is accommodated in a negative electrode can,
The positive electrode is accommodated in a positive electrode can, and a thickness of 25 mm is provided between the negative electrode and the positive electrode.
A separator made of a μm polypropylene porous membrane was provided. A coin-type non-aqueous electrolyte battery having a diameter of 20 mm and a height of 2.5 mm is obtained by injecting a non-aqueous electrolyte into the negative electrode can and the positive electrode can and caulking and fixing the negative electrode can and the positive electrode can via an insulating gasket. Was completed.

【0068】〈実施例2〉負極活物質として、Mg2
iの代わりにSi22Oを用いたこと以外は、実施例1
と同様にしてコイン型非水電解液電池を作製した。
Example 2 As a negative electrode active material, Mg 2 S
Example 1 except that Si 2 N 2 O was used instead of i.
In the same manner as in the above, a coin-type nonaqueous electrolyte battery was produced.

【0069】〈実施例3〉まず、以下のようにしてポリ
パラフェニレン粉末を得た。
Example 3 First, a polyparaphenylene powder was obtained as follows.

【0070】ベンゼンに無水塩化アルミと、無水塩化第
二銅とを加えて撹拌し、冷却後、生成固体をベンゼンで
洗浄した。ベンゼンを蒸発させた後、塩酸中に分散さ
せ、沸騰した塩酸中で固体をすりつぶした。さらに十分
な水で洗浄、乾燥することによりポリパラフェニレン粉
末を得た。
Anhydrous aluminum chloride and anhydrous cupric chloride were added to benzene, stirred, cooled, and the resulting solid was washed with benzene. After evaporation of the benzene, it was dispersed in hydrochloric acid and the solid was triturated in boiling hydrochloric acid. Further, by washing with sufficient water and drying, a polyparaphenylene powder was obtained.

【0071】そして、得られたポリパラフェニレン粉末
を用いて、以下のようにして負極を作製した。
Then, using the obtained polyparaphenylene powder, a negative electrode was produced as follows.

【0072】Mg2Siを粉砕して平均粒径15μmと
した。このMg2Si粉末を50重量部と、人造黒鉛を
40重量部と、結着剤としてポリフッ化ビニリデンを5
重量部と、ポリパラフェニレン粉末を5重量部とを混合
して負極合剤とし、さらにこれをn−メチルピロリドン
に分散させてスラリー状とした。
Mg 2 Si was pulverized to an average particle size of 15 μm. 50 parts by weight of this Mg 2 Si powder, 40 parts by weight of artificial graphite, and 5 parts by weight of polyvinylidene fluoride as a binder.
By weight, 5 parts by weight of polyparaphenylene powder were mixed to prepare a negative electrode mixture, which was further dispersed in n-methylpyrrolidone to form a slurry.

【0073】次に、得られたスラリーを負極集電体とな
る銅箔の両面に均一に塗布し、乾燥後、ロールプレス機
で圧縮成型し、直径15.5mmのペレット状に打ち抜
くことにより負極を作製した。
Next, the obtained slurry was uniformly applied to both surfaces of a copper foil serving as a negative electrode current collector, dried, compression-molded by a roll press, and punched into a pellet having a diameter of 15.5 mm. Was prepared.

【0074】以上のようにして得られた負極を用いたこ
と以外は、実施例1と同様にしてコイン型非水電解液電
池を作製した。
A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that the negative electrode obtained as described above was used.

【0075】〈比較例1〉負極ペレット上にポリパラフ
ェニレンを形成しなかったこと以外は、実施例1と同様
にしてコイン型非水電解液電池を作製した。
Comparative Example 1 A coin-type nonaqueous electrolyte battery was manufactured in the same manner as in Example 1 except that polyparaphenylene was not formed on the negative electrode pellet.

【0076】〈比較例2〉負極活物質として、Mg2
iの代わりにSi22Oを用い、さらに、負極ペレット
上にポリパラフェニレンを形成しなかったこと以外は、
実施例1と同様にしてコイン型非水電解液電池を作製し
た。
Comparative Example 2 Mg 2 S was used as a negative electrode active material.
i except that Si 2 N 2 O was used in place of i, and that polyparaphenylene was not formed on the negative electrode pellet,
A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 1.

