JP2001135295A - Separator for batteries - Google Patents

Separator for batteries

Info

Publication number
JP2001135295A
JP2001135295A JP31935099A JP31935099A JP2001135295A JP 2001135295 A JP2001135295 A JP 2001135295A JP 31935099 A JP31935099 A JP 31935099A JP 31935099 A JP31935099 A JP 31935099A JP 2001135295 A JP2001135295 A JP 2001135295A
Authority
JP
Japan
Prior art keywords
fine particles
film
inorganic fine
battery separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31935099A
Other languages
Japanese (ja)
Other versions
JP4470248B2 (en
Inventor
Masayuki Kiuchi
政行 木内
Tetsuo Akazawa
哲夫 赤澤
Hisashi Oe
尚志 大江
Ryuichiro Kogure
隆一郎 木暮
Kenji Kawabata
健嗣 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP31935099A priority Critical patent/JP4470248B2/en
Priority to CNB001374796A priority patent/CN1236508C/en
Priority to US09/709,623 priority patent/US6627346B1/en
Publication of JP2001135295A publication Critical patent/JP2001135295A/en
Priority to HK01107893A priority patent/HK1038100A1/en
Application granted granted Critical
Publication of JP4470248B2 publication Critical patent/JP4470248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for batteries superior in mechanical strength against flaws or the like by properly blending inorganic fine particles which contain a specified metal oxides as major components. SOLUTION: This separator for batteries is composed of single or multi- layered porous film that is made porous through drawing method and is featured with the porous film containing 100 to 5,000 ppm for inorganic fine particles, having a mean particle size 0.1 to 10 μm having at least single kind of metal oxide selected among groups of silicon oxides, aluminum oxides and magnesium oxides as the major components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池の構
成材料として有用な電池用セパレータに関する。
The present invention relates to a battery separator useful as a constituent material of a lithium battery.

【0002】[0002]

【従来の技術】従来、電池用セパレータや電解コンデン
サ用隔膜等としてポリオレフィン系多孔質フィルムが使
用されている。特に、近年技術の高度化に伴い、リチウ
ム電池等においては高精度、高機能のセパレータが要求
されるようになってきた。
2. Description of the Related Art Hitherto, polyolefin-based porous films have been used as separators for batteries and diaphragms for electrolytic capacitors. In particular, with the advancement of technology in recent years, high precision and high performance separators have been required for lithium batteries and the like.

【0003】電池を例にとってみると、近年高エネルギ
ー密度、高起電力、自己放電の少ないリチウム電池のよ
うな非水電解液電池、特にリチウム二次電池が開発、実
用化されている。リチウム電池の負極としては例えば金
属リチウム、リチウムと他の金属との合金、カーボンや
グラファイト等のリチウムイオンを吸着する能力又はイ
ンターカレーションにより吸蔵する能力を有する炭素材
料、リチウムイオンをドーピングした導電性高分子材料
等が知られており、また正極としては例えば(CFxn
で示されるフッ化黒鉛、MnO2、V25、CuO、A
2CrO4、TiO2、LiCoO2、LiMn24等の
金属酸化物や硫化物、塩化物が知られている。
Taking a battery as an example, a non-aqueous electrolyte battery such as a lithium battery having a high energy density, a high electromotive force and little self-discharge, particularly a lithium secondary battery has been developed and put into practical use in recent years. Examples of the negative electrode of a lithium battery include metallic lithium, an alloy of lithium and another metal, a carbon material capable of adsorbing or intercalating lithium ions such as carbon and graphite, and a conductive material doped with lithium ions. Polymer materials and the like are known, and as the positive electrode, for example, (CF x ) n
Fluorinated graphite, MnO 2 , V 2 O 5 , CuO, A
Metal oxides such as g 2 CrO 4 , TiO 2 , LiCoO 2 and LiMn 2 O 4 , sulfides and chlorides are known.

【0004】また、非水電解液として、エチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
ト、ジメチルカーボネート、メチルエチルカーボネー
ト、ジエチルカーボネート、γ−ブチロラクトン、アセ
トニトリル、1,2−ジメトキシエタン、テトラヒドロ
フラン等の有機溶媒にLiPF6、LiBF4、LiCl
4、LiCF3SO3、LiN(SO2CF32、LiN
(SO2252等の電解質を溶解したものが使用され
ている。
As a non-aqueous electrolytic solution, an organic solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran or the like is used. 6 , LiBF 4 , LiCl
O 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN
A solution in which an electrolyte such as (SO 2 C 2 F 5 ) 2 is dissolved is used.

【0005】このようなリチウム電池の構成材料である
セパレータの役割は、正負両極の短絡を防止するととも
に電池反応を阻害しないこと、並びに異常時に熱閉塞し
て電池の発熱、発火を防ぐことにあり、特に電池の安全
性と密接に関係づけられる機械的強度の改良を目的とし
て、以下のような種々の多孔質フィルムが提案されてい
る。
[0005] The role of the separator, which is a constituent material of such a lithium battery, is to prevent short-circuiting of the positive and negative electrodes and not to hinder the battery reaction, and to prevent heat generation and ignition of the battery due to thermal obstruction due to abnormal heat. For the purpose of improving the mechanical strength which is closely related to the safety of the battery, in particular, the following various porous films have been proposed.

【0006】分子量の高い原料樹脂を用いた多孔質フィ
ルム(特開平2−94356号公報、特開平3−105
851号公報等)。支持体に熱可塑性樹脂や不織布を用
いた多孔質フィルム(特開平3−245457号公報、
特開平1−258358号公報等)。
[0006] A porous film using a raw material resin having a high molecular weight (JP-A-2-94356, JP-A-3-105)
No. 851). A porous film using a thermoplastic resin or a non-woven fabric as a support (Japanese Patent Application Laid-Open No. 3-245457,
JP-A-1-258358 and the like).

【0007】電池の安全性を反映するセパレータの性状
の一つとして、微小突起による表面の傷つき性が挙げら
れる。リチウム電池の極板表面には、しばしば数μm程
度の凹凸が存在する。このため、多孔質フィルムを電池
用セパレータとしてリチウム電池に組込むと、極板表面
の凹凸によってフィルムが損傷されることが懸念されて
いる。セパレータの損傷は電池の短絡を引き起す原因と
なるため、セパレータそのものの強度はもちろんのこ
と、微小突起による表面の傷つき性の改良が重要な課題
となっている。
[0007] One of the properties of the separator that reflects the safety of the battery is that the surface is damaged by minute projections. The surface of the electrode plate of a lithium battery often has irregularities of about several μm. For this reason, when a porous film is incorporated into a lithium battery as a battery separator, there is a concern that the film may be damaged by irregularities on the surface of the electrode plate. Since the damage of the separator causes a short circuit of the battery, it is important to improve not only the strength of the separator itself but also the surface damage due to minute projections.

【0008】一方、強度改良を目的として、ポリオレフ
ィン樹脂からなる多孔質フィルムに無機充填剤を配合す
る方法或いは無機微粒子を含有した表面保護層を設ける
方法等が知られている。無機充填剤を配合する方法(特
開昭62−167332号公報)では、無機充填剤によ
る強度改良のみならず延伸多孔化の均一性の付与を目的
としているために、該無機充填剤の配合量が樹脂量10
0重量部に対して50〜500重量部と多く、異常時に
(樹脂部分が)熱閉塞して電池の発熱、発火を防ぐシャ
ットダウン機能の信頼性が不十分であるために電池用セ
パレータとしては適さない。また、無機微粒子を含有し
た表面保護層を設ける方法(特開平11−80395号
公報)では、多孔質フィルムの表面に無機微粒子を含む
表面保護層を配する工程が製造工程上煩雑となる上に、
表面保護層の塗布によって透気度が増加するために、低
い透気度のものが得られず、未だ改良の余地がある。
On the other hand, for the purpose of improving the strength, a method of blending an inorganic filler into a porous film made of a polyolefin resin or a method of providing a surface protective layer containing inorganic fine particles is known. In the method of blending an inorganic filler (Japanese Patent Application Laid-Open No. 62-167332), the purpose is not only to improve the strength of the inorganic filler but also to impart uniformity of stretched porosity. Is resin amount 10
Suitable as a battery separator because the reliability of the shutdown function to prevent heat generation and ignition of the battery due to thermal clogging (resin part) is abnormal at an abnormal time (50 to 500 parts by weight with respect to 0 part by weight). Absent. In the method of providing a surface protective layer containing inorganic fine particles (Japanese Patent Application Laid-Open No. H11-80395), the step of disposing a surface protective layer containing inorganic fine particles on the surface of a porous film becomes complicated in the manufacturing process. ,
Since the air permeability is increased by applying the surface protective layer, a low air permeability cannot be obtained, and there is still room for improvement.

【0009】さらに、無機微粒子等の樹脂改質用添加剤
を用いたセパレーター用多孔質膜の改良においては、電
池の使用中に電池反応以外の電気化学反応によって添加
剤が分解或は変性しないように、先に本願発明者等が出
願した特願平11−6045号明細書に記載のように、
無機微粒子の酸化電位がリチウムに対して+4.5V以
上であることが好ましい。本発明の目的は、リチウム電
池用セパレータとして電池使用時の信頼性及び安全性に
優れ且つ電池反応を阻害することのない多孔質フィルム
すなわち電池用セパレータを提供することにある。
Further, in the improvement of a porous membrane for a separator using a resin modifying additive such as inorganic fine particles, the additive is not decomposed or denatured by an electrochemical reaction other than the battery reaction during use of the battery. As described in the specification of Japanese Patent Application No. 11-6045 filed earlier by the present inventors,
Preferably, the oxidation potential of the inorganic fine particles is +4.5 V or more with respect to lithium. An object of the present invention is to provide a porous film that is excellent in reliability and safety during use of a battery and does not inhibit a battery reaction, that is, a battery separator, as a lithium battery separator.

【0010】[0010]

【課題を解決するための手段】本発明者らは、鋭意研究
の結果、特定の金属酸化物を主成分とする無機微粒子を
適切に配合することで、信頼性及び安全性に優れ且つ電
池反応を阻害することのない多孔質フィルムが得られる
ことを見出した。すなわち本発明は、延伸法により多孔
化した単層又は積層多孔質フィルムからなる電池用セパ
レータであって、該多孔質フィルムが、酸化珪素、酸化
アルミニウム、酸化マグネシウムの群から選ばれる少な
くとも1種の金属酸化物を主成分とする平均粒径0.1
〜10μmの無機微粒子を、100〜5000ppm含
むことを特徴とする電池用セパレータに関する。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that by appropriately blending inorganic fine particles containing a specific metal oxide as a main component, excellent reliability and safety and excellent battery reaction can be obtained. It has been found that a porous film that does not hinder the formation of a porous film can be obtained. That is, the present invention is a battery separator comprising a single-layer or laminated porous film porous by a stretching method, wherein the porous film is at least one kind selected from the group consisting of silicon oxide, aluminum oxide, and magnesium oxide. Average particle size 0.1 mainly composed of metal oxide
The present invention relates to a battery separator containing 100 to 5000 ppm of inorganic fine particles of 10 to 10 μm.

【0011】[0011]

【発明の実施の形態】本発明の電池用セパレータに使用
される材料としては、特に制限はなく、ポリプロピレ
ン、ポリエチレン等のポリオレフィン樹脂が利用でき
る。また、本発明の多孔質フィルムは単層多孔質フィル
ム及び積層多孔質フィルムのいずれの構成であっても良
く、積層多孔質フィルムである場合は、積層した多孔質
フィルムの少なくとも1層に無機微粒子を含んでいれば
良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The material used for the battery separator of the present invention is not particularly limited, and polyolefin resins such as polypropylene and polyethylene can be used. Further, the porous film of the present invention may have any structure of a single-layer porous film and a laminated porous film. When the porous film is a laminated porous film, at least one layer of the laminated porous film contains inorganic fine particles. Should be included.

【0012】本発明に使用されるポリプロピレンは、数
平均分子量が5万以上、より好ましくは7万以上、数平
均分子量と重量平均分子量の比が8以下のものが機械的
強度が高く好ましい。また、ポリプロピレンの結晶化温
度は110℃以上、さらに好ましくは112℃以上が好
適である。
The polypropylene used in the present invention preferably has a number average molecular weight of 50,000 or more, more preferably 70,000 or more, and a ratio of the number average molecular weight to the weight average molecular weight of 8 or less, because of its high mechanical strength. The crystallization temperature of the polypropylene is preferably 110 ° C. or higher, more preferably 112 ° C. or higher.

【0013】本発明に使用するポリエチレンとしては、
高密度ポリエチレン、中密度ポリエチレン、直鎖低密度
ポリエチレン等のいずれであっても良いが、好ましくは
高密度ポリエチレンである。ポリエチレンの数平均分子
量は1万以上、より好ましくは2万以上のものが機械的
強度が高く好ましい。
The polyethylene used in the present invention includes:
Any of high-density polyethylene, medium-density polyethylene, linear low-density polyethylene and the like may be used, but high-density polyethylene is preferred. Polyethylene having a number average molecular weight of 10,000 or more, more preferably 20,000 or more, is preferred because of its high mechanical strength.

【0014】本発明において、ポリプロピレン及びポリ
エチレンの数平均分子量は、WATERS社製150C型ゲル
浸透クロマトグラフを用いて、標準ポリスチレン換算に
よって求めた。カラムにはShodex HT-806M2本を使用
し、0.3wt/vol%に調製したオルトジクロロベンゼ
ン中、135℃で測定を行った。また、ポリプロピレン
の融点は、パーキンエルマー社製DSC−7を用いて測
定した。試料は熱履歴を取除くために230℃で10分
間保持して完全融解した後、10℃/minで室温まで
冷却し、測定は昇温速度10℃/minにて融解曲線の
極大値を融点とした。
In the present invention, the number average molecular weights of polypropylene and polyethylene were determined in terms of standard polystyrene using a 150C gel permeation chromatograph manufactured by WATERS. Two Shodex HT-806M columns were used, and the measurement was performed at 135 ° C. in orthodichlorobenzene adjusted to 0.3 wt / vol%. The melting point of polypropylene was measured using DSC-7 manufactured by PerkinElmer. The sample was held at 230 ° C for 10 minutes to completely remove the heat history, and then completely melted. After cooling to room temperature at 10 ° C / min, the maximum value of the melting curve was measured at a heating rate of 10 ° C / min. And

【0015】本発明の電池用セパレータに含まれる無機
微粒子は、酸化珪素、酸化アルミニウム、酸化マグネシ
ウムの群から選ばれる少なくとも1種の金属酸化物を主
成分とし、リチウム二次電池の構成材料である非水電解
液に膨潤及び溶解しないことが望ましい。無機微粒子が
非水電解液に膨潤及び溶解する有機物を含んでいると、
電池使用時に電池反応を阻害する可能性があるため適当
でない。また、無機微粒子の平均粒径は0.1〜10μ
m、さらに好ましくは0.5〜3μmである。無機微粒
子の平均粒径がこの範囲より小さい場合、電池用セパレ
ータの傷つき性等の機械的強度改良効果が期待できず、
またこの範囲より大きい場合は、無機微粒子の分散不良
による電池用セパレータの外観不良が生じるので適当で
ない。
The inorganic fine particles contained in the battery separator of the present invention are composed mainly of at least one metal oxide selected from the group consisting of silicon oxide, aluminum oxide and magnesium oxide, and are a constituent material of a lithium secondary battery. It is desirable not to swell and dissolve in the non-aqueous electrolyte. When the inorganic fine particles contain organic substances that swell and dissolve in the non-aqueous electrolyte,
It is not suitable because the battery reaction may be hindered when the battery is used. The average particle diameter of the inorganic fine particles is 0.1 to 10 μm.
m, more preferably 0.5 to 3 μm. If the average particle size of the inorganic fine particles is smaller than this range, the effect of improving mechanical strength such as scratch resistance of the battery separator cannot be expected,
On the other hand, if it is larger than this range, the appearance of the battery separator is poor due to poor dispersion of the inorganic fine particles.

【0016】本発明に使用される無機微粒子の真比重は
1.5以上、特に2以上であることが好ましい。無機微
粒子の真比重が小さすぎると、電池用セパレータの傷つ
き性等の機械的強度改良効果が小さいため適当でない。
また、無機微粒子の酸化電位は、リチウムに対して+
4.5V以上、特に+5V以上であることが電気化学的
に安定で好ましい。
The true specific gravity of the inorganic fine particles used in the present invention is preferably 1.5 or more, particularly preferably 2 or more. If the true specific gravity of the inorganic fine particles is too small, the effect of improving the mechanical strength such as the flaw of the battery separator is small, which is not appropriate.
Also, the oxidation potential of the inorganic fine particles is +
It is preferably 4.5 V or more, particularly +5 V or more, because it is electrochemically stable.

【0017】本発明に示す酸化電位の測定は、ジメチル
カーボネートにLiPF6を溶解して1M/Lに調製し
た非水電解液を用いて行った。この非水電解液に該無機
微粒子を0.05M/Lになるように懸濁した。参照電
極には金属リチウム箔を、作用電極に白金電極を用い
て、毎秒10mVの速度で±0V〜+4.5Vまで電位
を掃引し、0.1mAの電流が検知された電圧を酸化電
位とした。
The measurement of the oxidation potential shown in the present invention was carried out using a non-aqueous electrolyte prepared by dissolving LiPF 6 in dimethyl carbonate to have a concentration of 1 M / L. The inorganic fine particles were suspended in this non-aqueous electrolyte so as to have a concentration of 0.05 M / L. Using a metallic lithium foil as a reference electrode and a platinum electrode as a working electrode, the potential was swept from ± 0 V to +4.5 V at a rate of 10 mV / sec, and the voltage at which a current of 0.1 mA was detected was taken as the oxidation potential. .

【0018】本発明において、無機微粒子をポリプロピ
レン或いはポリエチレンに配合する方法については特に
制限はないが、通常の混練機を用いた混練により配合す
ることができる。例えば、一軸押出機、二軸押出機、ミ
キシングロール等を用いて溶融混練し、ペレットを得る
ことできる。また、ヘンシェルミキサー、タンブラー等
を用いてドライブレンドによって配合しても良い。電池
用セパレータに対する無機微粒子の配合比率は100〜
5000ppm、さらに好ましくは300〜4000p
pmである。無機微粒子の配合量がこの範囲より小さい
場合、電池用セパレータの傷つき性等の機械的強度改良
効果が期待できず、またこの範囲より大きい場合は、延
伸法による多孔化が困難となり、透気度の低い電池用セ
パレータを得ることができないため適当でない。
In the present invention, the method of blending the inorganic fine particles with polypropylene or polyethylene is not particularly limited, but it can be blended by kneading using a usual kneader. For example, pellets can be obtained by melt-kneading using a single-screw extruder, a twin-screw extruder, a mixing roll, or the like. Further, it may be blended by dry blending using a Henschel mixer, a tumbler or the like. The mixing ratio of the inorganic fine particles to the battery separator is 100 to
5000 ppm, more preferably 300 to 4000 p
pm. If the amount of the inorganic fine particles is smaller than this range, the effect of improving mechanical strength such as scratch resistance of the battery separator cannot be expected. If the amount is larger than this range, it is difficult to make the separator porous by the stretching method, and the air permeability is low. This is not suitable because a battery separator having a low battery density cannot be obtained.

【0019】本発明において、延伸法により多孔化した
単層又は積層多孔質フィルムに含まれる無機微粒子の個
数は、延伸倍率等によっても異なるが、通常フィルム面
積あたり50〜5000個/mm2、特に100〜30
00個/mm2に調整するのが好ましい。無機微粒子の
分散状態がこの範囲を過度にはずれると、電池用セパレ
ータの傷つき性等の機械的強度改良効果が期待できなく
なる。
In the present invention, the number of inorganic fine particles contained in a single-layer or laminated porous film made porous by the stretching method varies depending on the stretching ratio and the like, but is usually 50 to 5,000 particles / mm 2 per film area, especially 100-30
It is preferable to adjust the number to 00 pieces / mm 2 . If the dispersion state of the inorganic fine particles is excessively out of this range, the effect of improving the mechanical strength such as the scratch resistance of the battery separator cannot be expected.

【0020】本発明の電池用セパレータの層構成として
は、無機微粒子を含むポリエチレン或いはポリプロピレ
ンの単層多孔質フィルム、無機微粒子を含むポリプロピ
レンで無機微粒子を含まないポリエチレンを挟み込んだ
積層多孔質フィルム、無機微粒子を含まないポリプロピ
レンで無機微粒子を含むポリエチレンを挟み込んだ積層
多孔質フィルム、無機微粒子を含むポリエチレンと無機
微粒子を含まないポリエチレンからなる積層多孔質フィ
ルム、無機微粒子を含むポリエチレンと無機微粒子を含
むポリプロピレンからなる積層多孔質フィルム等が挙げ
られ、積層多孔質フィルムの場合、少なくとも1層に無
機微粒子が含まれていれば良い。
The layer structure of the battery separator of the present invention includes a single-layer porous film of polyethylene or polypropylene containing inorganic fine particles, a laminated porous film in which polyethylene containing no inorganic fine particles is interposed between polypropylene containing inorganic fine particles, and an inorganic porous film. Laminated porous film sandwiching polyethylene containing inorganic fine particles with polypropylene containing no fine particles, laminated porous film composed of polyethylene containing inorganic fine particles and polyethylene containing no inorganic fine particles, polyethylene containing inorganic fine particles and polypropylene containing inorganic fine particles In the case of a laminated porous film, it is sufficient that at least one layer contains inorganic fine particles.

【0021】本発明の電池用セパレータの具体的な製造
方法としては、例えば、無機微粒子を含むポリプロピレ
ンで無機微粒子を含まないポリエチレンを挟み込んだ積
層多孔質フィルムを製造する場合は、無機微粒子を適宜
配合したポリプロピレンとポリエチレンを溶融共押し出
しした後延伸多孔化して積層多孔質フィルムを得る方
法、無機微粒子を適宜配合したポリプロピレンとポリエ
チレンフィルムをそれぞれ別々に溶融押し出し積層した
後延伸多孔化して積層多孔質フィルムを得る方法等があ
る。また、延伸多孔化工程において、フィルムの幅方向
の長さが大きく減少して透気度、空孔率及び極大孔径等
の多孔質フィルムの性能が損われる場合には、先に本発
明者等が出願した特開平11−297297号公報に記
載の方法のように、フィルムの幅方向の両端をチャッ
ク、ピンチロール等で固定しつつ延伸する方法、フィル
ムを縦一軸に延伸した後に一軸延伸時に生じた幅方向の
フィルム長さ減少を横延伸によって復元する方法等の手
法によって改良することができる。いずれの方法でも本
発明の電池用セパレータを製造することができる。
As a specific method for producing the battery separator of the present invention, for example, in the case of producing a laminated porous film in which polyethylene containing inorganic fine particles is sandwiched by polypropylene containing inorganic fine particles, inorganic fine particles are appropriately mixed. A method for obtaining a laminated porous film by melt-co-extruding polypropylene and polyethylene and then obtaining a laminated porous film by stretching and porosifying the polypropylene and polyethylene films, which are appropriately blended with inorganic fine particles, to obtain a laminated porous film. There are ways to get it. Further, in the stretching and porosification step, when the length of the film in the width direction is greatly reduced and the performance of the porous film such as the air permeability, the porosity, and the maximum pore diameter is impaired, the present inventors have A method of stretching while fixing both ends in the width direction of the film with a chuck, a pinch roll or the like as described in Japanese Patent Application Laid-Open No. H11-297297 filed during the uniaxial stretching after stretching the film uniaxially vertically. It can be improved by a method such as a method of restoring the reduced film length in the width direction by transverse stretching. Either method can produce the battery separator of the present invention.

【0022】溶融押し出し方法はTダイによる溶融押し
出し成型法、インフレーション法等により行われる。例
えばフィルムをTダイにより溶融成形する場合、一般に
樹脂の溶融温度より20〜60℃高い温度で、ドラフト
比5〜500、好ましくは50〜300のドラフト比で
行われ、また引取り速度は特に限定されないが通常10
〜50m/分で成形される。溶融押し出しされたフィル
ムは結晶性及びその配向性を高めるために熱処理され
る。熱処理温度は、ポリエチレンフィルムについては1
00〜130℃、好ましくは110〜125℃、ポリプ
ロピレンフィルムについては110〜160℃、好まし
くは120〜150℃である。熱処理温度が低いと十分
に多孔化されず、また高すぎるとフィルムの溶融が生じ
るため適当でない。熱処理時間は特に制限はないが、3
秒〜180秒の範囲で行われる。
The melt extrusion method is performed by a melt extrusion molding method using a T-die, an inflation method, or the like. For example, when a film is melt-formed with a T-die, the film is generally formed at a temperature 20 to 60 ° C. higher than the melting temperature of the resin at a draft ratio of 5 to 500, preferably 50 to 300, and the take-up speed is particularly limited. Not usually but 10
Molded at ~ 50 m / min. The melt extruded film is heat treated to increase its crystallinity and its orientation. The heat treatment temperature is 1 for polyethylene film.
It is 100-130 degreeC, Preferably it is 110-125 degreeC, about 110-160 degreeC, Preferably it is 120-150 degreeC about a polypropylene film. If the heat treatment temperature is low, the film is not sufficiently porous, and if it is too high, the film is melted, which is not suitable. The heat treatment time is not particularly limited,
This is performed in a range of seconds to 180 seconds.

【0023】熱処理されたポリエチレンフィルムは、そ
の複屈折が25×10-3〜48×10-3、好ましくは3
0×10-3〜45×10-3で、50%伸長時の弾性回復
率が40〜80%、好ましくは、50〜75%の範囲に
あるのが好適である。また、熱処理されたポリプロピレ
ンフィルムは、その複屈折が10×10-3〜25×10
-3、好ましくは12×10-3〜23×10-3で、100
%伸長時の弾性回復率が70〜94%、好ましくは、7
5〜93%の範囲にあるのが好適である。複屈折及び弾
性回復率がこれらの範囲を外れると、多孔化の程度が十
分でなくなり、延伸後の多孔質フィルムの孔径や孔径分
布、空孔率、層間剥離強度、機械的強度等に影響し品質
にバラツキが生じやすくなるので上記範囲が適当であ
る。
The heat-treated polyethylene film has a birefringence of 25 × 10 −3 to 48 × 10 −3 , preferably 3 × 10 −3 .
The elastic recovery at 50% elongation at 0 × 10 −3 to 45 × 10 −3 is in the range of 40 to 80%, preferably 50 to 75%. The heat-treated polypropylene film has a birefringence of 10 × 10 −3 to 25 × 10 −3.
-3 , preferably 12 × 10 -3 to 23 × 10 -3 and 100
% Elongation at 70% to 94%, preferably 7%
Preferably it is in the range of 5 to 93%. If the birefringence and elastic recovery are out of these ranges, the degree of porosity becomes insufficient, which affects the pore size and pore size distribution, porosity, delamination strength, mechanical strength, etc. of the porous film after stretching. The above range is appropriate because the quality tends to vary.

【0024】本発明において、複屈折は偏光顕微鏡を使
用し、直交ニコル下でベレックコンペンセータを用いて
測定された値である。また、弾性回復率は、次の式
(1)及び(2)による。式(1)はポリエチレンフィ
ルムの場合、式(2)はポリプロピレンフィルムの場合
である。尚、ポリエチレンフィルムは、25℃、65%
相対湿度において試料幅15mm、長さ2インチで引張
試験機にセットし2インチ/minの速度で50%まで
伸長した後、1分間伸長状態で保持しその後同速度で弛
緩させたものを測定し、ポリプロピレンフィルムは、2
5℃、65%相対湿度において試料幅10mm、長さ5
0mmで引張試験機にセットし50mm/minの速度
で100%まで伸長した後、直ちに同速度で弛緩させた
ものを測定した。
In the present invention, the birefringence is a value measured using a polarizing microscope and a Berek compensator under crossed Nicols. The elastic recovery rate is based on the following equations (1) and (2). Equation (1) is for a polyethylene film, and equation (2) is for a polypropylene film. In addition, polyethylene film is 25 ° C, 65%
At a relative humidity, the sample was set to a tensile tester with a sample width of 15 mm and a length of 2 inches, stretched to 50% at a speed of 2 inches / min, held in a stretched state for 1 minute, and then relaxed at the same speed. , Polypropylene film is 2
Sample width 10 mm, length 5 at 5 ° C., 65% relative humidity
It was set in a tensile tester at 0 mm, stretched to 100% at a speed of 50 mm / min, and immediately relaxed at the same speed.

【0025】式(1) 弾性回復率(%)=[(50%伸長時の長さ−50%伸
長後荷重0となった時の長さ)/(伸長時の長さ−伸長
前の長さ)]×100
Equation (1) Elastic recovery rate (%) = [(length at 50% elongation−length at 50% elongation when load becomes 0) / (length at elongation−length before elongation) Sa)] x 100

【0026】式(2) 弾性回復率(%)=[(100%伸長時の長さ−100
%伸長後荷重0となった時の長さ)/伸長前の長さ]×
100
Equation (2) Elastic recovery rate (%) = [(length at 100% elongation−100)
% Length when load becomes 0 after elongation) / Length before elongation] ×
100

【0027】無機微粒子を含むポリプロピレンで無機微
粒子を含まないポリエチレンを挟み込んだ三層構成の積
層多孔質フィルムを製造する場合は、熱処理されたポリ
プロピレンフィルム及びポリエチレンフィルムは熱圧着
によって積層される。積層は、三枚のフィルムが3組の
原反ロールスタンドから巻き出され、加熱されたロール
間でニップされ圧着されて積層される。この時、各フィ
ルムの複屈折及び弾性回復率が実質的に低下しないよう
に熱圧着が行われる必要がある。
In the case of producing a laminated porous film having a three-layer structure in which polypropylene containing inorganic fine particles is sandwiched by polypropylene containing inorganic fine particles, the heat-treated polypropylene film and polyethylene film are laminated by thermocompression bonding. Lamination is performed by unwinding three films from three sets of raw roll stands, nipping and heating between heated rolls, and laminating. At this time, it is necessary to perform thermocompression bonding so that the birefringence and elastic recovery of each film do not substantially decrease.

【0028】加熱されたロールの温度、すなわち熱圧着
温度は、110〜130℃、好ましくは115〜125
℃である。温度が低すぎるとフィルム間の接着性が弱く
その後の延伸工程で剥がれが生じ、また逆に高すぎると
ポリエチレンの溶融によってフィルムの複屈折及び弾性
回復率が低下して多孔化が困難となるため上記範囲が適
当である。熱圧着のニップ圧は1〜3kg/cm2、巻
出し速度は0.5〜8m/minで行われる。また、熱
圧着されたフィルム間の剥離強度は、3〜60g/15
mmの範囲が好適である。
The temperature of the heated roll, that is, the thermocompression bonding temperature is 110 to 130 ° C., preferably 115 to 125 ° C.
° C. If the temperature is too low, the adhesiveness between the films is weak and peeling occurs in the subsequent stretching step, and if it is too high, the birefringence and elastic recovery of the film decrease due to the melting of polyethylene, making it difficult to make the film porous. The above range is appropriate. The nip pressure for thermocompression bonding is 1 to 3 kg / cm 2 , and the unwinding speed is 0.5 to 8 m / min. The peel strength between the thermocompression-bonded films is 3 to 60 g / 15.
A range of mm is preferred.

【0029】熱処理及び積層されたフィルムは延伸によ
って多孔化される。延伸は低温延伸、次いで高温延伸の
順序で行われ、普通には延伸ロールの周速差で延伸され
る。低温延伸の温度は−20〜50℃、特に好ましくは
20〜35℃である。延伸温度が低いと作業中にフィル
ムの破断が生じやすく、逆に高すぎると多孔化が不十分
となるので適当でない。低温延伸の倍率は5〜200
%、好ましくは10〜100%の範囲である。延伸倍率
が低すぎると、空孔率が低いものしか得られず、また高
すぎると所定の空孔率及び孔径のものが得られなくなる
ので上記範囲が適当である。本発明において低温延伸倍
率(E1)は次の式(3)に従う。式(3)のL1は低温
延伸後のフィルム寸法を意味し、L0は低温延伸前のフ
ィルム寸法を意味する。
The heat-treated and laminated film is made porous by stretching. Stretching is performed in the order of low-temperature stretching and then high-temperature stretching, and is usually performed at a peripheral speed difference of a stretching roll. The temperature for the low temperature stretching is -20 to 50C, particularly preferably 20 to 35C. If the stretching temperature is low, the film is likely to break during the operation, while if it is too high, the porosity becomes insufficient, which is not suitable. Low-temperature stretching ratio is 5-200
%, Preferably in the range of 10 to 100%. If the stretching ratio is too low, only a material having a low porosity can be obtained, and if it is too high, a material having a predetermined porosity and pore size cannot be obtained, so the above range is appropriate. In the present invention, the low-temperature stretching ratio (E 1 ) complies with the following equation (3). In the formula (3), L 1 means the film size after low-temperature stretching, and L 0 means the film size before low-temperature stretching.

【0030】 式(3) E1=[(L1−L0)/L0]×100Equation (3) E 1 = [(L 1 −L 0 ) / L 0 ] × 100

【0031】低温延伸したフィルムは、次いで高温延伸
される。高温延伸は加熱空気循環オーブン中で70〜1
30℃、特に好ましくは100〜125℃の温度範囲で
行われる。延伸温度が上記範囲を外れると多孔化が不十
分となるので適当でない。また、高温延伸は低温延伸の
温度より40〜100℃高い温度で行うのが好適であ
る。高温延伸の倍率は100〜400%の範囲である。
延伸倍率が低すぎると、多孔化が不十分となり、また高
すぎると所定の透気度、空孔率及び孔径のものが得られ
なくなるので上記範囲が適当である。本発明において高
温延伸倍率(E2)は次の式(4)に従う。式(4)の
2は高温延伸後のフィルム寸法を意味し、L1は低温延
伸後のフィルム寸法を意味する。
The low temperature stretched film is then hot stretched. High temperature stretching is 70-1 in a heated air circulation oven.
The reaction is carried out at a temperature of 30 ° C, particularly preferably 100 to 125 ° C. If the stretching temperature is out of the above range, the porosity becomes insufficient, which is not appropriate. The high-temperature stretching is preferably performed at a temperature 40 to 100 ° C. higher than the low-temperature stretching temperature. The high temperature stretching ratio is in the range of 100 to 400%.
If the stretching ratio is too low, the porosity becomes insufficient, and if it is too high, the desired air permeability, porosity and pore size cannot be obtained, so the above range is appropriate. In the present invention, the high-temperature stretching ratio (E 2 ) complies with the following equation (4). In the formula (4), L 2 means a film size after high-temperature stretching, and L 1 means a film size after low-temperature stretching.

【0032】 式(4) E2=[(L2−L1)/L1]×100Equation (4) E 2 = [(L 2 −L 1 ) / L 1 ] × 100

【0033】本発明において、低温延伸、高温延伸をし
た後、多孔質フィルムの熱固定を行う。熱固定は、延伸
時に作用した応力残留によるフィルムの延伸方向への収
縮を防ぐために予め延伸後のフィルム長さが10〜50
%減少する程度熱収縮させる方法や、延伸方向の寸法が
変化しないように規制して加熱する方法等で行われる。
この熱固定によって寸法安定性の良い所期の課題を満た
す電池用セパレータにすることができる。
In the present invention, after the low-temperature stretching and the high-temperature stretching, the porous film is heat-set. The heat setting is such that the film length after stretching is 10 to 50 in order to prevent the film from shrinking in the stretching direction due to residual stress applied during stretching.
%, Or a method in which heating is performed such that the dimension in the stretching direction is not changed.
By this heat fixing, it is possible to obtain a battery separator satisfying the intended problem with good dimensional stability.

【0034】このようにして製造される電池用セパレー
タは、前記製造条件によっても異なるが、透気度、30
〜800秒/100cc、さらに好ましくは100〜7
00秒/100cc、極大孔径0.02〜3μm、空孔
率30〜85%である。透気度が高すぎるとリチウムイ
オン伝導性が低下するために電池用セパレータとしての
機能が十分でなく、低すぎると機械的強度が低下するの
で上記範囲が適当である。また、極大孔径及び空孔率が
この範囲にないと、電池の容量特性が低下するために好
ましくない。さらに、電池用セパレータの厚みは機械的
強度、性能、小型化等の面から5〜100μm、特に好
ましくは20〜40μmに調製される。
The battery separator manufactured in this manner varies depending on the manufacturing conditions, but has an air permeability of 30%.
~ 800 sec / 100cc, more preferably 100 ~ 7
00 sec / 100 cc, maximum pore size 0.02 to 3 μm, porosity 30 to 85%. If the air permeability is too high, the lithium ion conductivity is reduced, so that the function as a battery separator is not sufficient. If the air permeability is too low, the mechanical strength decreases, so the above range is appropriate. If the maximum pore diameter and the porosity are not in these ranges, the capacity characteristics of the battery are undesirably deteriorated. Further, the thickness of the battery separator is adjusted to 5 to 100 μm, particularly preferably 20 to 40 μm, from the viewpoint of mechanical strength, performance, miniaturization and the like.

【0035】本発明では、特定の金属酸化物を主成分と
する無機微粒子を適切に配合することで、傷つき性等の
機械的強度に優れる電池用セパレータが得られた。ここ
で、傷つき性とは微小突起の圧入或いは擦過によるセパ
レータの損傷具合を意味する。さらに、本発明の電池用
セパレータは、多孔質フィルムの絶縁強さと関係づけら
れる破壊電圧についても、無機粒子の添加によって改良
している。すなわち、本発明では、無機微粒子の配合に
よる傷つけ性及び破壊電圧の改良によって、信頼性及び
安全性に優れ且つ電池性能を損なうことのない電池用セ
パレータを提供することができる。
In the present invention, a battery separator having excellent mechanical strength such as scratch resistance was obtained by appropriately mixing inorganic fine particles containing a specific metal oxide as a main component. Here, the term “scratchability” means the degree of damage to the separator due to press-fitting or rubbing of the minute projections. Further, in the battery separator of the present invention, the breakdown voltage related to the insulation strength of the porous film is also improved by adding the inorganic particles. That is, the present invention can provide a battery separator that is excellent in reliability and safety and does not impair battery performance by improving the damageability and breakdown voltage due to the addition of the inorganic fine particles.

【0036】[0036]

【実施例】次に実施例及び比較例を示し、本発明につい
て更に詳細に説明するが、本発明はこれらに限定される
ものではない。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0037】実施例1 数平均分子量70000、結晶化温度112℃のポリプ
ロピレンに、酸化珪素を主成分とする真比重2.36、
平均粒径2.1μmの無機微粒子を、二軸混練機を用い
て樹脂に対して2000ppmになるように配合した。
無機微粒子の酸化電位はリチウムに対して+4.5V以
上であった。この無機微粒子配合ポリプロピレンは、吐
出幅1000mm、吐出リップ開度2mmのTダイを使
用してフィルム状に溶融押出しした。吐出フィルムは、
80℃の冷却ロールに導かれ、25℃の冷風が吹きつけ
られて冷却された後、50m/minで引取られた。得
られたポリプロピレン組成物フィルムの膜厚は11.4
μmであった。この未延伸ポリプロピレンフィルムは、
引取り方向を固定された状態で、135℃に60秒間熱
処理した後、室温まで冷却した。熱処理された未延伸ポ
リプロピレンフィルムの複屈折は、22.6×10-3
100%伸長時の弾性回復率は93%であった
Example 1 A polypropylene having a number average molecular weight of 70000 and a crystallization temperature of 112 ° C. was added to a polypropylene having a true specific gravity of 2.36 containing silicon oxide as a main component.
Inorganic fine particles having an average particle size of 2.1 μm were compounded using a twin-screw kneader so as to be 2000 ppm with respect to the resin.
The oxidation potential of the inorganic fine particles was +4.5 V or more with respect to lithium. The polypropylene containing the inorganic fine particles was melt-extruded into a film using a T-die having a discharge width of 1000 mm and a discharge lip opening of 2 mm. The discharge film is
It was led to a cooling roll of 80 ° C., cooled by blowing cool air of 25 ° C., and then taken off at 50 m / min. The thickness of the obtained polypropylene composition film was 11.4.
μm. This unstretched polypropylene film
After heat-treating at 135 ° C. for 60 seconds with the take-off direction fixed, the system was cooled to room temperature. The birefringence of the heat-treated unstretched polypropylene film is 22.6 × 10 −3 ,
The elastic recovery at 100% elongation was 93%.

【0038】ポリエチレンとして、数平均分子量200
00、密度0.964、融点134℃の高密度ポリエチ
レンを、吐出幅1000mm、吐出リップ開度2mmの
Tダイを使用して溶融押出しした。吐出フィルムは、1
17℃の冷却ロールに導かれ、25℃の冷風が吹きつけ
られて冷却された後、20m/minで引取られた。得
られたポリエチレンフィルムの膜厚は9.5μmであっ
た。この未延伸ポリエチレンフィルムは、引取り方向を
固定された状態で、120℃に60秒間熱処理した後、
室温まで冷却した。熱処理された未延伸ポリエチレンフ
ィルムの複屈折は、35.5×10-3、50%伸長時の
弾性回復率は52%であった。
The polyethylene has a number average molecular weight of 200
A high-density polyethylene having a density of 00, a density of 0.964 and a melting point of 134 ° C. was melt-extruded using a T-die having a discharge width of 1000 mm and a discharge lip opening of 2 mm. The discharge film is 1
After being led to a cooling roll at 17 ° C. and cooled by blowing cool air at 25 ° C., it was taken off at 20 m / min. The thickness of the obtained polyethylene film was 9.5 μm. This unstretched polyethylene film is heat-treated at 120 ° C. for 60 seconds with the take-off direction fixed,
Cooled to room temperature. The birefringence of the heat-treated unstretched polyethylene film was 35.5 × 10 −3 , and the elastic recovery at 50% elongation was 52%.

【0039】熱処理したポリエチレンフィルム及びポリ
プロピレンフィルムは、ポリプロピレンを表面層に、ポ
リエチレンを内層(中間層)に配した三層構成に積層さ
れた。積層は、三組のロールスタンドから該ポリプロピ
レンフィルム及びポリエチレンフィルムをそれぞれ巻出
し速度6.5m/minで巻出し、加熱ロールに導き、
温度120℃、線圧1.8kg/cmで熱圧着し、その
後同速度で50℃の冷却ロールに導いて巻き取った。巻
取り速度は6.5m/min、巻出し張力は0.9kg
であった。得られた未延伸積層フィルムの膜厚は31.
6μmであった。
The heat-treated polyethylene film and polypropylene film were laminated in a three-layer structure in which polypropylene was disposed on the surface layer and polyethylene was disposed on the inner layer (intermediate layer). The lamination unwinds the polypropylene film and the polyethylene film from the three roll stands at an unwind speed of 6.5 m / min, respectively, and guides them to the heating roll.
Thermocompression bonding was carried out at a temperature of 120 ° C. and a linear pressure of 1.8 kg / cm, and then guided to a 50 ° C. cooling roll at the same speed and wound up. Winding speed is 6.5m / min, unwinding tension is 0.9kg
Met. The thickness of the obtained unstretched laminated film was 31.
It was 6 μm.

【0040】未延伸積層フィルムは、30℃に保持され
たニップロール間で25%低温延伸された。この時のロ
ール間は350mm、供給側のロール速度は2m/mi
nであった。低温延伸した積層フィルムは、引続き12
3℃に加熱された熱風循環オーブン中に導かれ、ロール
周速差を利用してロール間で総延伸量180%になるま
で高温延伸された後、123℃に加熱されたロールで3
0%緩和させて72秒間熱固定され、連続的に積層多孔
質フィルム、すなわち電池用セパレータを得た。
The unstretched laminated film was stretched at a low temperature by 25% between nip rolls kept at 30 ° C. At this time, the distance between the rolls was 350 mm, and the roll speed on the supply side was 2 m / mi.
n. The laminated film stretched at low temperature continues to be 12
It is guided into a hot-air circulation oven heated to 3 ° C., stretched at a high temperature to a total stretching amount of 180% between the rolls using a difference in roll peripheral speed, and then rolled to a temperature of 123 ° C.
The film was heat-set for 72 seconds with a relaxation of 0% to obtain a continuous laminated porous film, that is, a battery separator.

【0041】得られた電池用セパレータの膜厚、透気
度、極大孔径、空孔率、鉛筆硬度、微小表面硬度、破壊
電圧を表1に示す。また、電池用セパレータを、表面粗
さ指数(Ra)が0.3μmになるように研削仕上げを
施した金属面を用いて荷重400gf/cm2、移動速
度300mm/分で擦過させた後の電池用セパレータの
顕微鏡写真を図1に示す。図1から明らかなように、セ
パレータ表面には擦過傷が殆ど見られなかった。上記評
価の方法は以下に従って行った。 1)透気度 JIS P8117に準じて測定した。測定装置として
B型ガーレーデンソメーター(東洋精機社製)を使用し
た。試料片を直径28.6mm、面積645mm2の円
孔に締付ける。内筒重量567gにより、筒内の空気を
試験円孔部から筒外へ通過させる。空気100ccが通
過する時間を測定し、透気度(ガーレー値)とした。 2)空孔率、極大孔径 ユアサアイオニクス社製 水銀ポロシメータを用いて測
定した。試料を0.03〜0.07g秤量してガラス製
のセル中で真空とした後、水銀を圧入、充填する。充填
の際の水銀圧及び圧入水銀量から極大孔径及び空孔率を
求めた。 3)鉛筆硬度 東洋精機社製鉛筆引っ掻き試験機を用いて測定した。芯
を円柱状に3mm程度露出させた鉛筆で50gの荷重を
かけて電池用セパレータ上を5回引っかき、5回のうち
1回傷がつく又は全く傷がつかないで且つその1段階上
の硬度の鉛筆で5回のうち2回以上傷がつく硬度記号を
鉛筆硬度とした。 4)微小表面硬度 アカシ製微笑表面材料特性評価システム(MZT−4)
を用いて測定を行なった。電池用セパレータを固定し、
500μm径の球状圧子にて0.04gf/秒の速度で
5gfまで荷重を印可し、5秒間保持後に除圧した。圧
子の押し込み深さより次式(5)に従って硬さ指数を算
出した。 式(5) 押し込み指数=荷重×2/押し込み深さ/円周率 5)破壊電圧 JIS C2110に準じて測定した。50mm×50
mmに切り取った電池用セパレータを、25mm径の電
極間に500gの荷重を付与して挟み、0.2KV/秒
の速度で交流電圧を印可して、絶縁破壊の生じた電圧を
破壊電圧とした。
Table 1 shows the thickness, air permeability, maximum pore size, porosity, pencil hardness, micro surface hardness, and breakdown voltage of the obtained battery separator. Further, the battery after the battery separator was rubbed at a load of 400 gf / cm 2 and a moving speed of 300 mm / min using a metal surface ground and finished so that the surface roughness index (Ra) became 0.3 μm. FIG. 1 shows a micrograph of the separator for use in the present invention. As is clear from FIG. 1, almost no scratches were found on the separator surface. The above evaluation method was performed as follows. 1) Air permeability Measured according to JIS P8117. A B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample piece is fastened to a circular hole having a diameter of 28.6 mm and an area of 645 mm 2 . With the inner cylinder weight of 567 g, the air in the cylinder is allowed to pass from the test hole to the outside of the cylinder. The time required for 100 cc of air to pass was measured and defined as the air permeability (Gurley value). 2) Porosity, maximum pore diameter Measured using a mercury porosimeter manufactured by Yuasa Ionics. After weighing 0.03 to 0.07 g of the sample and evacuating it in a glass cell, mercury is injected and filled. The maximum pore diameter and porosity were determined from the mercury pressure and the amount of mercury injected during the filling. 3) Pencil hardness Measured using a pencil scratch tester manufactured by Toyo Seiki Co., Ltd. A 50 g load is applied to the battery separator five times with a pencil whose core is exposed in a cylindrical shape with a length of about 3 mm, and the battery separator is scratched five times. The hardness symbol at which the pencil was scratched twice or more out of five times was defined as pencil hardness. 4) Micro surface hardness Akashi smile surface material property evaluation system (MZT-4)
The measurement was carried out using. Fix the battery separator,
A load was applied up to 5 gf at a speed of 0.04 gf / sec with a spherical indenter having a diameter of 500 μm, and the pressure was released after holding for 5 seconds. The hardness index was calculated from the indentation depth according to the following equation (5). Formula (5) Indentation index = Load × 2 / Indentation depth / pi 5) Breakdown voltage Measured according to JIS C2110. 50mm × 50
The battery separator cut into mm was sandwiched between electrodes having a diameter of 25 mm by applying a load of 500 g, and an AC voltage was applied at a rate of 0.2 KV / sec. .

【0042】比較例1 ポリプロピレンに無機微粒子を配合しない以外は、実施
例1と同様に積層多孔質フィルム、すなわち電池用セパ
レータを得た。得られた電池用セパレータの膜厚、透気
度、極大孔径、空孔率、鉛筆硬度、微小表面硬度、破壊
電圧を表1に示す。また、電池用セパレータを、表面粗
さ指数(Ra)が0.3μmになるように研削仕上げを
施した金属面を用いて荷重400gf/cm2、移動速
度300mm/分で擦過させた後の電池用セパレータの
顕微鏡写真を図2に示す。図2から明らかなように、セ
パレータ表面には無数の擦過傷が見られる。
Comparative Example 1 A laminated porous film, that is, a battery separator, was obtained in the same manner as in Example 1 except that the inorganic fine particles were not added to the polypropylene. Table 1 shows the thickness, air permeability, maximum pore size, porosity, pencil hardness, micro surface hardness, and breakdown voltage of the obtained battery separator. Further, the battery after the battery separator was rubbed at a load of 400 gf / cm 2 and a moving speed of 300 mm / min using a metal surface ground and finished so that the surface roughness index (Ra) became 0.3 μm. FIG. 2 shows a micrograph of the separator for use in the present invention. As is clear from FIG. 2, countless abrasions are seen on the separator surface.

【0043】[0043]

【表1】 [Table 1]

【発明の効果】特定の金属酸化物を主成分とする無機微
粒子を適切に配合することにより、傷つき性等の機械的
強度に優れる電池用セパレータを提供することができ
る。
According to the present invention, it is possible to provide a battery separator having excellent mechanical strength such as scratch resistance by appropriately mixing inorganic fine particles containing a specific metal oxide as a main component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られた電池用セパレータにおける擦
過テスト後の表面状態を示す写真に代わる図である。
FIG. 1 is a drawing instead of a photograph showing a surface state after a rubbing test on a battery separator obtained in the present invention.

【図2】比較例で得られた電池用セパレータにおける擦
過テスト後の表面状態を示す写真に代わる図である。
FIG. 2 is a view replacing a photograph showing a surface state after a rubbing test on a battery separator obtained in a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木暮 隆一郎 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 (72)発明者 川端 健嗣 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 Fターム(参考) 4F074 AA17 AA24 AA97 AB01 AB02 AB03 AC19 AC20 AC32 AE01 AG01 CA01 CA04 CA05 CA07 CC02Y CC05Z CC46 DA02 DA03 DA08 DA09 DA10 DA20 DA23 DA24 DA49 5H021 BB05 CC04 CC08 EE04 EE22 HH00 HH02 HH03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuichiro Kogure 1010, 1978 Kogushi, Oji, Ube City, Yamaguchi Prefecture Inside Ube Chemical Factory (72) Inventor Kenji Kawabata 10 Ube, 1978 Kogushi, Oji, Ube City, Yamaguchi Prefecture F-term (reference) in Ube Chemical Factory of Kosan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 延伸法により多孔化した単層又は積層
多孔質フィルムからなる電池用セパレータであって、該
多孔質フィルムが、酸化珪素、酸化アルミニウム、酸化
マグネシウムの群から選ばれる少なくとも1種の金属酸
化物を主成分とする平均粒径0.1〜10μmの無機微
粒子を、100〜5000ppm含むことを特徴とする
電池用セパレータ。
1. A battery separator comprising a single-layer or laminated porous film made porous by a stretching method, wherein said porous film is made of at least one member selected from the group consisting of silicon oxide, aluminum oxide and magnesium oxide. A battery separator comprising 100 to 5000 ppm of inorganic fine particles having a mean particle size of 0.1 to 10 [mu] m containing a metal oxide as a main component.
【請求項2】 請求項1に記載の電池用セパレータで
あって、該電池用セパレータに含まれる無機微粒子の酸
化電位がリチウムに対して+4.5V以上であることを
特徴とする電池用セパレータ。
2. The battery separator according to claim 1, wherein the oxidation potential of the inorganic fine particles contained in the battery separator is +4.5 V or more with respect to lithium.
【請求項3】 請求項1または2に記載の電池用セパ
レータであって、透気度30〜800秒/100cc、
極大孔径0.02〜3μm、空孔率30〜85%、膜厚
5〜100μmであることを特徴とする電池用セパレー
タ。
3. The battery separator according to claim 1, wherein the air permeability is 30 to 800 seconds / 100 cc.
A battery separator having a maximum pore diameter of 0.02 to 3 μm, a porosity of 30 to 85%, and a film thickness of 5 to 100 μm.
JP31935099A 1999-11-10 1999-11-10 Battery separator Expired - Lifetime JP4470248B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31935099A JP4470248B2 (en) 1999-11-10 1999-11-10 Battery separator
CNB001374796A CN1236508C (en) 1999-11-10 2000-11-10 Battery spacing membranes and lithium secondary battery
US09/709,623 US6627346B1 (en) 1999-11-10 2000-11-10 Battery separator and lithium secondary battery
HK01107893A HK1038100A1 (en) 1999-11-10 2001-11-09 Battery separator and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31935099A JP4470248B2 (en) 1999-11-10 1999-11-10 Battery separator

Publications (2)

Publication Number Publication Date
JP2001135295A true JP2001135295A (en) 2001-05-18
JP4470248B2 JP4470248B2 (en) 2010-06-02

Family

ID=18109182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31935099A Expired - Lifetime JP4470248B2 (en) 1999-11-10 1999-11-10 Battery separator

Country Status (1)

