JP2006012613A - Charging method of non-aqueous electrolyte secondary battery, and battery system - Google Patents

Charging method of non-aqueous electrolyte secondary battery, and battery system Download PDF

Info

Publication number
JP2006012613A
JP2006012613A JP2004188479A JP2004188479A JP2006012613A JP 2006012613 A JP2006012613 A JP 2006012613A JP 2004188479 A JP2004188479 A JP 2004188479A JP 2004188479 A JP2004188479 A JP 2004188479A JP 2006012613 A JP2006012613 A JP 2006012613A
Authority
JP
Japan
Prior art keywords
battery
overvoltage
secondary battery
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004188479A
Other languages
Japanese (ja)
Inventor
Atsuo Yamada
淳夫 山田
Yuki Takei
悠記 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2004188479A priority Critical patent/JP2006012613A/en
Publication of JP2006012613A publication Critical patent/JP2006012613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging method enabling rapid charging of a nonaqueous electrolyte secondary battery containing Li<SB>x</SB>FePO<SB>4</SB>(0<x≤1) as a positive electrode active material. <P>SOLUTION: This is a charging method of a non-aqueous electrolyte secondary battery containing a compound as expressed by a formula: Li<SB>x</SB>FePO<SB>4</SB>(0<x≤1) as a positive electrode active material, characterized by impressing the battery with an overvoltage higher than the open circuit potential of the battery by 0.1 V or more. The battery system is equipped with a non-aqueous electrolyte secondary battery containing a compound as expressed by a formula : Li<SB>x</SB>FePO<SB>4</SB>(0<x≤1) as a positive electrode active material and a circuit mechanism which can impress an overvoltage higher than the open circuit potential of the battery by 0.1 V or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池の充電方法および該充電方法を可能ならしめる回路機構を具備した電池システムに関するものである。 The present invention relates to a method for charging a non-aqueous electrolyte secondary battery containing a compound represented by Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material, and a battery having a circuit mechanism that enables the charging method. It is about the system.

近年、ビデオカメラやヘッドホン式ステレオ等の電子機器の高性能化、小型化には目覚ましいものがあり、これらの電子機器の電源となる二次電池の高容量化の要求も強まってきている。二次電池としては、鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素電池が従来から用いられている。また、負極活物質として炭素質材料を用いると共に正極活物質としてリチウムコバルト酸化物(LiCoO2)を用いた非水電解質系二次電池は、リチウムのドープおよび脱ドープを利用することにより、デンドライト成長やリチウムの粉末化を抑制し得るため、優れたサイクル寿命性能を備え、また、高エネルギー密度化、高容量化も達成することができる。このリチウムイオン二次電池の正極活物質としては、LiCoO2の他、LiCoO2と同じ空間群R3m/層構造を有するLiNiO2、正スピネル型構造を持ち、空間群Fd3mを有するLiMn24等が実用化されている。また、充電方法としては、もっぱら一定値の電流をセルに流すことで行われている。 In recent years, electronic devices such as video cameras and headphone stereos have been remarkably improved in performance and size, and the demand for higher capacity secondary batteries serving as power sources for these electronic devices has also increased. As the secondary battery, a lead secondary battery, a nickel cadmium secondary battery, and a nickel metal hydride battery are conventionally used. In addition, a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material and lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material is capable of dendrite growth by utilizing lithium doping and dedoping. Since the powdering of lithium and lithium can be suppressed, it has excellent cycle life performance, and can achieve high energy density and high capacity. Examples of the positive electrode active material of the lithium ion secondary battery include LiCoO 2 , LiNiO 2 having the same space group R3m / layer structure as LiCoO 2 , LiMn 2 O 4 having a positive spinel structure, and having a space group Fd3m. Has been put to practical use. Moreover, as a charging method, it is performed by flowing a constant current through the cell.

リチウムイオン二次電池は、正極材料のコストが高く、従来の二次電池と比較して割高である。これは、正極材料の構成元素である遷移金属が希少であるためで、より豊富で安価な元素、例えば鉄(Fe)をベースにした材料を用いることが望まれる。   The lithium ion secondary battery has a high cost for the positive electrode material and is expensive compared to the conventional secondary battery. This is because the transition metal that is a constituent element of the positive electrode material is scarce, and it is desirable to use a material that is based on abundant and inexpensive elements such as iron (Fe).

また、従来の正極材料は概して動作安定性に問題がある。これは、電圧が高いため電解液との反応性が高いことや結晶構造の不安定性等に原因があり、高温でのサイクル特性や保存特性、自己放電特性などにおいて、十分な安定性を示さない場合が多い。   In addition, conventional positive electrode materials generally have a problem in operational stability. This is caused by high reactivity with the electrolyte due to high voltage and instability of the crystal structure, and does not show sufficient stability in high temperature cycle characteristics, storage characteristics, self-discharge characteristics, etc. There are many cases.