【0077】以上のようにして得られた各電池に対し
て、サイクル特性を評価した。
The cycle characteristics of each of the batteries obtained as described above were evaluated.

【0078】まず、各電池に対して、20℃、1mAの
定電流定電圧放電を上限4.2Vまで行い、次に1mA
の定電流放電を終止電圧2.5Vまで行った。以上の工
程を1サイクルとし、これを30サイクル繰り返した。
そして、1サイクル目の放電容量を100とした場合の
30サイクル目の放電容量維持率(%)を求めた。な
お、初期容量はいずれの電池もほぼ同じ値であった。
First, a constant current and constant voltage discharge of 1 mA at 20 ° C. was performed to each battery up to an upper limit of 4.2 V.
Was discharged to a final voltage of 2.5 V. The above process was defined as one cycle, and this was repeated for 30 cycles.
Then, the discharge capacity retention rate (%) at the 30th cycle was determined, where the discharge capacity at the first cycle was 100. Note that the initial capacity was almost the same for all batteries.

【0079】実施例1〜実施例3、比較例1及び比較例
2の電池についての放電容量維持率の測定結果を表1に
示す。
Table 1 shows the measurement results of the discharge capacity retention ratio for the batteries of Examples 1 to 3, Comparative Example 1 and Comparative Example 2.

【0080】[0080]

【表1】 [Table 1]

【0081】表1から、負極活物質としてMg2Siを
用いた実施例1と比較例1とを比較し、また、負極活物
質としてSi22Oを用いた実施例2と比較例2とを比
較して明らかなように、負極上に導電性高分子を形成し
た実施例1及び実施例2では、負極上に導電性高分子を
形成しなかったた比較例1及び比較例2に比べて、いず
れも放電容量維持率が飛躍的に向上していることがわか
る。
From Table 1, Example 1 using Mg 2 Si as the negative electrode active material was compared with Comparative Example 1, and Example 2 and Comparative Example 2 using Si 2 N 2 O as the negative electrode active material were compared. As is clear from the comparison, in Examples 1 and 2 in which the conductive polymer was formed on the negative electrode, Comparative Examples 1 and 2 in which the conductive polymer was not formed on the negative electrode were used. In comparison, it can be seen that the discharge capacity retention ratio is dramatically improved in each case.

【0082】また、負極上に導電性高分子を形成するば
かりでなく、負極中に導電性高分子を混在させた実施例
3と比較例1とを比較して明らかなように、実施例3で
は、比較例1に比べて、高い放電容量維持率が得られて
いることがわかる。
Further, as apparent from a comparison between Comparative Example 1 and Example 3 in which a conductive polymer was mixed in the negative electrode as well as formation of the conductive polymer on the negative electrode, It can be seen that a higher discharge capacity retention ratio was obtained in Comparative Example 1 than in Comparative Example 1.

【0083】従って、負極上に導電性高分子を形成し、
或いは、負極中に導電性高分子を混在させることで、放
電容量維持率を向上できることがわかった。
Therefore, a conductive polymer is formed on the negative electrode,
Alternatively, it has been found that by mixing a conductive polymer in the negative electrode, the discharge capacity retention ratio can be improved.

【0084】[0084]

【発明の効果】本発明では、負極活物質層に、導電性高
分子含有させることで、負極中の導電パスを安定に形成
するとともに、リチウムのドープ脱ドープに伴う負極の
体積変化を抑えた負極を実現することができる。
According to the present invention, by including a conductive polymer in the negative electrode active material layer, a conductive path in the negative electrode is formed stably, and a change in volume of the negative electrode due to doping and undoping of lithium is suppressed. A negative electrode can be realized.

【0085】そして、本発明では、上記のような負極を
用いることで、サイクル特性に優れた非水電解質電池を
実現することができる。
In the present invention, a non-aqueous electrolyte battery having excellent cycle characteristics can be realized by using the above-described negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a nonaqueous electrolyte battery according to the present invention.