Country Link
JP (1) JP4470248B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2005174868A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2005228511A (en) * 2004-02-10 2005-08-25 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery
JP2006507636A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Long-time stable separator for electrochemical cells
JPWO2004089627A1 (en) * 2003-04-04 2006-07-06 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
JP2007083542A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Manufacturing method of porous laminated body, and porous laminated body
JP2007083537A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
KR100824851B1 (en) * 2006-10-27 2008-04-23 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery with the same
JP2008243825A (en) * 2005-12-08 2008-10-09 Hitachi Maxell Ltd Separator for electrochemical element and electrochemical element
JP2009110937A (en) * 2007-09-20 2009-05-21 Celgard Llc X-ray sensitive battery separator and method of detecting position of separator in battery
WO2010013801A1 (en) 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
JP2011005867A (en) * 2010-08-16 2011-01-13 Mitsubishi Plastics Inc Porous laminate
CN102044649A (en) * 2010-12-16 2011-05-04 浙江南都电源动力股份有限公司 Manufacturing method of colloid battery separator
KR101079456B1 (en) * 2006-05-22 2011-11-03 파나소닉 주식회사 Separator and nonaqueous electrolyte secondary battery
US8137846B2 (en) 2003-12-15 2012-03-20 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
US8309256B2 (en) 2008-03-31 2012-11-13 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2013154090A1 (en) * 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 Multi-layered porous film, electrical cell separator, and electrical cell
US8597836B2 (en) 2003-08-06 2013-12-03 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
JP2014123573A (en) * 2014-02-07 2014-07-03 Sony Corp Separator and battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP5973675B1 (en) * 2014-10-10 2016-08-23 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery including laminate, and nonaqueous electrolyte secondary battery
JP5973674B1 (en) * 2014-10-10 2016-08-23 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery including laminate, and nonaqueous electrolyte secondary battery
JP2018022690A (en) * 2010-10-14 2018-02-08 凸版印刷株式会社 Exterior material for lithium ion battery
KR20180014762A (en) 2015-06-03 2018-02-09 가부시키가이샤 닛폰 쇼쿠바이 Anion conducting membrane
JP2018510472A (en) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Fusion composite separation membrane for lithium secondary battery and method for producing the same
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
JP2006507636A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Long-time stable separator for electrochemical cells
JP4651006B2 (en) * 2002-11-26 2011-03-16 エボニック デグサ ゲーエムベーハー Long-time stable separator for electrochemical cells
JP4540607B2 (en) * 2003-04-04 2010-09-08 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JPWO2004089627A1 (en) * 2003-04-04 2006-07-06 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
US8597836B2 (en) 2003-08-06 2013-12-03 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
JP2005174868A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US8137846B2 (en) 2003-12-15 2012-03-20 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP4635432B2 (en) * 2003-12-15 2011-02-23 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2005228511A (en) * 2004-02-10 2005-08-25 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery
JP4586374B2 (en) * 2004-02-10 2010-11-24 三菱化学株式会社 Non-aqueous electrolyte secondary battery
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
JP2007083537A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
JP4546910B2 (en) * 2005-09-22 2010-09-22 三菱樹脂株式会社 Method for producing porous laminate and porous laminate
JP4594837B2 (en) * 2005-09-22 2010-12-08 三菱樹脂株式会社 Method for producing porous laminate
JP2007083542A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Manufacturing method of porous laminated body, and porous laminated body
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
US8486555B2 (en) 2005-09-22 2013-07-16 Mitsubishi Plastics, Inc. Method for producing porous laminate and porous laminate
JP2008243825A (en) * 2005-12-08 2008-10-09 Hitachi Maxell Ltd Separator for electrochemical element and electrochemical element
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
KR101079456B1 (en) * 2006-05-22 2011-11-03 파나소닉 주식회사 Separator and nonaqueous electrolyte secondary battery
US8288038B2 (en) 2006-05-22 2012-10-16 Panasonic Corporation Separator and non-aqueous electrolyte secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
KR100824851B1 (en) * 2006-10-27 2008-04-23 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery with the same
US8349482B2 (en) 2006-10-27 2013-01-08 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery with the same
JP2009110937A (en) * 2007-09-20 2009-05-21 Celgard Llc X-ray sensitive battery separator and method of detecting position of separator in battery
US8309256B2 (en) 2008-03-31 2012-11-13 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
US8298465B2 (en) 2008-07-31 2012-10-30 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
WO2010013801A1 (en) 2008-07-31 2010-02-04 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
JP2011005867A (en) * 2010-08-16 2011-01-13 Mitsubishi Plastics Inc Porous laminate
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
JP2018022690A (en) * 2010-10-14 2018-02-08 凸版印刷株式会社 Exterior material for lithium ion battery
CN102044649A (en) * 2010-12-16 2011-05-04 浙江南都电源动力股份有限公司 Manufacturing method of colloid battery separator
WO2013154090A1 (en) * 2012-04-13 2013-10-17 東レバッテリーセパレータフィルム株式会社 Multi-layered porous film, electrical cell separator, and electrical cell
CN104185551A (en) * 2012-04-13 2014-12-03 东丽电池隔膜株式会社 Multi-layered porous film, electrical cell separator, and electrical cell
JPWO2013154090A1 (en) * 2012-04-13 2015-12-17 東レバッテリーセパレータフィルム株式会社 Laminated porous membrane, battery separator and battery
JP2014123573A (en) * 2014-02-07 2014-07-03 Sony Corp Separator and battery
JP5973674B1 (en) * 2014-10-10 2016-08-23 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery including laminate, and nonaqueous electrolyte secondary battery
US9917289B2 (en) 2014-10-10 2018-03-13 Sumitomo Chemical Company, Limited Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
US9923181B2 (en) 2014-10-10 2018-03-20 Sumitomo Chemical Company, Limited Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
JP5973675B1 (en) * 2014-10-10 2016-08-23 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery including laminate, and nonaqueous electrolyte secondary battery
JP2018510472A (en) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Fusion composite separation membrane for lithium secondary battery and method for producing the same
US10985356B2 (en) 2015-04-02 2021-04-20 Sk Innovation Co., Ltd. Composite separation membrane for lithium secondary battery and manufacturing method therefor
JP7073105B2 (en) 2015-04-02 2022-05-23 エスケー イノベーション カンパニー リミテッド Fusion type composite separation membrane for lithium secondary battery and its manufacturing method
KR20180014762A (en) 2015-06-03 2018-02-09 가부시키가이샤 닛폰 쇼쿠바이 Anion conducting membrane
US10804518B2 (en) 2015-06-03 2020-10-13 Nippon Shokubai Co., Ltd. Anion conducting membrane

Also Published As

Publication number Publication date
JP4470248B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4470248B2 (en) Battery separator
US9722226B2 (en) Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
JP2883726B2 (en) Manufacturing method of battery separator
EP2607414B1 (en) Propylene resin microporous film, battery separator, battery, and method for producing propylene resin microporous film
JP5572334B2 (en) Polyolefin microporous membrane
JPH07216118A (en) Porous film, its preparation and its use
JPWO2009123015A1 (en) Polyolefin microporous membrane and wound product
JP2009108323A (en) Polyolefin microporous membrane and method for evaluating the same
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JPH08244152A (en) Porous film and manufacture thereof
EP0823740A1 (en) Porous polyolefin film laminate
JP6756902B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JPH1160789A (en) Production of microporous film
JPH1050286A (en) Manufacture of separator for battery
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP3436055B2 (en) Battery separator
JPH11297297A (en) Manufacture of porous film and porous film
JPH11115084A (en) Laminated porous film
JP2000348703A (en) Separator for battery and lithium battery using same
KR102294981B1 (en) Microporous polyolefin membrane
KR20150145309A (en) Manufacturing method for separator including filler and electro-chemical device having the same
JP2006016550A (en) Porous film, separator for battery and battery
JP3508510B2 (en) Laminated porous film and method for producing the same
JP2000204174A (en) Porous film and separator for battery or cell
JPH10279717A (en) Porous membrane and separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term