近年、鉄をベースにした組成式:LiFePO4の材料の合成プロセス最適化により、リチウム電池用正極に要求される諸物性をコントロールし、LiCoO2,LiNiO2,LiMn24といった従来の正極材料と同等のエネルギー密度を実現できることが報告されている(J.Electrochem.Soc.,148,A224,2001)。加えて、高温での動作安定性も非常に優れており、80℃という高温においてもサイクル劣化、保存劣化や自己放電が殆ど観測されず、コストと安定性については理想的な材料であることを究明されている。さらに、LiFePO4は、発生電圧が3.4Vであり、また充放電特性が極めて平坦であるという特徴を有する(J. Power Sources, 119-121, 232, 2003)。 In recent years, by optimizing the synthesis process of a material based on iron: LiFePO 4 , various physical properties required for a positive electrode for a lithium battery are controlled, and conventional positive electrode materials such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 are used. (J. Electrochem. Soc., 148, A224, 2001) has been reported. In addition, it has excellent operational stability at high temperatures, and almost no cycle deterioration, storage deterioration or self-discharge is observed even at high temperatures of 80 ° C., making it an ideal material for cost and stability. It has been investigated. Furthermore, LiFePO 4 has a feature that the generated voltage is 3.4 V and the charge / discharge characteristics are extremely flat (J. Power Sources, 119-121, 232, 2003).

しかし、LiFePO4は比較的電子伝導性が低く、高電流下では充放電特性が劣化するという問題がある。特に、LiFePO4を電極に用いたリチウム電池のフル充電には2〜3時間もかかるため、該電池の実用化には急速充電の実現が極めて重要であり、また高電流下でも特性を劣化させないための技術的対策が不可決となっている。 However, LiFePO 4 has relatively low electronic conductivity, and there is a problem that charge / discharge characteristics deteriorate under high current. In particular, since it takes 2-3 hours to fully charge a lithium battery using LiFePO 4 as an electrode, realization of rapid charging is extremely important for practical use of the battery, and the characteristics are not deteriorated even under a high current. The technical measures for this are undecided.

特開平6−283207号および同9−134725号公報に、LiFePOで表される化合物を正極活物質として含む非水電解質系二次電池が記載されている。しかしながら、このような二次電池の充電方法として過電圧を印加する定電圧制御を行うことについては、まったく認識がない。 JP-A-6-283207 and JP-A-9-134725 describe a nonaqueous electrolyte secondary battery containing a compound represented by LiFePO 4 as a positive electrode active material. However, there is no recognition at all about constant voltage control for applying an overvoltage as a charging method for such a secondary battery.

特開平6−283207号公報JP-A-6-283207 特開平9−134725号公報JP-A-9-134725 J.Electrochem.Soc.,148,A224,2001J. Electrochem. Soc., 148, A224, 2001 J. Power Sources, 119-121, 232, 2003J. Power Sources, 119-121, 232, 2003

本発明は、上記LiFePO4の特徴を包括的に鑑み、その問題点を解決する手段を提供するものであって、目的は(1)従来より低コストで安全なリチウムイオン電池システムを構築しつつ、(2)優れた急速充電特性を有する非水電解質系二次電池を提供することである。 The present invention comprehensively considers the characteristics of LiFePO 4 and provides means for solving the problems. The object is (1) while constructing a safe lithium-ion battery system at a lower cost than before. (2) To provide a non-aqueous electrolyte secondary battery having excellent rapid charging characteristics.

上記目的を達成するため、本発明は、組成式:LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池の充電方法であって、該電池の開回路電位よりも0.1V以上高い過電圧を印加することを特徴とする充電方法を提供する。 In order to achieve the above object, the present invention provides a method for charging a nonaqueous electrolyte secondary battery comprising a compound represented by the composition formula: Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material, Provided is a charging method characterized by applying an overvoltage that is 0.1 V or more higher than the open circuit potential of the battery.

さらに本発明は、組成式:LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池と、該電池の開回路電位よりも0.1V以上高い過電圧の印加を可能ならしめる回路機構とを具備した電池システムをも提供する。 Furthermore, the present invention relates to a nonaqueous electrolyte secondary battery containing a compound represented by the composition formula: Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material, and 0.1 V higher than the open circuit potential of the battery. There is also provided a battery system including a circuit mechanism that enables application of a high overvoltage.

本発明によれば、従来より低コストなリチウムイオン電池システムを構築しつつ、高温等特殊条件下での動作安定性を大幅に向上させ、急速充電特性にきわめて優れた二次電池システムを構築することが可能である。   According to the present invention, while constructing a lithium-ion battery system that is lower in cost than in the past, the operational stability under special conditions such as high temperature is greatly improved, and a secondary battery system that is extremely excellent in quick charge characteristics is constructed. It is possible.

LixCoO2やLixNiO2を正極活物質として含む非水電解質系二次電池は、一般に、定電流制御により充電が行われる。このような正極活物質に強制的に外部から高い電圧(過電圧)を加えると、x値が小さくなりすぎて構造が不安定になり、電池の安全性やサイクル特性に悪影響を及ぼすからである。加えて、このような材料は発生電圧が約4Vと高く、これ以上高い電圧を加えると電解液が酸化分解されるという問題もある。したがって、従来のリチウム電池において定電圧制御のみによる充電は採用されていない。 In general, a nonaqueous electrolyte secondary battery containing Li x CoO 2 or Li x NiO 2 as a positive electrode active material is charged by constant current control. This is because if such a positive electrode active material is forcibly applied with a high voltage (overvoltage) from the outside, the x value becomes too small and the structure becomes unstable, which adversely affects the safety and cycle characteristics of the battery. In addition, such a material has a high generated voltage of about 4 V, and there is a problem that the electrolyte is oxidized and decomposed when a higher voltage is applied. Therefore, charging by only constant voltage control is not employed in conventional lithium batteries.

これに対して、LixFePO4は、Liをすべて抜き取ったFePO4の形態でも極めて安定である。また、LiFePO4の発生電圧は3.4Vと、電解液の酸化分解電圧(約4.5V)に対して大きなマージンを有しており、より大きい過電圧の印加が可能である。さらに、LixFePO4の充放電反応はLiFePO4/FePO4の2相反応系であり、電位がxによらず一定であるという特徴がある。従って、充電時に大きな電流を流しても電位が平衡値からずれにくく、大電流を取り出すための電圧が実際にはかかりにくい。そこで、強制的に外部から電圧を加えてやることによって初めて、大きな電流を取り出すことが可能となる。したがって、LiFePO(0<x≦1)を正極活物質として含む非水電解質系二次電池に対しては、定電圧制御による充電を容易かつ効果的に適用することができる。 On the other hand, Li x FePO 4 is extremely stable even in the form of FePO 4 from which all Li is extracted. Further, the generated voltage of LiFePO 4 is 3.4 V, which has a large margin with respect to the oxidative decomposition voltage (about 4.5 V) of the electrolyte, and a larger overvoltage can be applied. Furthermore, the charge / discharge reaction of Li x FePO 4 is a two-phase reaction system of LiFePO 4 / FePO 4 , and is characterized in that the potential is constant regardless of x. Therefore, even if a large current is supplied during charging, the potential is unlikely to deviate from the equilibrium value, and it is difficult to actually apply a voltage for extracting a large current. Therefore, a large current can be taken out only by forcibly applying a voltage from the outside. Therefore, charging by constant voltage control can be easily and effectively applied to a non-aqueous electrolyte secondary battery containing Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material.

本発明は、このような正極活物質としてのLiFePO(0<x≦1)の材料的特徴に基づきなされたものであって、定電圧制御によって当該電池の開回路電位よりも0.1V以上高い過電圧を印加することにより、急速充電を可能にしたものである。 The present invention has been made on the basis of the material characteristics of Li x FePO 4 (0 <x ≦ 1) as such a positive electrode active material, and is less than the open circuit potential of the battery by constant voltage control. By applying an overvoltage higher than 1V, rapid charging is possible.

開回路電位とは、当該技術分野で認識されているように、電流を流していない状態で観測される電池の電圧をいう。本発明によると、過電圧が開回路電位よりも0.2V以上高いこと、より好ましくは0.5V以上高いこと、が好ましい。一方、過電圧の上限は、主として当該電解質の酸化分解電圧によって決まり、一般には約1.1Vである。   The open circuit potential refers to the voltage of the battery that is observed in a state where no current flows, as recognized in the art. According to the present invention, it is preferable that the overvoltage is 0.2 V or more higher than the open circuit potential, more preferably 0.5 V or more. On the other hand, the upper limit of the overvoltage is mainly determined by the oxidative decomposition voltage of the electrolyte, and is generally about 1.1V.

充電方式としては、印加電圧を一定とする定電圧制御、過電圧を一定とする定電圧制御、パルス充電制御その他の定電圧制御方式を採用することができる。開回路電位は、後述する負極材料との関係で、充電深度と共に上昇する場合がある。したがって、印加電圧を一定とする定電圧制御では、充電時間と共に過電圧は低下することがある。また、過電圧を一定とする定電圧制御では、充電時間と共に印加電圧は上昇することがある。いずれの充電方式においても、一定期間、例えば全充電時間の30%以上、好ましくは50%以上、最も好ましくは100%において、上記過電圧状態が確立されていることが好ましい。   As the charging method, a constant voltage control in which the applied voltage is constant, a constant voltage control in which the overvoltage is constant, pulse charging control, and other constant voltage control methods can be employed. The open circuit potential may increase with the charge depth in relation to the negative electrode material described below. Therefore, in the constant voltage control in which the applied voltage is constant, the overvoltage may decrease with the charging time. In the constant voltage control in which the overvoltage is constant, the applied voltage may increase with the charging time. In any charging method, it is preferable that the overvoltage state is established for a certain period, for example, 30% or more, preferably 50% or more, and most preferably 100% of the total charging time.

本発明によると、リチウム電池の理論容量の50%以上を30分以内、好ましくは10分以内、に充電することができる。   According to the present invention, 50% or more of the theoretical capacity of a lithium battery can be charged within 30 minutes, preferably within 10 minutes.

本発明における非水電解質系二次電池の負極には負極活物質が含まれる。負極活物質としては、リチウムを含まずにリチウム容量(リチウムがドープされ得る量)が大きい炭素質材料や合金材料が用いられる。そして、上記炭素質材料としては、リチウムをドープ、脱ドープできるものであって、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物の焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等を用いることができる。ここでいう合金化合物とはリチウムと合金形成可能なある金属元素をMとしたとき、化学式MxM'yLiz(M’はLi元素及びM元素以外の1つ以上の金属元素、xは0より大きい数値、y,zは0以上の数値)で表される化合物である。さらに半導体元素であるB,Si,As等の元素も金属元素に含めることとする。例示するならば、Mg,B,Al,Ga,In,Si,Ge,Sn,Pb,Sb,Bi,Cd,Ag,Zn,Hf,Zr,Yの各金属とそれらの合金化合物、Li−Al,Li−Al−M(M:2A,3B,4B遷移金属元素のうち1つ以上からなる)AlSb,CuMgSb等である。リチウムと合金形成可能な元素としては3B族典型元素を用いるのが好ましく、好ましくはSiまたはSn、更に好ましくはSiである。例示するなら、MxSi,MxSn(Mは各々、SiまたはSnを除く1つ以上の金属元素)で表される化合物で、具体的には、SiB4,SiB6,Mg2Si,Mg2Sn,Ni2Si,TiSi2,MoSi2,CoSi2,NiSi2,CaSi2,CrSi2,Cu5Si,FeSi2,MnSi2,NbSi2,TaSi2,VSi2,WSi2,ZnSi2等である。さらに1つ上の非金属元素を含む、炭素を除く4B族化合物も本発明における負極として利用できる。本材料中には1種以上の4B族元素が含まれていても良い。またリチウムを含む4B族以外の金属元素が含まれていても良い。例示するならばSiC,Si34,Si22O,Ge22O,SiOx(0<x≦2),SnOx(0<x≦2),LiSiO,LiSnO等である。上記負極材料の製造方法は限定されないが、メカニカルアロイング法、原料化合物を混合して不活性雰囲気下あるいは還元性雰囲気下で加熱処理する方法が取られる。また負極には2種以上の上記材料を混合しても構わない。上記材料へのリチウムのドープは電池作製後に電池内で電気化学的に行われても良く、電池作製後あるいは電池作製前に、正極あるいは正極以外のリチウム源から供給され電気化学的にドープされても構わない。あるいはLi3Nに遷移金属がドープされた材料のように、材料合成の際にリチウム含有材料として合成され、電池作製時に負極に含有されていても構わない。 The negative electrode of the nonaqueous electrolyte secondary battery in the present invention contains a negative electrode active material. As the negative electrode active material, a carbonaceous material or an alloy material that does not contain lithium and has a large lithium capacity (amount that can be doped with lithium) is used. The carbonaceous material can be doped and dedoped with lithium, and includes pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic high A fired body of a molecular compound (a product obtained by firing and carbonizing a phenol resin, a furan resin or the like at an appropriate temperature), carbon fiber, activated carbon, or the like can be used. The alloy compound here is a chemical element M x M ′ y Li z (M ′ is one or more metal elements other than Li element and M element, x is A numerical value greater than 0, and y and z are numerical values greater than or equal to 0). Further, elements such as B, Si, As and the like, which are semiconductor elements, are included in the metal element. For example, Mg, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, Cd, Ag, Zn, Hf, Zr, and Y and their alloy compounds, Li-Al , Li-Al-M (M: composed of one or more of 2A, 3B, and 4B transition metal elements) AlSb, CuMgSb, and the like. As an element capable of forming an alloy with lithium, a group 3B typical element is preferably used, preferably Si or Sn, and more preferably Si. For example, a compound represented by M x Si, M x Sn (M is one or more metal elements excluding Si or Sn), specifically, SiB 4 , SiB 6 , Mg 2 Si, mg 2 Sn, Ni 2 Si, TiSi 2, MoSi 2, CoSi 2, NiSi 2, CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2 Etc. Furthermore, the 4B group compound except carbon containing one nonmetallic element can also be used as the negative electrode in the present invention. The material may contain one or more group 4B elements. Moreover, metal elements other than 4B group containing lithium may be contained. For example, SiC, Si 3 N 4 , Si 2 N 2 O, Ge 2 N 2 O, SiO x (0 <x ≦ 2), SnO x (0 <x ≦ 2), LiSiO, LiSnO, and the like. Although the manufacturing method of the said negative electrode material is not limited, The method of heat-processing in an inert atmosphere or reducing atmosphere by mixing a mechanical alloying method and a raw material compound is taken. Two or more kinds of the above materials may be mixed in the negative electrode. The lithium doping of the above materials may be performed electrochemically in the battery after the battery is manufactured, and after being manufactured or before the battery is manufactured, it is supplied from a positive electrode or a lithium source other than the positive electrode and is electrochemically doped. It doesn't matter. Alternatively, like a material in which a transition metal is doped in Li 3 N, it may be synthesized as a lithium-containing material during material synthesis and contained in the negative electrode during battery production.

負極の集電体としては、リチウムと合金をつくらない金属等を用いることができるが、中でも銅およびニッケルが望ましく、これらをめっきした物を用いてもよい。   As the current collector for the negative electrode, a metal that does not form an alloy with lithium can be used, and among these, copper and nickel are desirable, and a product obtained by plating these may be used.

本発明における非水電解質は、非水溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、有機高分子に非水溶媒と電解質塩を含浸させたゲル状電解質、または無機固体電解質のいずれを用いてもよい。非水電解液は、有機溶媒と電解質とを適宜組み合わせて調製されるが、これら有機溶媒は、この種の電池に用いられるものであれば、いずれを使用してもよい。例示するならば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4メチル1,3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、酢酸エステル、酪酸エステル、プロピオン酸エステル等である。固体電解質としては、リチウムイオン導電性を有する材料であれば無機固体電解質、高分子固体電解質のいずれを使用してもよい。無機固体電解質として、窒化リウチム、よう化リチウム、結晶質硫化物、ガラス硫化物などが挙げられる。高分子固体電解質は電解質塩とそれを溶解する高分子化合物からなり、その高分子化合物はポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系などを単独あるいは分子中に共重合、または混合して用いることができる。   The non-aqueous electrolyte in the present invention is a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent, a solid electrolyte containing an electrolyte salt, a gel electrolyte obtained by impregnating an organic polymer with a non-aqueous solvent and an electrolyte salt, Alternatively, any of inorganic solid electrolytes may be used. The nonaqueous electrolytic solution is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents may be used as long as it is used for this type of battery. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4 Examples thereof include methyl 1,3 dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, anisole, acetate ester, butyrate ester, propionate ester and the like. As the solid electrolyte, either an inorganic solid electrolyte or a polymer solid electrolyte may be used as long as the material has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride, lithium iodide, crystalline sulfide, and glass sulfide. A polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt. The polymer compound is composed of an ether polymer such as poly (ethylene oxide) or a crosslinked product, a poly (methacrylate) ester, an acrylate, or the like. It can be used alone, copolymerized or mixed in the molecule.

ゲル状電解質のマトリックスとしては、上記非水電解液を吸収してゲル化するものであれば、種々の高分子を利用することができる。たとえばポリ(ビニリデンフルオロライド)やポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子、ポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、またポリ(アクリロニトリル)などを使用できる。特に酸化還元安定性から、フッ素系高分子を用いることが望ましい。電解質塩を含有させることによりイオン導電性を賦与する。上記電解質中で用いられる電解質塩は、この種の電池に用いられるものであれば、いずれを使用してもよい。例示するならば、LiClO4,LiAsF6,LiPF6,LiBF4,LiB(C654,CH3SO3Li,CF3SO3Li,LiCl,LiBr等である。 As the matrix of the gel electrolyte, various polymers can be used as long as they absorb and absorb the non-aqueous electrolyte. For example, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene), ether-based polymers such as poly (ethylene oxide) and cross-linked products, and poly (acrylonitrile) Can be used. In particular, it is desirable to use a fluorine-based polymer from the viewpoint of redox stability. By containing an electrolyte salt, ionic conductivity is imparted. Any electrolyte salt may be used as long as it is used in this type of battery. For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiCl, LiBr, etc.

本発明によると、組成式:LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池と、該電池の開回路電位よりも0.1V以上高い過電圧の印加を可能ならしめる回路機構とを具備した電池システムが提供される。本発明による電池システムは、非水電解質系二次電池と回路機構とが一体化されているものであっても、両者が別個独立した素子であってもよい。当該回路機構としては、当該技術分野で知られている各種の内部回路のいずれを含むものでも使用することができる。そのような内部回路の一例を図6に示す。当業者であれば、本発明による非水電解質系二次電池に、適宜、本発明による充電方法を可能ならしめる各種回路機構を組み合わせ、電池システムを構築することができる。 According to the present invention, a non-aqueous electrolyte secondary battery containing a compound represented by the composition formula: Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material, and 0.1 V higher than the open circuit potential of the battery. There is provided a battery system including a circuit mechanism that enables application of a high overvoltage. The battery system according to the present invention may be one in which the nonaqueous electrolyte secondary battery and the circuit mechanism are integrated, or may be an element in which both are separate and independent. As the circuit mechanism, any one of various internal circuits known in the technical field can be used. An example of such an internal circuit is shown in FIG. A person skilled in the art can construct a battery system by appropriately combining the nonaqueous electrolyte secondary battery according to the present invention with various circuit mechanisms that enable the charging method according to the present invention.

以下、本発明を適用した実施例について、第1図〜第6図を参照して説明する。
図1に示したような、負極にリチウムメタルを用いたコインセルを用いて検討を行った。特に断らない限り、電極作製は下記の条件で実施した。即ち、活物質を乾燥したもの90wt%、導電剤としてアセチレンブラック8wt%、バインダーとしてポリフッ化ビニリデン(PVDF)2wt%(アルドリッチ#1300)をジメチルホルムアミド(DMF)を用いて混練してペーストとし、集電体となるアルミメッシュと共にペレット化して100℃で1時間の乾燥(乾燥アルゴン気流中)を行なった。充電は、活物質10mgを担持させたペレットを対極にリチウム金属を配した2016コインセルに組み込み、電解液としてプロピレンカーボネート(PC)+ジメチルカーボネート(DMC)(1:1)/1M LiPF6を用いて行った。一定電圧を印加するため、図6に示したような回路を有するポテンショスタット(北斗電工HA−501)を使用した。セルに一定の電圧を印加し、その際誘起される電流の時間依存性を測定した。また、これを積分することで容量消費の時間依存性を算出した。測定は常温(23℃)で行った。
Embodiments to which the present invention is applied will be described below with reference to FIGS.
A study was made using a coin cell using lithium metal as the negative electrode as shown in FIG. Unless otherwise specified, electrode fabrication was performed under the following conditions. That is, 90 wt% of the dried active material, 8 wt% of acetylene black as a conductive agent, 2 wt% of polyvinylidene fluoride (PVDF) (Aldrich # 1300) as a binder are kneaded using dimethylformamide (DMF) to form a paste, It pelletized with the aluminum mesh used as an electric body, and dried at 100 degreeC for 1 hour (in dry argon stream). Charging is carried out by incorporating a pellet carrying 10 mg of active material into a 2016 coin cell with lithium metal disposed at the opposite electrode, and using propylene carbonate (PC) + dimethyl carbonate (DMC) (1: 1) / 1M LiPF 6 as the electrolyte. went. In order to apply a constant voltage, a potentiostat (Hokuto Denko HA-501) having a circuit as shown in FIG. 6 was used. A constant voltage was applied to the cell, and the time dependency of the induced current was measured. Moreover, the time dependence of the capacity consumption was calculated by integrating this. The measurement was performed at normal temperature (23 ° C.).

例1(発明例)
正極活物質としてのLiFePO4を次のようにして合成した。シュウ酸鉄FeC24.2H2Oとリン酸アンモニウムNH42PO4と炭酸リチウムLi2CO3とを、モル比2:2:1になるように秤量し、さらに最終的に8wt%の炭素が残留するようにカーボンブラックを添加したのち十分に混合し、そのまま窒素雰囲気下で600℃において窒素雰囲気下24時間の焼成を行った。この粉末のX線回析を行ったところ、単相のLiFePO4が合成されていることが確認された。
Example 1 (Invention)
LiFePO 4 as a positive electrode active material was synthesized as follows. Iron oxalate FeC 2 O 4 . 2H 2 O, ammonium phosphate NH 4 H 2 PO 4 and lithium carbonate Li 2 CO 3 are weighed to a molar ratio of 2: 2: 1, and finally 8 wt% of carbon remains. After carbon black was added, the mixture was mixed thoroughly and baked in a nitrogen atmosphere at 600 ° C. for 24 hours under a nitrogen atmosphere. When X-ray diffraction of this powder was performed, it was confirmed that single-phase LiFePO 4 was synthesized.

例2(比較例)
正極活物質としてのLiMnPO4を次のようにして合成した。シュウ酸マンガンMnC24.0.5H2Oとリン酸アンモニウムNH42PO4と炭酸リチウムLi2CO3とを、モル比2:2:1になるように秤量し、さらに最終的に8wt%の炭素が残留するようにカーボンブラックを添加したのち十分に混合し、そのまま窒素雰囲気下で600℃において窒素雰囲気下24時間の焼成を行った。この粉末のX線回析を行ったところ、単相のLiMnPO4が合成されていることが確認された。
Example 2 (comparative example)
LiMnPO 4 as a positive electrode active material was synthesized as follows. Manganese oxalate MnC 2 O 4 . 0.5H 2 O, ammonium phosphate NH 4 H 2 PO 4 and lithium carbonate Li 2 CO 3 are weighed in a molar ratio of 2: 2: 1, and finally 8 wt% of carbon remains. After adding carbon black as described above, the mixture was sufficiently mixed and calcined in a nitrogen atmosphere at 600 ° C. for 24 hours in a nitrogen atmosphere. When X-ray diffraction of this powder was performed, it was confirmed that single-phase LiMnPO 4 was synthesized.

例3(比較例)
正極活物質としてのLiMn24を次のようにして合成した。二酸化マンガンMnO2と水酸化リチウムLiOH.H2Oとを、モル比2:1になるように秤量し十分に混合した後、空気中470℃において焼成後さらに空気中750℃の焼成を行った。この粉末のX線回析を行ったところ、単相のLiMn24が合成されていることが確認された。
Example 3 (comparative example)
LiMn 2 O 4 as a positive electrode active material was synthesized as follows. Manganese dioxide MnO 2 and lithium hydroxide LiOH. H 2 O was weighed so as to have a molar ratio of 2: 1 and thoroughly mixed, and then calcined at 470 ° C. in air and further calcined at 750 ° C. in air. When X-ray diffraction of this powder was performed, it was confirmed that single-phase LiMn 2 O 4 was synthesized.

このようにして作製した電池の一定過電圧(0.1V、0.2V、0.3V)下の電流緩和と容量消費の時間依存性をLiFePO4とLiMnPO4について図2に示す。過電圧が大きいほど誘起される電流も大きくなり、容量消費速度が高くなることがわかる。また、0.1V以上の過電圧をかけると急激に反応速度を早くすることができ、本発明の有効性を支持している。またMnにくらべFeの反応速度ははるかに速いことがわかる。 FIG. 2 shows the time dependence of current relaxation and capacity consumption under a constant overvoltage (0.1 V, 0.2 V, 0.3 V) of the battery thus fabricated for LiFePO 4 and LiMnPO 4 . It can be seen that the greater the overvoltage, the greater the induced current and the higher the capacity consumption rate. Further, when an overvoltage of 0.1 V or more is applied, the reaction rate can be rapidly increased, which supports the effectiveness of the present invention. It can also be seen that the reaction rate of Fe is much faster than that of Mn.

4.2Vの一定電圧を印加した際の容量消費の時間依存性をLiMn24、LiFePO4、LiMnPO4について比較した結果を図3に示す。LiFePO4は電子絶縁性のため、反応速度が遅いといわれてきたが、大きな過電圧を強制的に印加することにより、LiMn24よりも優れた急速充電特性を示し、本発明の有効性を直接的に支持している。LiMnPO4は電圧が高く、元来の活性も極めて低いことから反応が殆ど進行しない。 FIG. 3 shows the result of comparing the time dependency of capacity consumption when a constant voltage of 4.2 V is applied with respect to LiMn 2 O 4 , LiFePO 4 , and LiMnPO 4 . LiFePO 4 has been said to have a slow reaction rate due to its electronic insulation, but by applying a large overvoltage forcibly, it exhibits a quick charge characteristic superior to that of LiMn 2 O 4. Direct support. Since LiMnPO 4 has a high voltage and very low intrinsic activity, the reaction hardly proceeds.

つぎに、4.2Vの一定電圧下で30分間の充電後に測定した放電特性を図4に示す。LiFePO4はほぼ理論容量での放電が可能であり、30分以下の急速充電がLiFePO4に対して十分に機能していることが確認された。 Next, FIG. 4 shows the discharge characteristics measured after charging for 30 minutes under a constant voltage of 4.2V. LiFePO 4 can be discharged with a theoretical capacity, and it was confirmed that rapid charging for 30 minutes or less functions sufficiently with respect to LiFePO 4 .

さらに、Li引抜き加速試験として、LiFePO4,LiMnPO4,LiMn24について、NO2BF4のアセトニトリル溶液による30分間の酸化反応前後のx線回折図を図5に示す。LiFePO4とLiMn24については反応が完全に完了しており、図3、図4とよく対応している。LiMnPO4については反応が十分に進行しておらず、これも図3、図4とよく対応している。 Furthermore, as a Li extraction acceleration test, x-ray diffraction patterns of LiFePO 4 , LiMnPO 4 , and LiMn 2 O 4 before and after an oxidation reaction for 30 minutes with an acetonitrile solution of NO 2 BF 4 are shown in FIG. For LiFePO 4 and LiMn 2 O 4 , the reaction is completely completed, which corresponds well to FIGS. 3 and 4. For LiMnPO 4 , the reaction does not proceed sufficiently, and this also corresponds well to FIG. 3 and FIG.

本発明は本実施例のようなコイン形の二次電池のみに適用しうるものではなく、角形の積層型二次電池に適用することもでき、また、ボタン型、円筒型の二次電池にも適用しうるものである。   The present invention is not only applicable to the coin-type secondary battery as in this embodiment, but can also be applied to a rectangular stacked secondary battery, and is also applicable to button-type and cylindrical-type secondary batteries. Is also applicable.

本発明による充電方法の概念を示す略横断面図である。It is a general | schematic cross-sectional view which shows the concept of the charging method by this invention. 一定過電圧下の電流緩和と容量消費の時間依存性を示すグラフである。It is a graph which shows the time dependence of the current relaxation under fixed overvoltage and capacity consumption. 4.2Vの一定電圧を印加した際のLiFePO4,LiMnPO4,LiMn24の容量消費の時間依存性を示すグラフである。It is LiFePO 4, LiMnPO 4, a graph showing the time dependence of capacity consumption of LiMn 2 O 4 at the time of applying a constant voltage of 4.2 V. 30分間の4.2Vの一定電圧での充電後の放電曲線を示すグラフである。It is a graph which shows the discharge curve after charge by the constant voltage of 4.2V for 30 minutes. LiFePO4,LiMnPO4,LiMn24について、NO2BF4のアセトニトリル溶液による30分間の酸化反応前後のx線回折図である。LiFePO 4, the LiMnPO 4, LiMn 2 O 4, wherein x-ray diffraction diagram before and after the oxidation reaction for 30 minutes with acetonitrile solution of NO 2 BF 4. 本発明による定電圧制御に使用することができる回路の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit which can be used for the constant voltage control by this invention.

Claims (8)

組成式:LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池の充電方法であって、該電池の開回路電位よりも0.1V以上高い過電圧を印加することを特徴とする充電方法。 Composition method: Li x FePO 4 (0 <x ≦ 1) A method for charging a non-aqueous electrolyte secondary battery containing as a positive electrode active material, which is 0.1 V higher than the open circuit potential of the battery. A charging method characterized by applying a high overvoltage. 該過電圧が該電池の開回路電位よりも0.2V以上高い、請求項1に記載の方法。   The method of claim 1, wherein the overvoltage is 0.2 V or more higher than the open circuit potential of the battery. 該過電圧が該電池の開回路電位よりも0.5V以上高い、請求項1に記載の方法。   The method of claim 1, wherein the overvoltage is 0.5 V or more higher than the open circuit potential of the battery. 該過電圧を印加する時間が全充電時間の30%以上を占める、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the time for applying the overvoltage accounts for 30% or more of the total charging time. 該印加を、印加電圧を一定とする定電圧制御で行う、請求項1〜4のいずれか一項に記載の方法。   The method according to claim 1, wherein the application is performed by constant voltage control in which an applied voltage is constant. 該印加を、該過電圧を一定とする定電圧制御で行う、請求項1〜4のいずれか一項に記載の方法。   The method according to claim 1, wherein the application is performed by constant voltage control in which the overvoltage is constant. 該電池の理論容量の50%を30分以内に充電する、請求項1〜6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein 50% of the theoretical capacity of the battery is charged within 30 minutes. 組成式:LiFePO(0<x≦1)で表される化合物を正極活物質として含む非水電解質系二次電池と、該電池の開回路電位よりも0.1V以上高い過電圧の印加を可能ならしめる回路機構とを具備した電池システム。 Nonaqueous electrolyte secondary battery containing a compound represented by the composition formula: Li x FePO 4 (0 <x ≦ 1) as a positive electrode active material, and application of an overvoltage higher by 0.1 V or more than the open circuit potential of the battery A battery system comprising a circuit mechanism that makes it possible.
JP2004188479A 2004-06-25 2004-06-25 Charging method of non-aqueous electrolyte secondary battery, and battery system Pending JP2006012613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188479A JP2006012613A (en) 2004-06-25 2004-06-25 Charging method of non-aqueous electrolyte secondary battery, and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188479A JP2006012613A (en) 2004-06-25 2004-06-25 Charging method of non-aqueous electrolyte secondary battery, and battery system

Publications (1)

Publication Number Publication Date
JP2006012613A true JP2006012613A (en) 2006-01-12

Family

ID=35779610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188479A Pending JP2006012613A (en) 2004-06-25 2004-06-25 Charging method of non-aqueous electrolyte secondary battery, and battery system

Country Status (1)

Country Link
JP (1) JP2006012613A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800341B2 (en) 2007-03-26 2010-09-21 The Gillette Company Battery charger with mechanism to automatically load and unload batteries
WO2010125649A1 (en) 2009-04-28 2010-11-04 トヨタ自動車株式会社 Charge holding method for lithium-ion secondary battery, battery system, vehicle, and battery-mounted device
US7932700B2 (en) 2007-03-26 2011-04-26 The Gillette Company Battery with integrated voltage converter
US8115454B2 (en) 2007-03-26 2012-02-14 The Gillette Company Battery with an integrated voltage converter having a bypass circuit
RU2450391C1 (en) * 2010-12-15 2012-05-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Method of nickel-hydrogen accumulator preparation for normal operation with man-made satellites
US8368346B2 (en) 2007-03-26 2013-02-05 The Gillette Company Portable energy storage and charging device
US8384345B2 (en) 2008-08-01 2013-02-26 Toyota Jidosha Kabushiki Kaisha Control method for lithium ion secondary battery, and lithium ion secondary battery system
US20140062412A1 (en) * 2012-08-30 2014-03-06 General Electric Company Method of charging an electrochemical cell
US9013139B2 (en) 2007-03-26 2015-04-21 The Gillette Company Adaptive charger device and method
DE112021005688T5 (en) 2020-10-27 2023-08-24 Gs Yuasa International Ltd. Anomaly detection method, anomaly detection device, energy storage device and computer program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368346B2 (en) 2007-03-26 2013-02-05 The Gillette Company Portable energy storage and charging device
US7932700B2 (en) 2007-03-26 2011-04-26 The Gillette Company Battery with integrated voltage converter
US8115454B2 (en) 2007-03-26 2012-02-14 The Gillette Company Battery with an integrated voltage converter having a bypass circuit
US8120315B2 (en) 2007-03-26 2012-02-21 The Gillette Company Battery charger with mechanism to automatically load and unload batteries
US7800341B2 (en) 2007-03-26 2010-09-21 The Gillette Company Battery charger with mechanism to automatically load and unload batteries
US9013139B2 (en) 2007-03-26 2015-04-21 The Gillette Company Adaptive charger device and method
US8384345B2 (en) 2008-08-01 2013-02-26 Toyota Jidosha Kabushiki Kaisha Control method for lithium ion secondary battery, and lithium ion secondary battery system
WO2010125649A1 (en) 2009-04-28 2010-11-04 トヨタ自動車株式会社 Charge holding method for lithium-ion secondary battery, battery system, vehicle, and battery-mounted device
US9812741B2 (en) 2009-04-28 2017-11-07 Toyota Jidosha Kabushiki Kaisha Method of charging and maintaining lithium ion secondary battery, battery system, vehicle and battery-mounted device
RU2450391C1 (en) * 2010-12-15 2012-05-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Method of nickel-hydrogen accumulator preparation for normal operation with man-made satellites
US20140062412A1 (en) * 2012-08-30 2014-03-06 General Electric Company Method of charging an electrochemical cell
US8988047B2 (en) * 2012-08-30 2015-03-24 General Electric Company Method of charging an electrochemical cell
DE112021005688T5 (en) 2020-10-27 2023-08-24 Gs Yuasa International Ltd. Anomaly detection method, anomaly detection device, energy storage device and computer program

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
US9786904B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery having the same
US9748574B2 (en) Anode and secondary battery
JP6068789B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP2001319652A (en) Positive active material and non-aqueous electrolyte battery, and their manufacturing method
US20090155697A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20020017967A (en) Non-aqueous electrolyte secondary cell
JP4848582B2 (en) Method for producing positive electrode active material
JP2008159419A (en) Nonaqueous electrolyte secondary battery
JP4432203B2 (en) Cathode active material and non-aqueous electrolyte battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2022551058A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JPH07211311A (en) Nonaqueous-electrolyte secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JP4724912B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
US6656638B1 (en) Non-aqueous electrolyte battery having a lithium manganese oxide electrode
JP2006012613A (en) Charging method of non-aqueous electrolyte secondary battery, and battery system
JP3640108B2 (en) Method for synthesizing active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004014472A (en) Nonaqueous secondary battery
KR101084080B1 (en) Non-aqueous electrolyte secondary cell
US6521375B1 (en) Electrolyte for rechargeable lithium battery exhibiting good cycle life characteristics and rechargeable lithium battery using same
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4172443B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118