【符号の説明】 1 非水電解液電池、 2 負極、 3 負極缶、 4
正極、 5 正極缶、 6 セパレータ、 7 絶縁
ガスケット
[Description of Signs] 1 Non-aqueous electrolyte battery, 2 Negative electrode, 3 Negative electrode can, 4
Positive electrode, 5 Positive electrode can, 6 Separator, 7 Insulating gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 BB02 BB04 BB05 BB06 BB14 BD00 5H014 AA02 EE01 EE05 EE10 HH04 5H029 AJ03 AJ05 AK02 AK03 AK05 AL12 AM03 AM04 AM05 AM07 BJ03 DJ08 EJ13 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 AA04 BB02 BB04 BB05 BB06 BB14 BD00 5H014 AA02 EE01 EE05 EE10 HH04 5H029 AJ03 AJ05 AK02 AK03 AK05 AL12 AM03 AM04 AM05 AM07 BJ03 DJ08 EJ13 HJ

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムと合金を形成可能な金属又は当
該金属の合金と、導電性高分子とを含有することを特徴
とする負極。
1. A negative electrode comprising a metal capable of forming an alloy with lithium or an alloy of the metal, and a conductive polymer.
【請求項2】 1つ以上の非金属元素を含む、炭素以外
の4B族化合物と、導電性高分子とを含有することを特
徴とする負極。
2. A negative electrode comprising: a group 4B compound other than carbon containing one or more nonmetallic elements; and a conductive polymer.
【請求項3】 上記1つ以上の非金属元素を含む、炭素
以外の4B族化合物は、電気化学的にリチウムを400
mAh/cm3以上ドープ・脱ドープ可能であることを
特徴とする請求項2記載の負極。
3. The group 4B compound other than carbon, including one or more nonmetallic elements, electrochemically converts lithium to 400.
3. The negative electrode according to claim 2, wherein the negative electrode can be doped / de-doped by mAh / cm 3 or more.
【請求項4】 リチウム複合酸化物を含有する正極と、 リチウムと合金を形成可能な金属又は当該金属の合金
と、導電性高分子とを含有する負極と、 上記正極と上記負極との間に介在される非水電解質とを
備えることを特徴とする非水電解質電池。
4. A positive electrode containing a lithium composite oxide; a negative electrode containing a metal capable of forming an alloy with lithium or an alloy of the metal; and a conductive polymer; A non-aqueous electrolyte battery comprising a non-aqueous electrolyte interposed.
【請求項5】 リチウム複合酸化物を含有する正極と、 1つ以上の非金属元素を含む、炭素以外の4B族化合物
と導電性高分子とを含有する負極と、 上記正極と上記負極との間に介在される非水電解質とを
備えることを特徴とする非水電解質電池。
5. A positive electrode containing a lithium composite oxide, a negative electrode containing a group 4B compound other than carbon, containing one or more non-metallic elements, and a conductive polymer; A nonaqueous electrolyte battery comprising: a nonaqueous electrolyte interposed therebetween.
【請求項6】 上記1つ以上の非金属元素を含む、炭素
以外の4B族化合物は、電気化学的にリチウムを400
mAh/cm3以上ドープ・脱ドープ可能であることを
特徴とする請求項5記載の非水電解質電池。
6. The group 4B compound other than carbon, comprising one or more nonmetallic elements, electrochemically converts lithium to 400.
6. The non-aqueous electrolyte battery according to claim 5, wherein doping / de-doping can be performed at mAh / cm 3 or more.
JP31589099A 1999-11-05 1999-11-05 Negative electrode and non-aqueous electrolyte battery Expired - Fee Related JP4639410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31589099A JP4639410B2 (en) 1999-11-05 1999-11-05 Negative electrode and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31589099A JP4639410B2 (en) 1999-11-05 1999-11-05 Negative electrode and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001135303A true JP2001135303A (en) 2001-05-18
JP4639410B2 JP4639410B2 (en) 2011-02-23

Family

ID=18070849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31589099A Expired - Fee Related JP4639410B2 (en) 1999-11-05 1999-11-05 Negative electrode and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4639410B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1576682A1 (en) * 2002-12-24 2005-09-21 Texaco Ovonic Battery Systems LLC Active electrode composition with conductive polymeric binder
JP2010287505A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Method of manufacturing negative electrode for secondary cell and electrode structure
JP2013016364A (en) * 2011-07-05 2013-01-24 Furukawa Electric Co Ltd:The Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157974A (en) * 1983-02-24 1984-09-07 Kao Corp Secondary battery
JPS60262351A (en) * 1984-06-08 1985-12-25 Asahi Chem Ind Co Ltd Composite negative electrode of secondary battery
JPS6421872A (en) * 1987-07-17 1989-01-25 Showa Denko Kk Secondary battery
JPH04179049A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Negative electrode for battery
JPH04220948A (en) * 1990-12-19 1992-08-11 Japan Storage Battery Co Ltd Battery with nonaqueous electrolyte
JPH04237948A (en) * 1991-01-19 1992-08-26 Sumitomo Electric Ind Ltd Nonaqueous battery electrode and battery
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JPH0864203A (en) * 1994-08-25 1996-03-08 Ricoh Co Ltd Electrode, manufacture thereof, and secondary battery using it
JPH08190910A (en) * 1995-01-11 1996-07-23 Mitsubishi Heavy Ind Ltd Electrode for battery
JPH09129216A (en) * 1995-11-01 1997-05-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09231961A (en) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10125309A (en) * 1996-10-16 1998-05-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157974A (en) * 1983-02-24 1984-09-07 Kao Corp Secondary battery
JPS60262351A (en) * 1984-06-08 1985-12-25 Asahi Chem Ind Co Ltd Composite negative electrode of secondary battery
JPS6421872A (en) * 1987-07-17 1989-01-25 Showa Denko Kk Secondary battery
JPH04179049A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Negative electrode for battery
JPH04220948A (en) * 1990-12-19 1992-08-11 Japan Storage Battery Co Ltd Battery with nonaqueous electrolyte
JPH04237948A (en) * 1991-01-19 1992-08-26 Sumitomo Electric Ind Ltd Nonaqueous battery electrode and battery
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JPH0864203A (en) * 1994-08-25 1996-03-08 Ricoh Co Ltd Electrode, manufacture thereof, and secondary battery using it
JPH08190910A (en) * 1995-01-11 1996-07-23 Mitsubishi Heavy Ind Ltd Electrode for battery
JPH09129216A (en) * 1995-11-01 1997-05-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09231961A (en) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10125309A (en) * 1996-10-16 1998-05-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1576682A1 (en) * 2002-12-24 2005-09-21 Texaco Ovonic Battery Systems LLC Active electrode composition with conductive polymeric binder
EP1576682A4 (en) * 2002-12-24 2008-03-19 Texaco Ovonic Battery Systems Active electrode composition with conductive polymeric binder
JP2010287505A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Method of manufacturing negative electrode for secondary cell and electrode structure
JP2013016364A (en) * 2011-07-05 2013-01-24 Furukawa Electric Co Ltd:The Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4639410B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
JP3713900B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
US8586246B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
EP1487048A2 (en) Battery
JP5026629B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JPH11339851A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
JP2004014472A (en) Nonaqueous secondary battery
JP3640108B2 (en) Method for synthesizing active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3734169B2 (en) Battery negative electrode material and battery using the same
JP2006012613A (en) Charging method of non-aqueous electrolyte secondary battery, and battery system
JP2005008461A (en) Method for producing compound oxide, compound oxide, and battery
KR20150006730A (en) Binder composition for rechargeable lithium battery, and negative electrode and rechargeable lithium battery including the same
JP2004327078A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP2004006188A (en) Non-aqueous electrolyte battery
JP2004146104A (en) Nonaqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JP4172443B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4639410B2 (en) Negative electrode and non-aqueous electrolyte battery
JP2002270222A (en) Non-aqueous electrolyte and secondary battery
KR20080070492A (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees