JP2008243825A - Separator for electrochemical element and electrochemical element - Google Patents

Separator for electrochemical element and electrochemical element Download PDF

Info

Publication number
JP2008243825A
JP2008243825A JP2008124988A JP2008124988A JP2008243825A JP 2008243825 A JP2008243825 A JP 2008243825A JP 2008124988 A JP2008124988 A JP 2008124988A JP 2008124988 A JP2008124988 A JP 2008124988A JP 2008243825 A JP2008243825 A JP 2008243825A
Authority
JP
Japan
Prior art keywords
separator
resin
particles
plate
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124988A
Other languages
Japanese (ja)
Other versions
JP2008243825A5 (en
JP5148360B2 (en
Inventor
Hideaki Katayama
秀昭 片山
Toshihiro Abe
敏浩 阿部
Naoaki Matsumoto
修明 松本
Fusaji Kita
房次 喜多
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/022540 external-priority patent/WO2006062153A1/en
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2008124988A priority Critical patent/JP5148360B2/en
Publication of JP2008243825A publication Critical patent/JP2008243825A/en
Publication of JP2008243825A5 publication Critical patent/JP2008243825A5/ja
Application granted granted Critical
Publication of JP5148360B2 publication Critical patent/JP5148360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical element being excellent in safety when temperature of a battery is abnormally increased by a short circuit and excessive charge. <P>SOLUTION: A separator for an electrochemical element has heat-resistant temperature of 150 °C or more, and the separator is provided with a porous base body for a separator wherein a part of the separator has heat resistance and electric insulation and is also constituted by electrochemically-stable plate-shaped particles and an average particle diameter of the plate-shaped particles is 0.1-15 μm and the plate-shaped particles are integrally formed by a binder resin, and a porous film including a resin in 2which its melting point is a range of 80-130 °C. The electrochemical element includes a positive electrode, a negative electrode, a nonaqueous electrolyte, and the separator for an electrochemical element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、安価で高温時の寸法安定性に優れた電気化学素子用セパレータ、およびこれを用いてなり、高温環境下においても安全な電気化学素子に関するものである。   The present invention relates to an electrochemical element separator that is inexpensive and excellent in dimensional stability at high temperatures, and an electrochemical element that uses the separator and is safe even in a high temperature environment.

リチウム二次電池やスーパーキャパシタに代表される、非水電解液を用いた電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴って電気化学素子の高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   Electrochemical elements using non-aqueous electrolytes typified by lithium secondary batteries and supercapacitors are widely used as power sources for mobile devices such as mobile phones and notebook personal computers because of their high energy density. Yes. As the performance of portable devices increases, the capacity of electrochemical devices tends to increase further, and ensuring safety is important.

現行のリチウム二次電池では、正極と負極との間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の多孔性フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走(異常発熱)温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレン(PE)が適用されることがある。   In current lithium secondary batteries, a polyolefin-based porous film having a thickness of, for example, about 20 to 30 μm is used as a separator interposed between a positive electrode and a negative electrode. In addition, as a material of the separator, the constituent resin of the separator is melted at a temperature lower than the thermal runaway (abnormal heat generation) temperature of the battery to close the pores, thereby increasing the internal resistance of the battery, and in the event of a short circuit, etc. In order to secure a so-called shutdown effect that improves safety, polyethylene (PE) having a low melting point may be applied.

ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを上記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。   By the way, as such a separator, for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the above stretching. However, with such a stretched film, the degree of crystallinity has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery. Therefore, it can be said that the margin for ensuring the safety of the battery is sufficient. hard.

また、上記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔性フィルムセパレータを使用するときには、充電異常時などにより電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による熱暴走の危険性があるからである。   Further, the film is distorted by the stretching, and there is a problem that when this is exposed to high temperature, shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based porous film separator is used, if the battery temperature reaches the shutdown temperature due to abnormal charging or the like, the current must be immediately reduced to prevent the battery temperature from rising. This is because if the holes are not sufficiently blocked and the current cannot be reduced immediately, the battery temperature easily rises to the shrinkage temperature of the separator, and there is a risk of thermal runaway due to an internal short circuit.

このような熱収縮による短絡を防ぐために、耐熱性の樹脂を用いた微多孔膜や不織布をセパレータとして用いる方法が提案されている。例えば特許文献1には、全芳香族ポリアミドの微多孔膜を用いたセパレータが、特許文献2にはポリイミド多孔膜を用いたセパレータが開示されている。また、特許文献3には、ポリアミド不織布を用いたセパレータ、特許文献4にはアラミド繊維を用いた不織布を基材としたセパレータ、特許文献5にはポリプロピレン(PP)不織布を用いたセパレータ、特許文献6にはポリエステル不織布を用いたセパレータに関する技術が開示されている。   In order to prevent such a short circuit due to heat shrinkage, a method using a microporous film or a nonwoven fabric using a heat-resistant resin as a separator has been proposed. For example, Patent Document 1 discloses a separator using a wholly aromatic polyamide microporous film, and Patent Document 2 discloses a separator using a polyimide porous film. Patent Document 3 discloses a separator using a polyamide non-woven fabric, Patent Document 4 discloses a separator based on a non-woven fabric using an aramid fiber, Patent Document 5 discloses a separator using a polypropylene (PP) non-woven fabric, Patent Document 6 discloses a technique relating to a separator using a polyester nonwoven fabric.

しかし、上記耐熱性の樹脂あるいは耐熱性の繊維を用いたセパレータは、高温での寸法安定性に優れ、薄型化が可能であるが、高温時に空孔が閉塞するいわゆるシャットダウン特性を持たないために、外部短絡や内部短絡といった電池の温度が急激に上昇する異常時の安全性を十分に確保することができない。   However, a separator using the above heat-resistant resin or heat-resistant fiber is excellent in dimensional stability at high temperatures and can be thinned, but does not have a so-called shutdown characteristic that closes pores at high temperatures. The safety at the time of abnormality such as an external short circuit or an internal short circuit in which the temperature of the battery rapidly rises cannot be ensured.

このような問題を解決する技術として、例えば、特許文献7には高温時に電解液の含有率が高くなるポリマーからなるセパレータが示されている。また、特許文献8には、マイクロカプセルなどの熱膨張性の粒子を含有するセパレータが提案されている。   As a technique for solving such a problem, for example, Patent Document 7 discloses a separator made of a polymer in which the content of the electrolytic solution becomes high at a high temperature. Patent Document 8 proposes a separator containing thermally expandable particles such as microcapsules.

しかしながら、特許文献7に記載の技術では、セパレータの基体として、電解液を含有するポリマーのフィルムを用いているために、強度の低下を招き易く、例えば、セパレータを薄くして電池を高容量化することが困難である。そもそも、特許文献7には、セパレータの材料およびその機能についての記載はあるものの、いかにすれば当該セパレータを作製することができるかについて一切開示がなく、どの様な形態を有するものであるかさえも不明である。また、特許文献8に記載の技術では、セパレータ中の粒子の熱膨張が不可逆に起こるため、セパレータや電池の製造工程において、熱膨張が生じる温度以上での処理ができず、特に十分な乾燥を行う必要のあるリチウム二次電池においては、乾燥工程における温度管理を厳密に行わなければならないといった問題がある。   However, the technique described in Patent Document 7 uses a polymer film containing an electrolytic solution as a separator substrate, so that the strength is likely to decrease. For example, the separator is thinned to increase the battery capacity. Difficult to do. In the first place, although there is a description about the material and function of the separator in Patent Document 7, there is no disclosure as to how the separator can be manufactured, and even what form it has. Is also unknown. Further, in the technique described in Patent Document 8, since thermal expansion of particles in the separator occurs irreversibly, in the manufacturing process of the separator or battery, it is not possible to perform processing at a temperature higher than the temperature at which thermal expansion occurs, and particularly sufficient drying is performed. In the lithium secondary battery that needs to be performed, there is a problem that temperature control in the drying process must be strictly performed.

また、微多孔膜を用いずに、例えば特許文献9に記載されているようなゲル状の電解質を用いる方法も検討されている。しかし、ゲル状電解質は、熱収縮性はないものの機械的強度が弱く、特に高温時の機械的強度低下により短絡などが発生する可能性がある。さらに、シャットダウン機能が付与されていないために、特に円筒形や角形といった缶に封入された形態の電池などにおいては、安全性を十分に確保することができないといった問題がある。また、ゲル状電解質を用いる技術では、たとえ、特許文献10や特許文献11に記載されているように、その機械的強度の確保のために粒子や繊維状物で補強した場合であっても、シャットダウン機能が付与されるわけではないので、やはり安全性に関する問題は生じることになる。   In addition, a method of using a gel electrolyte as described in, for example, Patent Document 9 without using a microporous membrane has been studied. However, although the gel electrolyte does not have heat shrinkability, the mechanical strength is weak, and a short circuit or the like may occur due to a decrease in mechanical strength particularly at a high temperature. Further, since the shutdown function is not provided, there is a problem that safety cannot be sufficiently ensured particularly in a battery or the like enclosed in a cylindrical or square can. Moreover, in the technique using the gel electrolyte, as described in Patent Document 10 and Patent Document 11, even when it is reinforced with particles or fibrous materials to ensure its mechanical strength, Since the shutdown function is not added, a safety problem still occurs.

一方、特許文献12には、基体となるポリフッ化ビニリデンなどの樹脂を含む溶液に、架橋されたポリメチルメタクリレート(PMMA)などの微粒子を分散させ、これを塗布・乾燥させることにより、多孔質樹脂膜の空隙内に架橋微粒子を保持させた、保液性に優れるセパレータを形成する技術が示されている。   On the other hand, in Patent Document 12, a porous resin is obtained by dispersing fine particles such as cross-linked polymethyl methacrylate (PMMA) in a solution containing a resin such as polyvinylidene fluoride as a substrate, and applying and drying the fine particles. A technique for forming a separator having excellent liquid-retaining properties in which crosslinked fine particles are held in the voids of the film is shown.

しかしながら、特許文献12に開示の上記多孔質樹脂膜は、実質的には高分子ゲル電解質膜と同じであり、セパレータ内の電解液は、架橋微粒子および多孔質樹脂膜に吸収されて保持されるため、高温において電池の反応が抑制されるわけではなく、上記ゲル状電解質と同様に安全性において問題を生じることになる。   However, the porous resin film disclosed in Patent Document 12 is substantially the same as the polymer gel electrolyte film, and the electrolytic solution in the separator is absorbed and retained by the crosslinked fine particles and the porous resin film. Therefore, the reaction of the battery is not suppressed at a high temperature, and a problem occurs in safety as in the case of the gel electrolyte.

特開平5−335005号公報JP-A-5-335005 特開2000−306568号公報JP 2000-306568 A 特開平9−259856号公報JP-A-9-259856 特開平11−40130号公報Japanese Patent Laid-Open No. 11-40130 特開2001−291503号公報JP 2001-291503 A 特開2003−123728号公報JP 2003-123728 A 特開2000−348704号公報JP 2000-348704 A 特開2004−111157号公報JP 2004-111157 A 特開平8−287949号公報JP-A-8-287949 特開平11−185773号公報Japanese Patent Laid-Open No. 11-185773 特開2002−237332号公報JP 2002-237332 A 特開2004−241135号公報JP 2004-241135 A

本発明は上記事情に鑑みてなされたものであり、その目的は、異常発熱した際の安全性に優れた電気化学素子を構成し得るセパレータ、およびそのセパレータを備えた電気化学素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a separator capable of constituting an electrochemical element excellent in safety when abnormal heat is generated, and an electrochemical element including the separator. It is in.

本発明のセパレータ用多孔質基体は、150℃以上の耐熱温度を有する多孔質基体であって、少なくとも一部が、耐熱性および電気絶縁性を有しかつ電気化学的に安定な板状の粒子で構成されており、前記板状の粒子の数平均粒子径が、0.1μm以上15μm以下であり、前記板状の粒子をバインダ樹脂により一体化して形成されていることを特徴とする。   The porous substrate for a separator of the present invention is a porous substrate having a heat resistant temperature of 150 ° C. or higher, and at least a part of the plate-like particles having heat resistance and electrical insulation and electrochemically stable The number average particle diameter of the plate-like particles is 0.1 μm or more and 15 μm or less, and the plate-like particles are integrally formed with a binder resin.

本発明の第1の電気化学素子用セパレータは、上記本発明のセパレータ用多孔質基体と、融点が80〜130℃の範囲にある樹脂とを含む多孔質膜よりなることを特徴とする。   The 1st separator for electrochemical elements of this invention consists of a porous film | membrane containing the porous base material for separators of the said invention, and resin which has melting | fusing point in the range of 80-130 degreeC.

また、本発明の第2の電気化学素子用セパレータは、150℃以上の耐熱温度を有する多孔質基体と、耐熱性および電気絶縁性を有しかつ電気化学的に安定な板状の粒子と、融点が80〜130℃の範囲にある樹脂とを含む多孔質膜よりなり、前記板状の粒子の数平均粒子径が、0.1μm以上15μm以下であることを特徴とする。   The second separator for an electrochemical element of the present invention includes a porous substrate having a heat resistant temperature of 150 ° C. or higher, plate-like particles having heat resistance and electrical insulation, and electrochemically stable, It is made of a porous film containing a resin having a melting point of 80 to 130 ° C., and the number average particle diameter of the plate-like particles is 0.1 μm or more and 15 μm or less.

本発明の電極は、上記本発明の多孔質基体と一体化されたことを特徴とする。   The electrode of the present invention is integrated with the porous substrate of the present invention.

また、本発明の電気化学素子は、正極、負極、非水電解液および上記本発明の電気化学素子用セパレータを含むことを特徴とする。   The electrochemical device of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and the electrochemical device separator of the present invention.

本発明によれば、短絡や過充電などにより電池の温度が異常に上昇した時の安全性に優れた電気化学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrochemical element excellent in the safety | security when the temperature of a battery rises abnormally by a short circuit, overcharge, etc. can be provided.

本発明の電気化学素子用セパレータ(以下、単にセパレータという。)は、150℃以上の耐熱温度を有する多孔質基体と、フィラー粒子と、融点が80〜130℃の範囲にある樹脂A、および、加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する樹脂Bより選ばれる少なくとも1種の樹脂(以下、シャットダウン樹脂という。)とを含む多孔質膜よりなる。   The separator for an electrochemical element of the present invention (hereinafter simply referred to as a separator) includes a porous substrate having a heat resistant temperature of 150 ° C. or higher, filler particles, a resin A having a melting point in the range of 80 to 130 ° C., and It consists of a porous film containing at least one resin (hereinafter referred to as a shutdown resin) selected from the resin B that swells by absorbing an electrolyte solution by heating and whose degree of swelling increases as the temperature rises.

本発明のセパレータが上記樹脂Aを含有している場合は、本発明のセパレータが組み込まれたリチウム二次電池の温度が、樹脂Aの融点以上に達したときに、樹脂Aが溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。また、本発明のセパレータが上記樹脂Bを含有している場合は、電池の温度の上昇により、樹脂Bが電池内の電解液を吸収して膨潤し、膨潤した粒子がセパレータの空孔を塞ぐとともに空孔内部に存在する流動可能な電解液が減少することにより、シャットダウンを生じる。   When the separator of the present invention contains the resin A, when the temperature of the lithium secondary battery in which the separator of the present invention is incorporated reaches or exceeds the melting point of the resin A, the resin A melts and the separator Shuts down and suppresses the progress of electrochemical reaction. Further, when the separator of the present invention contains the resin B, the resin B absorbs the electrolyte in the battery and swells due to an increase in battery temperature, and the swelled particles block the pores of the separator. At the same time, the flowable electrolyte present in the pores is reduced to cause a shutdown.

また、本発明のセパレータは、150℃以上の耐熱温度を有する多孔質基体を備えることにより、シャットダウン温度を超える高温状態においても、セパレータの形状を安定に保つことが可能となり、熱収縮に起因する短絡の発生を防止することができる。このため、シャットダウンが生じた後の電池の安全性を向上させることができる。なお、本明細書でいう「耐熱温度」とは、対象物の長さの変化、すなわち、上記多孔質基体においては、室温での長さに対する収縮の割合(収縮率)が5%以下を維持することのできる上限温度をいう。また、本明細書でいう「耐熱性」とは、軟化などによる実質的な寸法変化が生じないことをいい、耐熱温度がシャットダウン温度よりも十分に高いかどうかで耐熱性を評価する。シャットダウン後の安全性を高めるため、多孔質基体は、シャットダウン温度よりも20℃以上高い耐熱温度を有することが望ましく、より具体的には、多孔質基体の耐熱温度を150℃以上とすることが望ましく、180℃以上とすることがより望ましい。多孔質基体の耐熱温度の上限は特に限定されない。   In addition, the separator of the present invention includes a porous substrate having a heat resistant temperature of 150 ° C. or higher, so that the shape of the separator can be kept stable even at a high temperature exceeding the shutdown temperature, which is caused by heat shrinkage. The occurrence of a short circuit can be prevented. For this reason, the safety | security of the battery after a shutdown arises can be improved. As used herein, “heat-resistant temperature” refers to the change in length of an object, that is, in the porous substrate, the rate of shrinkage (shrinkage rate) with respect to the length at room temperature is maintained at 5% or less. The maximum temperature that can be used. Further, “heat resistance” as used in the present specification means that a substantial dimensional change due to softening or the like does not occur, and the heat resistance is evaluated based on whether the heat resistant temperature is sufficiently higher than the shutdown temperature. In order to increase safety after shutdown, the porous substrate preferably has a heat resistant temperature that is 20 ° C. higher than the shutdown temperature, and more specifically, the heat resistant temperature of the porous substrate may be 150 ° C. or higher. Desirably, it is more desirable to set it as 180 degreeC or more. The upper limit of the heat resistant temperature of the porous substrate is not particularly limited.

さらに、本発明のセパレータでは、内部短絡の防止やセパレータの形状安定性(特に高温時における形状安定性)の確保などのために、フィラー粒子を含有させる。フィラー粒子は、上記多孔質基体の少なくとも一部を構成するものであってもよく、また、多孔質基体の空孔内に含有させてもよい。また、後述するように、多数のフィラー粒子をバインダなどにより一体化して多孔質基体を形成することができ、多孔質基体全体の少なくとも一部がこのような構成であってもよい。フィラー粒子としては、耐熱性および電気絶縁性を有しており、電解液やセパレータの製造の際に使用する溶媒に対して安定であり、さらに、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な微粒子が用いられる。   Furthermore, in the separator of the present invention, filler particles are contained for preventing internal short circuit and ensuring the shape stability of the separator (particularly, the shape stability at high temperature). The filler particles may constitute at least a part of the porous substrate, or may be contained in the pores of the porous substrate. Further, as will be described later, a large number of filler particles can be integrated with a binder or the like to form a porous substrate, and at least a part of the entire porous substrate may have such a configuration. The filler particles have heat resistance and electrical insulation properties, are stable to solvents used in the production of electrolytes and separators, and are less susceptible to oxidation and reduction within the battery operating voltage range. Stable particles are used.

本発明のセパレータのより具体的な態様としては、例えば、下記(I)および(II)の態様が挙げられる。   More specific embodiments of the separator of the present invention include, for example, the following embodiments (I) and (II).

(I)の態様のセパレータは、フィラー粒子が多数集合して多孔質基体を形成しているものであり、多数のフィラー粒子が単独であるいは繊維状物などとともに、耐熱樹脂などにより一体化されて多孔質基体となり、シャットダウン樹脂とともに多孔質膜を形成しているものである。   The separator of the aspect (I) is a separator in which a large number of filler particles are aggregated to form a porous substrate, and a large number of filler particles are integrated with a heat-resistant resin or the like alone or with a fibrous material. It becomes a porous substrate and forms a porous film together with the shutdown resin.

また、(II)の態様のセパレータは、繊維状物で多孔質基体、例えば織布、不織布(紙を含む)などを構成し、その空孔内にフィラー粒子を含有させ、シャットダウン樹脂とともに多孔質膜を形成しているものである。   Further, the separator in the mode (II) is a porous substrate made of a fibrous material, such as a woven fabric or a nonwoven fabric (including paper), and contains filler particles in the pores, and is porous with a shutdown resin. A film is formed.

シャットダウン樹脂の形態は特に限定はされないが、微粒子の形状のものを用いることが好ましく、その大きさは、乾燥時における粒径がセパレータの厚みより小さければ良く、セパレータの厚みの1/100〜1/3の平均粒径を有することが好ましく、具体的には、平均粒径が0.1〜20μmであることが好ましい。上記粒径の範囲であれば、シャットダウン樹脂を多孔質膜内に均一分散させやすくなる。粒径が小さすぎる場合は、粒子同士の隙間が小さくなり、イオンの伝導パスが長くなって電池特性が低下することがある。また、粒径が大きすぎると、隙間が大きくなってリチウムデンドライトなどに起因する短絡が生じることがある。なお、シャットダウン樹脂の平均粒径は、例えば、レーザー散乱粒度分布計、例えば、HORIBA社製“LA−920”を用い、シャットダウン樹脂を膨潤させない媒体、例えば水に当該微粒子を分散させて測定した数平均粒子径として規定することができる。   Although the form of the shutdown resin is not particularly limited, it is preferable to use a particulate resin, and the size of the shutdown resin is only required to be smaller than the thickness of the separator when dried, and is 1/100 to 1 of the thickness of the separator. It is preferable that the average particle diameter is / 3, and specifically, the average particle diameter is preferably 0.1 to 20 μm. If it is the range of the said particle size, it will become easy to disperse | distribute shutdown resin uniformly in a porous membrane. When the particle size is too small, the gap between the particles becomes small, the ion conduction path becomes long, and the battery characteristics may deteriorate. On the other hand, if the particle size is too large, the gap becomes large and a short circuit due to lithium dendrite or the like may occur. The average particle diameter of the shutdown resin is, for example, a number measured by dispersing the fine particles in a medium that does not swell the shutdown resin, for example, water, using a laser scattering particle size distribution analyzer such as “LA-920” manufactured by HORIBA. It can be defined as the average particle size.

また、シャットダウン樹脂は、上記以外の形態で用いてもよく、他の構成要素、例えば、多孔質基体やフィラー粒子の表面に積層されて一体化された状態で用いてもよい。多孔質基体が繊維状物で構成されている場合は、芯材の表面にシャットダウン樹脂を有する複層構造の繊維として用いてもよく、また、フィラー粒子をコアとしシャットダウン樹脂をシェルとするコアシェル構造の粒子として用いてもよい。また、樹脂Aと樹脂Bをともに用いる場合は、樹脂Bの表面に樹脂Aを積層させて一体化したものを用いることもできる。さらに、シャットダウン樹脂は、微粒子で構成され、フィラー粒子とともに多孔質基体の空孔内や多孔質基体の表面に配置されていてもよい。   Further, the shutdown resin may be used in a form other than the above, or may be used in a state where it is laminated and integrated on the surface of another constituent element, for example, a porous substrate or filler particles. When the porous substrate is composed of a fibrous material, it may be used as a fiber having a multilayer structure having a shutdown resin on the surface of the core material, and a core-shell structure having filler particles as a core and a shutdown resin as a shell It may be used as a particle. When both the resin A and the resin B are used, it is also possible to use a resin B laminated on the surface of the resin B and integrated. Furthermore, the shutdown resin is composed of fine particles, and may be disposed in the pores of the porous substrate or on the surface of the porous substrate together with the filler particles.

本発明のシャットダウン樹脂は、融点が80〜130℃の範囲にある樹脂A、または、加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する樹脂Bであり、その両者を共に用いることもできる。なお、上記融点は、例えば、日本工業規格(JIS)K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度により規定することができる。   The shutdown resin of the present invention is a resin A having a melting point in the range of 80 to 130 ° C., or a resin B that swells by absorbing an electrolyte solution by heating and increases its degree of swelling as the temperature rises. It can also be used. In addition, the said melting | fusing point can be prescribed | regulated by the melting temperature measured using a differential scanning calorimeter (DSC) according to the prescription | regulation of Japanese Industrial Standard (JIS) K7121, for example.

上記樹脂Aの構成材料としては、電気絶縁性を有しており、電解液に対して安定であり、さらに、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましく、ポリエチレン(PE)、共重合ポリオレフィン、またはポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。上記共重合ポリオレフィンとしては、エチレン−ビニルモノマー共重合体、より具体的には、エチレン−酢酸ビニル共重合体(EVA)、あるいは、エチレン−メチルアクリレート共重合体やエチレン−エチルアクリレート共重合体などの、エチレン−アクリル酸共重合体が例示できる。上記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが望ましい。また、ポリシクロオレフィンなどを用いることもできるし、上記構成材料の2種以上を有していても構わない。   The constituent material of the resin A is preferably an electrochemically stable material that has electrical insulation, is stable with respect to the electrolyte, and is not easily oxidized or reduced in the operating voltage range of the battery. (PE), copolymerized polyolefin, or polyolefin derivative (such as chlorinated polyethylene), polyolefin wax, petroleum wax, carnauba wax, and the like. Examples of the copolymer polyolefin include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-vinyl acetate copolymer (EVA), an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and the like. Examples thereof include ethylene-acrylic acid copolymers. The ethylene-derived structural unit in the copolymerized polyolefin is desirably 85 mol% or more. Moreover, polycycloolefin etc. can also be used and you may have 2 or more types of the said structural material.

上記材料の中でも、PE、ポリオレフィンワックス、またはエチレン由来の構造単位が85モル%以上のEVAが好適に用いられる。また、樹脂Aは、構成成分として、上記の構成材料の他に、必要に応じて、樹脂に添加される各種添加剤、例えば、酸化防止剤などを含有していても構わない。   Among the above materials, PE, polyolefin wax, or EVA having a structural unit derived from ethylene of 85 mol% or more is preferably used. Further, the resin A may contain various additives added to the resin as necessary, for example, an antioxidant, in addition to the above-described constituent materials.

一方、上記樹脂Bの構成材料としては、通常、電池が使用される温度領域(およそ70℃以下)では、電解液を吸収しないかまたは吸収量が限られており、従って膨潤度が一定以下であるが、シャットダウンが必要となる温度まで加熱されたときには、電解液を吸収して大きく膨潤しかつ温度上昇とともに膨潤度が増大するような性質を有する樹脂が用いられる。シャットダウン温度より低温側では、樹脂Bに吸収されない流動可能な電解液がセパレータの空孔内に存在するため、セパレータ内部のLiイオンの伝導性が高くなり、良好な負荷特性を有する電池となる。なお、本明細書でいう「負荷特性」とは、高率放電特性をいう。一方、温度上昇に伴って膨潤度が増大する性質(以下、「熱膨潤性」という場合がある。)が現れる温度以上に加熱された場合は、樹脂Bは電池内の電解液を吸収して大きく膨潤し、膨潤した粒子がセパレータの空孔を塞ぐとともに、上記流動可能な電解液が減少して電池が液枯れ状態となることにより、シャットダウンが生じて電池の安全性が確保される。しかも、シャットダウン温度を超える高温となった場合、熱膨潤性により上記液枯れがさらに進行し、電池の反応がさらに抑制されることになるため、シャットダウン後の高温安全性をより高めることができる。   On the other hand, as a constituent material of the resin B, normally, in a temperature range where the battery is used (approximately 70 ° C. or less), the electrolyte solution is not absorbed or the amount of absorption is limited. However, when heated to a temperature that requires shutdown, a resin is used that absorbs the electrolyte and swells greatly, and the degree of swelling increases as the temperature rises. On the lower temperature side than the shutdown temperature, a flowable electrolyte that is not absorbed by the resin B exists in the pores of the separator, so that the conductivity of Li ions inside the separator is increased, and the battery has good load characteristics. As used herein, “load characteristics” refers to high rate discharge characteristics. On the other hand, when heated above the temperature at which the degree of swelling increases with increasing temperature (hereinafter sometimes referred to as “thermal swelling”), the resin B absorbs the electrolyte in the battery. The swelled particles greatly block the pores of the separator, and the flowable electrolytic solution is reduced to put the battery in a dry state, thereby shutting down and ensuring the safety of the battery. Moreover, when the temperature is higher than the shutdown temperature, the liquid withering further proceeds due to the thermal swellability, and the reaction of the battery is further suppressed, so that the high-temperature safety after shutdown can be further improved.

樹脂Bが熱膨潤性を示しはじめる温度は、少なくとも75℃以上であることが好ましい。上記温度を75℃以上とすることにより、Liイオンの伝導性が著しく減少して電池の内部抵抗が上昇する温度(いわゆるシャットダウン温度)をおよそ80℃以上に設定することができるからである。一方、熱膨潤性を示す温度の下限が高くなるほど、セパレータのシャットダウン温度が高くなるので、シャットダウン温度をおよそ130℃以下に設定するために、熱膨潤性を示す温度の下限は、125℃以下とするのが好ましく、115℃以下とするのがより好ましい。熱膨潤性を示す温度が高すぎると、電池内の活物質の熱暴走反応を十分に抑制できず、電池の安全性向上効果が十分に確保できないことがあり、また、熱膨潤性を示す温度が低すぎると、通常の電池の使用温度域(およそ70℃以下)におけるリチウムイオンの伝導性が低くなりすぎることがある。   The temperature at which the resin B starts to exhibit thermal swellability is preferably at least 75 ° C. or higher. This is because by setting the temperature to 75 ° C. or higher, the temperature at which the Li ion conductivity is remarkably reduced and the internal resistance of the battery increases (so-called shutdown temperature) can be set to about 80 ° C. or higher. On the other hand, the higher the lower limit of the temperature showing thermal swellability, the higher the shutdown temperature of the separator. Therefore, in order to set the shutdown temperature to about 130 ° C or lower, the lower limit of the temperature showing thermal swellability is 125 ° C or lower. It is preferable to set the temperature to 115 ° C. or lower. If the temperature showing the thermal swellability is too high, the thermal runaway reaction of the active material in the battery may not be sufficiently suppressed, and the effect of improving the safety of the battery may not be sufficiently secured. Is too low, the conductivity of lithium ions in the normal battery operating temperature range (approximately 70 ° C. or lower) may be too low.

また、熱膨潤性を示す温度より低い温度では、樹脂Bは電解液をできるだけ吸収せず、膨潤が少ないほうが望ましい。これは、電池の使用温度領域、例えば室温では、電解液は、樹脂Bに取り込まれるよりもセパレータの空孔内に流動可能な状態で保持される方が、負荷特性などの電池特性が良好になるからである。   Further, at a temperature lower than the temperature exhibiting the heat swellability, it is desirable that the resin B does not absorb the electrolyte solution as much as possible and the swelling is less. This is because, in the battery operating temperature range, for example, room temperature, the electrolytic solution is better retained in the separator pores than in the resin B, and the battery characteristics such as load characteristics are better. Because it becomes.

常温(25℃)において樹脂Bが吸収する電解液量は、樹脂Bの体積変化を表す下記式(1)で定義される膨潤度により評価することができる。   The amount of the electrolyte solution absorbed by the resin B at room temperature (25 ° C.) can be evaluated by the degree of swelling defined by the following formula (1) representing the volume change of the resin B.

R=(V0/Vi)−1 (1) B R = (V 0 / V i ) −1 (1)

但し、上記式中、V0は、電解液中に25℃で24時間浸漬後の樹脂Bの体積(cm3)、Viは、電解液に浸漬する前の樹脂Bの体積(cm3)をそれぞれ表す。 However, in the above formula, V 0 is the volume of the resin B after 24 hours immersion at 25 ° C. in the electrolytic solution (cm 3), the volume of V i is before immersion in the electrolyte resin B (cm 3) Respectively.

本発明のセパレータにおいては、常温(25℃)における樹脂Bの膨潤度BRは、2.5以下であることが望ましく、1以下がより望ましい。すなわち、電解液の吸収による膨潤が小さいことが望ましく、BRはできるだけ0に近い小さな値となることが望まれる。また、熱膨潤性を示す温度より低温側では、膨潤度の温度変化ができるだけ小さくなるものが望ましい。樹脂Bをバインダ樹脂で結着させたセパレータでは、バインダ樹脂と共に存在する状態で樹脂Bの膨潤度が小さな値となればよい。 In the separator of the present invention, the swelling degree B R of the resin B at room temperature (25 ° C.) is desirably 2.5 or less, 1 or less is more preferable. In other words, it is desirable swelling due to absorption of the electrolyte is small, B R is desired to be a small value close to 0 as possible. Further, it is desirable that the temperature change of the degree of swelling is as small as possible on the lower temperature side than the temperature exhibiting thermal swellability. In the separator in which the resin B is bound with the binder resin, the swelling degree of the resin B may be a small value in a state where the resin B exists together with the binder resin.

一方、樹脂Bとしては、熱膨潤性を示す温度の下限以上に加熱された時は、電解液の吸収量が大きくなり、熱膨潤性を示す温度範囲において、温度とともに膨潤度が増大するものが用いられる。例えば、120℃において測定される、下記式(2)で定義される膨潤度BTが、1以上であるものが好ましく用いられ、2以上のものがより好ましい。 On the other hand, as the resin B, when heated above the lower limit of the temperature exhibiting thermal swellability, the amount of electrolyte absorbed increases, and in the temperature range exhibiting thermal swellability, the degree of swelling increases with temperature. Used. For example, it is measured at 120 ° C., swelling degree B T which is defined by the following formula (2) is 1 or higher is one are preferably used, more than one is more preferable.

T=(V1/V0)−1 (2) B T = (V 1 / V 0 ) −1 (2)

但し、上記式中、V0は、電解液中に25℃で24時間浸漬後の樹脂Bの体積(cm3)、V1は、電解液中に25℃で24時間浸漬後、電解液を120℃に昇温させ、120℃で1時間保持した後における樹脂Bの体積(cm3)をそれぞれ表す。 However, in the above formula, V 0 is the volume (cm 3 ) of resin B after being immersed in an electrolytic solution at 25 ° C. for 24 hours, and V 1 is an electrolytic solution after being immersed in the electrolytic solution at 25 ° C. for 24 hours. Each represents the volume (cm 3 ) of Resin B after raising the temperature to 120 ° C. and holding at 120 ° C. for 1 hour.

一方、上記式(2)で定義される樹脂Bの膨潤度は、大きくなりすぎると電池の変形を発生させることもあるため、10以下であるのが望ましく、5以下がより望ましい。   On the other hand, the swelling degree of the resin B defined by the above formula (2) is preferably 10 or less, more preferably 5 or less, because if the resin B becomes too large, the battery may be deformed.

上記式(2)で定義される膨潤度は、樹脂Bの大きさの変化を、光散乱法やCCDカメラ等により撮影された画像の画像解析といった方法を用いて、直接測定することにより見積もることができるが、例えば以下の方法を用いてより正確に測定することができる。   The degree of swelling defined by the above formula (2) is estimated by directly measuring the change in the size of the resin B by using a method such as a light scattering method or an image analysis of an image taken by a CCD camera or the like. However, it can be measured more accurately using, for example, the following method.

上記式(1)および式(2)と同様に定義される、25℃および120℃における膨潤度が分かっているバインダ樹脂を用い、その溶液またはエマルジョンに、樹脂Bを混合してスラリーを調製し、これをポリエチレンテレフタレート(PET)シートやガラス板などの基材上に塗布してフィルムを作製し、その質量を測定する。次に、このフィルムを、25℃の電解液中に24時間浸漬して質量を測定し、更に、電解液を120℃に加熱昇温させ、120℃で1時間保持した後における質量を測定し、下記式(3)〜(9)によって膨潤度BTを算出する。なお、下記式(3)〜(9)では、25℃から120℃までの昇温した際の、電解液以外の成分の体積増加は無視できるものとする。 Using a binder resin having a known degree of swelling at 25 ° C. and 120 ° C., which is defined in the same manner as in the above formulas (1) and (2), resin B is mixed with the solution or emulsion to prepare a slurry. This is coated on a substrate such as a polyethylene terephthalate (PET) sheet or glass plate to produce a film, and its mass is measured. Next, the film was immersed in an electrolyte at 25 ° C. for 24 hours to measure the mass, and the electrolyte was heated to 120 ° C. and held at 120 ° C. for 1 hour to measure the mass. The swelling degree B T is calculated by the following formulas (3) to (9). In addition, in following formula (3)-(9), the volume increase of components other than electrolyte solution shall be disregarded when it heats up from 25 degreeC to 120 degreeC.

i=Mi×W/PA (3)
B=(M0−Mi)/PB (4)
C=M1/PC−M0/PB (5)
V=Mi×(1−W)/PV (6)
0=Vi+VB−VV×(BB+1) (7)
D=VV×(BB+1) (8)
T={V0+VC−VD×(BC+1)}/V0−1 (9)
V i = M i × W / P A (3)
V B = (M 0 −M i ) / P B (4)
V C = M 1 / P C −M 0 / P B (5)
V V = M i × (1−W) / P V (6)
V 0 = V i + V B −V V × (B B +1) (7)
V D = V V × (B B +1) (8)
B T = {V 0 + V C −V D × (B C +1)} / V 0 −1 (9)

ここで、上記式(3)〜(9)中、
i:電解液に浸漬する前の樹脂Bの体積(cm3)、
0:電解液中に25℃で24時間浸漬後の樹脂Bの体積(cm3)、
B:電解液中に常温で24時間浸漬後に、フィルムに吸収された電解液の体積(cm3)、
C:電解液中に常温で24時間浸漬した時点から、電解液を120℃まで昇温させ、更に120℃で1時間経過するまでの間に、フィルムに吸収された電解液の体積(cm3)、
V:電解液に浸漬する前のバインダ樹脂の体積(cm3)、
D:電解液中に常温で24時間浸漬後のバインダ樹脂の体積(cm3)、
i:電解液に浸漬する前のフィルムの質量(g)、
0:電解液中に常温で24時間浸漬後のフィルムの質量(g)、
1:電解液中に常温で24時間浸漬した後、電解液を120℃まで昇温させ、更に120℃で1時間保持した後におけるフィルムの質量(g)、
W:電解液に浸漬する前のフィルム中の樹脂Bの質量比率、
A:電解液に浸漬する前の樹脂Bの比重(g/cm3)、
B:常温における電解液の比重(g/cm3)、
C:所定温度での電解液の比重(g/cm3)、
V:電解液に浸漬する前のバインダ樹脂の比重(g/cm3)、
B:電解液中に常温で24時間浸漬後のバインダ樹脂の膨潤度、
C:上記式(1)で定義される昇温時のバインダ樹脂の膨潤度
である。
Here, in the above formulas (3) to (9),
V i : Volume of the resin B (cm 3 ) before being immersed in the electrolyte,
V 0 : volume (cm 3 ) of resin B after being immersed in the electrolyte at 25 ° C. for 24 hours,
V B : volume of the electrolyte solution (cm 3 ) absorbed in the film after being immersed in the electrolyte solution at room temperature for 24 hours,
V C : The volume of the electrolytic solution absorbed by the film (cm) during the period from when the electrolytic solution was immersed in the electrolytic solution for 24 hours at room temperature until the electrolytic solution was heated to 120 ° C. and further passed for 1 hour at 120 ° C. 3 ),
V V : volume (cm 3 ) of the binder resin before being immersed in the electrolytic solution,
V D : volume (cm 3 ) of binder resin after being immersed in the electrolyte at room temperature for 24 hours,
M i : the mass (g) of the film before being immersed in the electrolytic solution,
M 0 : mass (g) of the film after being immersed in the electrolyte at room temperature for 24 hours,
M 1 : After immersing in the electrolyte solution at room temperature for 24 hours, the electrolyte solution was heated to 120 ° C. and further held at 120 ° C. for 1 hour, and the film mass (g),
W: Mass ratio of resin B in the film before being immersed in the electrolytic solution,
P A : Specific gravity (g / cm 3 ) of the resin B before being immersed in the electrolytic solution,
P B : Specific gravity of electrolyte at normal temperature (g / cm 3 ),
P C : specific gravity of electrolyte at a predetermined temperature (g / cm 3 ),
P V : specific gravity (g / cm 3 ) of the binder resin before being immersed in the electrolytic solution,
B B : degree of swelling of the binder resin after being immersed in the electrolyte at room temperature for 24 hours,
B C : Swelling degree of the binder resin at the time of temperature rise defined by the above formula (1).

樹脂Bとしては、耐熱性および電気絶縁性を有しており、電解液に対して安定であり、さらに、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましく、そのような材料としては、例えば、樹脂架橋体が挙げられる。より具体的には、スチレン樹脂〔ポリスチレン(PS)など〕、スチレンブタジエン共重合体、アクリル樹脂〔ポリメチルメタクリレート(PMMA)など〕、ポリアルキレンオキシド〔ポリエチレンオキシド(PEO)など〕、フッ素樹脂〔ポリフッ化ビニリデン(PVDF)など〕およびこれらの誘導体よりなる群から選ばれる少なくとも1種の樹脂の架橋体、尿素樹脂、ポリウレタンなどが例示でき、これらを2種以上用いることもできる。また、樹脂Bは、構成成分として、上記のような主要構成材料の他に、必要に応じて、樹脂に添加される各種添加剤、例えば、酸化防止剤などを含有していても構わない。   The resin B is preferably an electrochemically stable material that has heat resistance and electrical insulation, is stable to an electrolytic solution, and is not easily oxidized and reduced in the operating voltage range of the battery. Examples of such a material include a crosslinked resin. More specifically, a styrene resin (polystyrene (PS), etc.), a styrene butadiene copolymer, an acrylic resin (polymethyl methacrylate (PMMA), etc.), a polyalkylene oxide (polyethylene oxide (PEO), etc.), a fluororesin (polyfluoride, etc.). Examples thereof include a crosslinked product of at least one resin selected from the group consisting of vinylidene chloride (PVDF) and the like and derivatives thereof, urea resin, polyurethane, and the like, and two or more of these may be used. In addition to the main constituent materials as described above, the resin B may contain various additives added to the resin, such as an antioxidant, as necessary.

上記の構成材料の中では、スチレン樹脂架橋体、アクリル樹脂架橋体およびフッ素樹脂架橋体が好ましく、架橋PMMAが特に好ましく用いられる。   Among the above constituent materials, crosslinked styrene resin, crosslinked acrylic resin and crosslinked fluororesin are preferable, and crosslinked PMMA is particularly preferably used.

これらの樹脂架橋体が、温度上昇により電解液を吸収して膨潤するメカニズムについては明らかではないが、ガラス転移温度との相関が考えられる。すなわち、樹脂は、一般にそのガラス転移温度(Tg)まで加熱されたときに柔軟になるため、上記の様な樹脂は、ガラス転移温度以上の温度で多くの電解液の吸収が可能となり膨潤するのではないかと推定される。従って、樹脂Bとしては、実際にシャットダウン作用が生じる温度が、樹脂Bが熱膨潤性を示し始める温度より多少高くなることを考慮し、およそ75〜125℃の範囲にガラス転移温度を有する材料を用いることが望ましいと考えられる。同じ樹脂架橋体であっても、市販品には種々のガラス転移温度のものが存在するが、例えば、材料の架橋度を制御することによりガラス転移温度を変化させることができるので、所望のガラス転移温度となるよう調製された材料を用いればよい。   Although the mechanism by which these resin crosslinked bodies absorb and swell the electrolyte solution due to temperature rise is not clear, a correlation with the glass transition temperature is conceivable. That is, since the resin generally becomes flexible when heated to its glass transition temperature (Tg), the resin as described above can absorb a large amount of electrolyte at a temperature higher than the glass transition temperature and swell. It is estimated that. Accordingly, as the resin B, a material having a glass transition temperature in the range of about 75 to 125 ° C. is considered in consideration that the temperature at which the shutdown action actually occurs is slightly higher than the temperature at which the resin B starts to exhibit thermal swellability. It is considered desirable to use it. Even if the same resin cross-linked body, there are commercially available products with various glass transition temperatures. For example, since the glass transition temperature can be changed by controlling the degree of cross-linking of the material, the desired glass can be obtained. A material prepared to have a transition temperature may be used.

上記樹脂架橋体では、電解液を含む前のいわゆる乾燥状態においては、温度上昇により膨張しても、温度を下げることにより再び収縮するというように、温度変化に伴う体積変化にある程度可逆性があり、また、熱膨潤性を示す温度よりもかなり高い耐熱温度を有するため、熱膨潤性を示す温度の下限が100℃くらいであっても、200℃あるいはそれ以上まで加熱することが可能な材料を選択することができる。そのため、セパレータの作製工程などで加熱を行っても、樹脂が溶解したり樹脂の熱膨潤性が損なわれたりすることがなく、一般の加熱プロセスを含む製造工程での取り扱いが容易となる。また、本発明のセパレータでは、従来のポリエチレン製多孔質フィルムで構成されるセパレータとは異なり、強い応力をかけることなく製造することが可能であるため、製造後の残留応力が殆どまたは全くなく、多孔質基体には根本的に熱収縮が殆ど生じないため、製造方法の面からも高温での安全性向上を図ることができる。   In the above-mentioned resin crosslinked body, in a so-called dry state before containing the electrolytic solution, the volume change accompanying the temperature change is reversible to some extent so that even if it expands due to a temperature rise, it shrinks again by lowering the temperature. In addition, since it has a heat-resistant temperature that is considerably higher than the temperature that exhibits thermal swellability, even if the lower limit of the temperature that exhibits thermal swellability is about 100 ° C, a material that can be heated to 200 ° C or higher is used. You can choose. Therefore, even when heating is performed in a separator manufacturing process or the like, the resin is not dissolved or the thermal swellability of the resin is not impaired, and handling in a manufacturing process including a general heating process becomes easy. Moreover, in the separator of the present invention, unlike a separator composed of a conventional polyethylene porous film, since it can be produced without applying a strong stress, there is little or no residual stress after production, Since the heat shrinkage does not substantially occur in the porous substrate, safety can be improved at a high temperature from the viewpoint of the manufacturing method.

上記樹脂Aおよび樹脂Bは、それぞれ単独で用いることもでき、また、両者を共存させることもできる。これらのシャットダウン樹脂の含有量(体積比率)は、シャットダウンの効果をより得やすくするために、セパレータの全構成成分の全体積中、10体積%以上とするのが好ましく、20体積%以上とするのがより好ましく、一方、セパレータの高温時における形状安定性確保の点から、80体積%以下であることが好ましく、40体積%以下であることがより好ましい。   The resin A and the resin B can be used alone or both can coexist. The content (volume ratio) of these shutdown resins is preferably 10% by volume or more, and preferably 20% by volume or more, in the total volume of all the constituent components of the separator in order to make it easier to obtain the shutdown effect. On the other hand, it is preferably 80% by volume or less and more preferably 40% by volume or less from the viewpoint of securing the shape stability of the separator at a high temperature.

また、本発明で用いられるフィラー粒子は、前記(I)の態様のように、セパレータを構成する多孔質基体の少なくとも一部として存在してもよく、また、前記(II)の態様のように、多孔質基体の空孔内に存在してもよい。   Further, the filler particles used in the present invention may be present as at least a part of the porous substrate constituting the separator as in the aspect (I), and as in the aspect (II). , May exist in the pores of the porous substrate.

フィラー粒子は、有機粒子でも無機粒子でもよいが、分散性などの点から微粒子であるのが望ましく、安定性などの点から無機微粒子が好ましく用いられる。無機粒子の構成材料の具体例としては、例えば、酸化鉄、SiO2、Al23、TiO2、BaTiO2、ZrO2などの無機酸化物、窒化アルミニウム、窒化ケイ素などの無機窒化物、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶、シリコン、ダイヤモンドなどの共有結合性結晶、モンモリロナイトなどの粘土が挙げられる。さらに、上記無機酸化物は、AlOOHまたはAl23・H2Oで示されるアルミニウム化合物(例えばベーマイト)、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビンなどの鉱物資源由来物質あるいはこれらの人造物などであってもよい。上記無機酸化物の中でも、Al23、SiO2およびベーマイトが好ましく、リチウムデンドライトの発生に起因する短絡を防止する効果が最も高いベーマイトが特に好ましく用いられる。ベーマイトの中でも、粒径、形状を制御しやすく、電気化学素子に悪影響するイオン性不純物の量をコントロールできる合成ベーマイトがさらに望ましい。これらのフィラー粒子は、1種類を単独で用いることもできるが、2種類以上を混合して用いることもできる。 The filler particles may be organic particles or inorganic particles, but are desirably fine particles from the viewpoint of dispersibility, and inorganic fine particles are preferably used from the viewpoint of stability. Specific examples of the constituent material of the inorganic particles include inorganic oxides such as iron oxide, SiO 2 , Al 2 O 3 , TiO 2 , BaTiO 2 , and ZrO 2 , inorganic nitrides such as aluminum nitride and silicon nitride, and fluorine. Examples include slightly soluble ion crystals such as calcium fluoride, barium fluoride, and barium sulfate, covalent bonds such as silicon and diamond, and clays such as montmorillonite. Furthermore, the inorganic oxide is an aluminum compound represented by AlOOH or Al 2 O 3 · H 2 O ( e.g. boehmite), zeolite, apatite, kaoline, mullite, spinel, mineral resource-derived substances or their artificial materials such as olivine It may be. Among the inorganic oxides, Al 2 O 3 , SiO 2 and boehmite are preferable, and boehmite having the highest effect of preventing a short circuit due to generation of lithium dendrite is particularly preferably used. Among boehmite, synthetic boehmite that can easily control the particle size and shape and can control the amount of ionic impurities that adversely affect the electrochemical device is more desirable. These filler particles can be used alone or in combination of two or more.

また、フィラー粒子は、金属、又はSnO2、スズ−インジウム酸化物(ITO)などの導電性酸化物、又はカーボンブラック、グラファイトなどの炭素質材料などに例示される導電性材料の表面を、電気絶縁性を有する材料、例えば、上記無機酸化物などで被覆することにより電気絶縁性を持たせた粒子であってもよい。 In addition, the filler particles are formed on the surface of a conductive material exemplified by metals, conductive oxides such as SnO 2 and tin-indium oxide (ITO), or carbonaceous materials such as carbon black and graphite. It may be a particle having electrical insulation properties by coating with an insulating material, for example, the above inorganic oxide.

フィラー粒子の形状としては、例えば、球状に近い形状であってもよく、板状であってもよいが、短絡防止の点からは、板状の粒子であることが望ましい。板状粒子の代表的なものとしては、板状のAl23や板状のベーマイトなどが挙げられる。また、フィラー粒子の粒径は、前記測定法で測定される数平均粒子径として、例えば、0.01μm以上が好ましく、より好ましくは0.1μm以上であって、15μm以下が好ましく、5μm以下であることがより好ましい。 The shape of the filler particles may be, for example, a shape close to a sphere or may be a plate shape, but is preferably a plate particle from the viewpoint of preventing a short circuit. Typical examples of the plate-like particles include plate-like Al 2 O 3 and plate-like boehmite. The particle diameter of the filler particles is, for example, preferably 0.01 μm or more, more preferably 0.1 μm or more, preferably 15 μm or less, and preferably 5 μm or less, as the number average particle diameter measured by the measurement method. More preferably.

板状の微粒子をセパレータに含有させる場合には、後述する方法などにより、微粒子の板面をセパレータの膜面とできるだけ平行になるよう配向させることができる。これにより、電極表面に析出するリチウムデンドライトや電極表面の活物質の突起により内部短絡が生じるのをより効果的に防ぐことができる。板状粒子の場合には、そのアスペクト比(板状粒子中の最大長さと板状粒子の厚みの比)は、例えば、2〜100であることが好ましく、10〜50がより好ましい。アスペクト比が小さすぎると、粒子が板状であることによる上記効果が小さくなることがあり、大きすぎると、粒子の比表面積が大きくなりすぎるために取り扱いが困難となることがある。また、粒子が板状の場合には、その平板面の長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値は、1以上であって、3以下、より好ましくは2以下であることが望ましい。粒子の平板面の長軸方向長さと短軸方向長さの比が大きすぎると、粒子の形状が針状に近づき、粒子が板状であることによる上記効果が小さくなることがある。   When plate-like fine particles are contained in the separator, the plate surface of the fine particles can be oriented so as to be as parallel as possible to the film surface of the separator by a method described later. Thereby, it can prevent more effectively that an internal short circuit arises by the projection of the lithium dendrite deposited on the electrode surface and the active material on the electrode surface. In the case of plate-like particles, the aspect ratio (ratio of the maximum length in the plate-like particles to the thickness of the plate-like particles) is preferably 2 to 100, for example, and more preferably 10 to 50. If the aspect ratio is too small, the above-described effect due to the particles being plate-like may be reduced. If the aspect ratio is too large, the specific surface area of the particles may be too large and handling may be difficult. When the particles are plate-like, the average value of the ratio of the long axis direction length to the short axis direction length (long axis direction length / short axis direction length) of the flat plate surface is 1 or more. 3 or less, more preferably 2 or less. If the ratio of the length in the major axis direction to the length in the minor axis direction of the flat plate surface of the particles is too large, the shape of the particles may approach a needle shape, and the above-described effect due to the tabular shape of the particles may be reduced.

また、フィラー粒子の平均粒径は、セパレータの厚みより小さければよく、一方、セパレータの厚みの1/100以上とするのが好ましい。なお、板状の微粒子としては、上記無機微粒子のほかに、耐熱温度が150℃以上の樹脂材料などを用いることもできる。上記例示の材料は、2種以上を併用することもできる。   Moreover, the average particle diameter of filler particles should just be smaller than the thickness of a separator, and on the other hand, it is preferable to set it as 1/100 or more of the thickness of a separator. As the plate-like fine particles, in addition to the inorganic fine particles, a resin material having a heat resistant temperature of 150 ° C. or higher can also be used. Two or more of the above exemplified materials can be used in combination.

前記(I)の態様のセパレータの多孔質基体は、多数のフィラー粒子をバインダなどにより一体化させて形成することができ、上記バインダとしては、EVA(酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、エポキシ樹脂などが用いられる。特に、150℃以上の耐熱温度を有する耐熱樹脂が好ましく用いられ、上記バインダは2種以上を併用しても構わない。なお、これらのバインダを使用する場合には、後述するセパレータ形成用の液状組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。   The porous substrate of the separator according to the embodiment (I) can be formed by integrating a large number of filler particles with a binder or the like. As the binder, EVA (a structural unit derived from vinyl acetate is 20 to 35 mol). %), Ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, fluorine rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA) Polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyurethane, epoxy resin and the like are used. In particular, a heat resistant resin having a heat resistant temperature of 150 ° C. or higher is preferably used, and two or more binders may be used in combination. When these binders are used, they may be used in the form of an emulsion dissolved or dispersed in a solvent for a liquid composition for forming a separator described later.

また、セパレータの形状安定性や柔軟性を確保するため、繊維状物などをフィラー粒子とともに混在させてもよく、繊維状物としては、耐熱温度が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、更に下記に詳述する電解液や、セパレータの製造の際に使用する溶媒に対して安定であれば、特に材質に制限はない。また、繊維状物の耐熱温度の上限は特に限定されない。なお、本明細書でいう「繊維状物」とは、アスペクト比〔長尺方向の長さ/長尺方向に直交する方向の幅(直径)〕が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。   In addition, in order to ensure the shape stability and flexibility of the separator, a fibrous material or the like may be mixed with the filler particles. The fibrous material has a heat resistance temperature of 150 ° C. or higher and has an electrical insulating property. The material is not particularly limited as long as it is electrochemically stable and is stable with respect to the electrolyte solution described in detail below and the solvent used in the production of the separator. Moreover, the upper limit of the heat-resistant temperature of a fibrous material is not specifically limited. The “fibrous material” in the present specification means that having an aspect ratio [length in the long direction / width in the direction perpendicular to the long direction (diameter)] of 4 or more. The ratio is preferably 10 or more.

繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体〔カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など〕、ポリオレフィン〔ポリプロピレン(PP)、プロピレンの共重合体など〕、ポリエステル〔ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など〕、ポリアクリロニトリル(PAN)、アラミド、ポリアミドイミド、ポリイミドなどの樹脂、ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物などを挙げることができ、これらの構成材料は2種以上を含有していても構わない。また、繊維状物は、必要に応じて、各種添加剤、例えば、樹脂である場合には酸化防止剤などを含有していても構わない。   Specific examples of the constituent material of the fibrous material include, for example, cellulose and its modified products (carboxymethylcellulose (CMC), hydroxypropylcellulose (HPC), etc.), polyolefin (polypropylene (PP), propylene copolymer, etc.), Polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.), polyacrylonitrile (PAN), aramid, polyamideimide, polyimide and other resins, glass, alumina, zirconia, silica and other inorganic materials An oxide etc. can be mentioned, These constituent materials may contain 2 or more types. Further, the fibrous material may contain various additives, for example, an antioxidant in the case of a resin, as necessary.

一方、前記(II)の態様のセパレータの多孔質基体は、上記繊維状物が織布、不織布(紙を含む)などのシート状物を形成してなるものであり、市販の不織布などを基体として用いることができる。この態様のセパレータでは、多孔質基体の空孔内にフィラー粒子を含有させるが、多孔質基体とフィラー粒子を結着させるため、あるいは、シャットダウン樹脂と多孔質基体を結着させるために、前記バインダを用いることもできる。   On the other hand, the porous substrate of the separator according to the embodiment (II) is formed by forming the fibrous material into a sheet-like material such as a woven fabric or a nonwoven fabric (including paper). Can be used as In the separator of this aspect, the filler particles are contained in the pores of the porous substrate. However, in order to bind the porous substrate and the filler particles, or to bind the shutdown resin and the porous substrate, the binder is used. Can also be used.

また、繊維状物の直径は、セパレータの厚み以下であればよいが、例えば、0.01〜5μmであることが好ましい。直径が大きすぎると、繊維状物同士の絡み合いが不足して、シート状物を形成して多孔質膜の基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、直径が小さすぎると、セパレータの空隙が小さくなりすぎて、イオン透過性が低下する傾向にあり、電池の負荷特性を低下させてしまうことがある。   Moreover, although the diameter of a fibrous material should just be below the thickness of a separator, it is preferable that it is 0.01-5 micrometers, for example. When the diameter is too large, the entanglement between the fibrous materials is insufficient, and when a sheet-like material is formed to constitute a porous membrane substrate, the strength may be reduced and handling may be difficult. On the other hand, if the diameter is too small, the gap between the separators becomes too small, and the ion permeability tends to decrease, which may decrease the load characteristics of the battery.

(II)の態様のセパレータにおける繊維状物の含有量は、セパレータの全構成成分の全体積中、例えば、10体積%以上が好ましく、より好ましくは20体積%以上であって、90体積%以下が好ましく、80体積%以下がより好ましい。セパレータ中での繊維状物の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。   The content of the fibrous material in the separator of the mode (II) is preferably, for example, 10% by volume or more, more preferably 20% by volume or more, and 90% by volume or less, in the total volume of all the constituent components of the separator. Is preferable, and 80 volume% or less is more preferable. The state of the presence of the fibrous material in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, and more preferably 20 ° or less. .

また、フィラー粒子の含有量は、内部短絡防止の効果を向上させるためには、セパレータの全構成成分の全体積中、20体積%以上とするのが好ましく、50体積%以上とするのがより好ましく、シャットダウン樹脂の含有量を確保してシャットダウン特性を維持するためには、80体積%以下に含有量を抑制することが好ましい。   In order to improve the effect of preventing internal short circuit, the content of the filler particles is preferably 20% by volume or more, more preferably 50% by volume or more in the total volume of all the constituent components of the separator. Preferably, in order to secure the content of the shutdown resin and maintain the shutdown characteristics, the content is preferably suppressed to 80% by volume or less.

一方、(I)の態様のセパレータにおいては、多孔質基体の占める割合が、セパレータの全構成成分の全体積中、10体積%以上90体積%以下となるようにフィラー粒子やバインダの含有量を調整するのが望ましい。   On the other hand, in the separator of the aspect (I), the content of the filler particles and the binder is set so that the proportion of the porous substrate is 10% by volume or more and 90% by volume or less in the total volume of all the constituent components of the separator. It is desirable to adjust.

電気化学素子の短絡防止効果をより高め、セパレータの強度を確保して取り扱い性を良好にしつつ、電気化学素子のエネルギー密度をより高める観点から、セパレータの厚みは、例えば、3μm以上が望ましく、より望ましくは5μm以上であって、一方、30μm以下が望ましく、20μm以下であることがより望ましい。   From the viewpoint of further improving the energy density of the electrochemical element while further enhancing the short-circuit prevention effect of the electrochemical element, ensuring the strength of the separator and improving the handleability, the thickness of the separator is desirably 3 μm or more, for example. Desirably, it is 5 μm or more, and on the other hand, it is desirably 30 μm or less, and more desirably 20 μm or less.

また、セパレータの空隙率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、20%以上とするのがよく、より好ましくは30%以上である。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空隙率は、70%以下とするのが好ましく、60%以下であることがより望ましい。なお、セパレータの空隙率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、次式を用いて各成分iについての総和を求めることにより計算できる。   Further, the porosity of the separator is preferably 20% or more, and more preferably 30% or more in a dried state in order to ensure the amount of electrolyte retained and to improve ion permeability. is there. On the other hand, from the viewpoint of ensuring the strength of the separator and preventing internal short circuit, the porosity of the separator is preferably 70% or less, and more preferably 60% or less. The porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula.

P=100−(Σai/ρi)×(m/t) P = 100− (Σa i / ρ i ) × (m / t)

ここで、上記式中、ai:質量%で表した成分iの比率、ρi:成分iの密度(g/cm3)、m:セパレータの単位面積あたりの質量(g/cm2)、t:セパレータの厚み(cm)である。 Here, in the above formula, a i : ratio of component i expressed by mass%, ρ i : density of component i (g / cm 3 ), m: mass per unit area of the separator (g / cm 2 ), t: The thickness (cm) of the separator.

なお、樹脂Bを含むセパレータでは、電池の組み立て後において、樹脂Bが電解液を吸収して膨潤し、セパレータの空隙率が多少低下しても問題はなく、セパレータの空隙率が10%以上であれば好適である。   In the separator containing the resin B, after the battery is assembled, the resin B absorbs the electrolyte and swells, and there is no problem even if the porosity of the separator is somewhat reduced. The separator has a porosity of 10% or more. Any is suitable.

また、本発明のセパレータのガーレー値で表される透気度は、10〜300secであることが望ましい。ここで、ガーレー値とは、JIS P 8117に準拠した方法で測定される、0.879g/mm2の圧力下で100mLの空気が膜を透過する秒数の値をいう。ガーレー値が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。さらに、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。 The air permeability represented by the Gurley value of the separator of the present invention is preferably 10 to 300 seconds. Here, the Gurley value is a value of the number of seconds that 100 mL of air permeates through the membrane under a pressure of 0.879 g / mm 2 , measured by a method according to JIS P 8117. If the Gurley value is too large, the ion permeability decreases, whereas if it is too small, the strength of the separator may decrease. Further, the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too small, a short circuit may occur due to the piercing of the separator when lithium dendrite crystals are generated.

本発明のセパレータの製造方法としては、例えば、下記の(a)および(b)の方法を採用できる。(a)の製造方法は、セパレータの基体に、シャットダウン樹脂およびフィラー粒子を含む液状組成物(スラリーなど)を塗布または含浸させた後、所定の温度で乾燥する方法である。これにより前記(II)の態様のセパレータを製造することができる。この場合の多孔質基体としては、具体的には、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが用いられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布を例示できる。   As a manufacturing method of the separator of the present invention, for example, the following methods (a) and (b) can be adopted. The manufacturing method (a) is a method in which a separator composition is coated or impregnated with a liquid composition (slurry or the like) containing a shutdown resin and filler particles and then dried at a predetermined temperature. Thereby, the separator of the aspect of said (II) can be manufactured. Specifically, the porous substrate in this case has a woven fabric composed of at least one kind of fibrous material containing each of the exemplified materials as a constituent component, or a structure in which these fibrous materials are entangled with each other. A porous sheet such as a nonwoven fabric is used. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.

上記液状組成物は、シャットダウン樹脂およびフィラー粒子のほか、必要に応じてバインダなどを含有し、これらを溶媒(分散媒を含む、以下同じ。)に分散させたものであり、バインダについては溶媒に溶解させることもできる。液状組成物に用いられる溶媒は、シャットダウン樹脂やフィラー粒子を均一に分散でき、また、バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般に有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。   In addition to the shutdown resin and filler particles, the liquid composition contains a binder and the like as required, and these are dispersed in a solvent (including a dispersion medium, the same shall apply hereinafter). It can also be dissolved. The solvent used in the liquid composition may be any solvent that can uniformly disperse the shutdown resin and filler particles and can uniformly dissolve or disperse the binder. For example, aromatic hydrocarbons such as toluene, tetrahydrofuran, etc. In general, organic solvents such as furans, ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used. In addition, for the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, an alcohol (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) is added as appropriate to the interface. The tension can also be controlled.

上記液状組成物では、シャットダウン樹脂、フィラー粒子およびバインダを含む固形分量を、例えば10〜40質量%とすることが好ましい。   In the liquid composition, the solid content including the shutdown resin, the filler particles, and the binder is preferably 10 to 40% by mass, for example.

上記多孔質基体の空孔の開口径が比較的大きい場合、例えば、5μm以上の場合には、これが電気化学素子の短絡の要因となりやすい。よって、この場合には、フィラー粒子の少なくとも一部が基体の空孔内に存在する構造とすることが好ましい。また、シャットダウン樹脂などフィラー粒子以外の構成物の少なくとも一部も、フィラー粒子とともに基体の空孔内に存在する構造とすることがより好ましい。   When the pore diameter of the porous substrate is relatively large, for example, when it is 5 μm or more, this tends to cause a short circuit of the electrochemical element. Therefore, in this case, it is preferable to have a structure in which at least a part of the filler particles are present in the pores of the substrate. In addition, it is more preferable that at least a part of the constituents other than the filler particles such as the shutdown resin exist in the pores of the substrate together with the filler particles.

なお、セパレータ中に板状粒子を含有させる場合に、配向性を高めてその機能を有効に作用させるためには、上記液状組成物を含浸させた基体において、この液状組成物にシェアや磁場をかけるといった方法を用いればよい。   In addition, in the case where the plate-like particles are contained in the separator, in order to enhance the orientation and to make the function work effectively, in the substrate impregnated with the liquid composition, a shear or magnetic field is applied to the liquid composition. You can use the method of calling.

また、上記構成物のそれぞれの持つ効果をより有効に発揮させるために、構成物を偏在させて、セパレータの膜面と平行に層状に集まった形態としてもよい。このような形態とするには、例えば、ダイコーターやリバースロールコーターのヘッドやロールを2つ用いて、基体の裏表両方向から別々の塗料、例えば、シャットダウン樹脂を主体とした液状組成物と、フィラー粒子を主体とした液状組成物とを別々に塗布し、乾燥する方法が採用できる。   Moreover, in order to exhibit the effect which each said structure has more effectively, it is good also as a form which made the structure unevenly distributed and gathered in layers parallel to the film surface of a separator. In order to achieve such a configuration, for example, using two heads or rolls of a die coater or reverse roll coater, separate paints from both the front and back sides of the substrate, for example, a liquid composition mainly composed of a shutdown resin, and a filler A method in which the liquid composition mainly composed of particles is separately applied and dried can be employed.

本発明のセパレータの(b)の製造方法は、上記液状組成物に、更に必要に応じて繊維状物を含有させ、これをフィルムや金属箔などの基板上に塗布し、所定の温度で乾燥した後に、この基板から剥離する方法である。(b)の方法によって、前記(I)の態様のセパレータを製造することができる。(b)の方法で使用する液状組成物は、繊維状物などを含めた固形分量が、例えば10〜40質量%であることが好ましい。また、(b)の方法によって、電池を構成する正極および負極より選ばれる少なくとも一方の表面にセパレータを形成し、セパレータと電極とを一体化した構造としてもよい。   The manufacturing method of (b) of the separator of this invention makes the said liquid composition contain a fibrous material further as needed, apply | coats this on board | substrates, such as a film and metal foil, and dries at predetermined | prescribed temperature. And then peeling from the substrate. By the method (b), the separator according to the embodiment (I) can be produced. The liquid composition used in the method (b) preferably has a solid content including, for example, a fibrous material of 10 to 40% by mass. Moreover, it is good also as a structure which formed the separator on the surface of at least one chosen from the positive electrode and negative electrode which comprise a battery by the method of (b), and integrated the separator and the electrode.

なお、本発明のセパレータは、上記に示した各構造に限定されるものではない。例えば、シャットダウン樹脂は、粒子状で個々に独立して存在していてもよく、互いに、または繊維状物などに、一部が融着されていても構わない。また、本発明のセパレータを適用できる電気化学素子は、非水電解液を用いるものであれば特に限定されるものではなく、リチウム二次電池のほか、リチウム一次電池やスーパーキャパシタなど高温での安全性が要求される用途であれば、同じく適用可能なものである。   In addition, the separator of this invention is not limited to each structure shown above. For example, the shutdown resin may be in the form of particles and may be present independently, or may be partially fused to each other or to a fibrous material. The electrochemical element to which the separator of the present invention can be applied is not particularly limited as long as it uses a non-aqueous electrolyte, and in addition to a lithium secondary battery, it is safe at high temperatures such as a lithium primary battery and a super capacitor. It can also be applied to any application that requires high performance.

以下、本発明の電気化学素子の一例として、リチウム二次電池への適用について詳述する。リチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Hereinafter, application to a lithium secondary battery will be described in detail as an example of the electrochemical device of the present invention. Examples of the form of the lithium secondary battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

正極としては、従来のリチウム二次電池に用いられている正極、すなわち、Liを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物質として、Li1+xMO2(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMn24やその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO4(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。上記層状構造のリチウム含有遷移金属酸化物としては、LiCoO2やLiNi1-xCox-yAly2(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/32、LiMn5/12Ni5/12Co1/62、LiMn3/5Ni1/5Co1/52など)を具体的に例示することができる。 The positive electrode is not particularly limited as long as it is a positive electrode used in a conventional lithium secondary battery, that is, a positive electrode containing an active material capable of occluding and releasing Li. For example, as a positive electrode active material, a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.) Or LiMn 2 O 4 or a spinel-type lithium manganese oxide in which a part of the element is substituted with another element, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) is used. It is possible. Examples of the lithium-containing transition metal oxide of the layered structure, LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0.2) In addition, such , Oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3/5 Ni 1/5 (Co 1/5 O 2 etc.) can be specifically exemplified.

上記正極活物質には、導電助剤としてカーボンブラックなどの炭素材料及びバインダとしてポリフッ化ビニリデン(PVDF)などのフッ素樹脂が添加されて正極合剤が調製される。この正極合剤を用いて集電体の表面に成形体(正極合剤層)が形成される。   The positive electrode active material is prepared by adding a carbon material such as carbon black as a conductive additive and a fluororesin such as polyvinylidene fluoride (PVDF) as a binder. Using this positive electrode mixture, a molded body (positive electrode mixture layer) is formed on the surface of the current collector.

また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   Further, as the positive electrode current collector, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used, but usually an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。但し、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

負極としては、従来のリチウム二次電池に用いられている負極、すなわち、Liを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、負極活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。   The negative electrode is not particularly limited as long as it is a negative electrode used in a conventional lithium secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li. For example, as a negative electrode active material, lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers, can be occluded and released. One type or a mixture of two or more types of carbon-based materials are used. Further, elements such as Si, Sn, Ge, Bi, Sb, In and alloys thereof, compounds that can be charged and discharged at a low voltage close to lithium metal such as lithium-containing nitrides or lithium-containing oxides, or lithium metal or lithium / aluminum An alloy can also be used as the negative electrode active material.

上記負極活物質には、導電助剤としてカーボンブラックなどの炭素材料や、バインダとしてPVDFなどが適宜添加されて負極合剤が調製され、この負極合剤を用いて集電体の表面に成形体(負極合剤層)が形成される。また、負極活物質として上記各種合金やリチウム金属を用いる場合には、各種合金やリチウム金属の箔を単独で負極として用いることができ、さらにこれらを集電体上に積層して用いることもできる。   A negative electrode mixture is prepared by appropriately adding a carbon material such as carbon black as a conductive additive and PVDF as a binder to the negative electrode active material, and a molded body is formed on the surface of the current collector using the negative electrode mixture. (Negative electrode mixture layer) is formed. Further, when the above various alloys and lithium metal are used as the negative electrode active material, various alloy and lithium metal foils can be used alone as the negative electrode, and these can be laminated on the current collector. .

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm. Further, the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.

電極は、上記正極と上記負極とを、本発明のセパレータを介して積層した積層体や、更にこれを巻回した電極巻回体の形態で用いることができる。   The electrode can be used in the form of a laminate in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or an electrode wound body in which this is wound.

非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLi+イオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6などの無機リチウム塩、LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(2≦n≦5)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 5), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], etc. Can be used.

非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート、プロピオン酸メチルなどの鎖状エステル、γ−ブチロラクトンなどの環状エステル、ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル、ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル、アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類、エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートとの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。   The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, chain esters such as methyl propionate, cyclic esters such as γ-butyrolactone, Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme, cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran, nitriles such as acetonitrile, propionitrile and methoxypropionitrile And sulfites such as ethylene glycol sulfite. These may be used as a mixture of two or more. Kill. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate. In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, and fluorobenzene are used for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes. An additive such as t-butylbenzene may be added as appropriate.

上記リチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。   The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.25 mol / L.

以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は下記の実施例に限定されるものではない。なお、本実施例における樹脂Bの膨潤度BRおよびBTは、それぞれ前記式(1)および式(2)に基づき求められた膨潤度である。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples. Incidentally, degree of swelling B R and B T of the resin B in the present embodiment are each the formula (1) and (2) the basis of the obtained degree of swelling.

<負極の作製>
負極活物質である黒鉛:95質量部と、バインダであるPVDF:5質量部とを、N−メチル−2−ピロリドン(NMP)を溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、活物質塗布長が表面320mm、裏面260mmになるように間欠塗布し、乾燥した。その後、カレンダー処理を行って、全厚が142μmになるように負極合剤層の厚みを調整し、幅45mmになるように切断して、長さ330mm、幅45mmの負極を作製した。さらに、この負極の銅箔の露出部にタブを溶接してリード部を形成した。
<Production of negative electrode>
A negative electrode active material-containing paste was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder with N-methyl-2-pyrrolidone (NMP) as a solvent in a uniform manner. Prepared. This negative electrode mixture-containing paste was intermittently applied on both sides of a 10 μm thick collector made of copper foil so that the active material application length was 320 mm on the front surface and 260 mm on the back surface, and dried. Thereafter, calendering was performed to adjust the thickness of the negative electrode mixture layer so that the total thickness was 142 μm, and cut to a width of 45 mm to produce a negative electrode having a length of 330 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

<正極の作製>
正極活物質であるLiCoO2:85質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダであるPVDF:5質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、アルミニウム箔からなる厚さ15μmの集電体の両面に、活物質塗布長が表面319〜320mm、裏面258〜260mmになるように間欠塗布し、乾燥した。その後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、長さ330mm、幅43mmの正極を作製した。さらに、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
<Preparation of positive electrode>
The positive electrode active material LiCoO 2 : 85 parts by mass, the conductive auxiliary agent acetylene black: 10 parts by mass, and the binder PVDF: 5 parts by mass were mixed so as to be uniform using NMP as a solvent. An agent-containing paste was prepared. This paste was intermittently applied on both sides of a current collector made of aluminum foil having a thickness of 15 μm so that the active material application length was 319 to 320 mm on the front surface and 258 to 260 mm on the back surface, and dried. Thereafter, calendering was performed to adjust the thickness of the positive electrode mixture layer so that the total thickness was 150 μm, and the cut was made to have a width of 43 mm to produce a positive electrode having a length of 330 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

なお、上記負極および上記正極は、後述する電池の作製に用いる。   In addition, the said negative electrode and the said positive electrode are used for preparation of the battery mentioned later.

<セパレータの作製と評価>
(実施例1)
ポリエチレン粉末(樹脂A)の水分散液〔三井化学社製“ケミパールW−700”(商品名)〕:750g、イソプロピルアルコール(IPA):200g、および、バインダとして、ポリビニルブチラール(PVB)〔積水化学社製“エスレックKX−5”(商品名)〕:375gを容器に入れ、ディスパーで、2800rpmの条件で1時間撹拌して分散させた。これに、フィラー粒子として、板状ベーマイト微粒子〔河合石灰社製“BMM”(商品名)、平均粒径:1μm、アスペクト比:10〕:300gを加え、3時間撹拌して均一なスラリーとした。このスラリー中に、厚さ15μmのPP製不織布(ニッポン高度紙社製)を通し、引き上げ塗布によりスラリーを塗布した後、乾燥して、厚さ20μmのセパレータを得た。
<Production and evaluation of separator>
Example 1
Aqueous dispersion of polyethylene powder (resin A) [“CHEMIPARL W-700” (trade name) manufactured by Mitsui Chemicals, Inc.]: 750 g, isopropyl alcohol (IPA): 200 g, and polyvinyl butyral (PVB) [Sekisui Chemical Co., Ltd. “S Lek KX-5” (trade name) manufactured by the company]: 375 g was put into a container and dispersed with stirring with a disper at 2800 rpm for 1 hour. To this, plate-like boehmite fine particles [“BMM” (trade name) manufactured by Kawai Lime Co., Ltd., average particle size: 1 μm, aspect ratio: 10]: 300 g were added, and stirred for 3 hours to obtain a uniform slurry. . A 15 μm thick PP non-woven fabric (manufactured by Nippon Kogyo Paper Co., Ltd.) was passed through the slurry, and the slurry was applied by pulling up and then dried to obtain a separator having a thickness of 20 μm.

(実施例2)
架橋PMMA微粒子(樹脂B)〔ガンツ化成社製“ガンツパール0104”(商品名)、平均粒径1μm、Tg=約120℃、BR=0.5、BT=2.3〕:1kg、水:800g、イソプロピルアルコール(IPA):200g、および、バインダとして、ポリビニルブチラール(PVB)〔積水化学社製“エスレックKX−5”(商品名)〕:375gを容器に入れ、ディスパーで、2800rpmの条件で1時間撹拌して分散させた。これに、フィラー粒子として、アルミナ(Al23)微粒子〔住友化学社製“スミコランダムAA04”(商品名)、耐熱温度:180℃以上、平均粒径:0.4μm、粒度分布:0.3〜0.7μm〕:3kg、上記バインダ(PVB):750gを加え、3時間撹拌して均一なスラリーとした。このスラリー中に、厚さ28μmのPBT製不織布(タピルス社製)を通し、引き上げ塗布によりスラリーを塗布した後、乾燥して、厚さ35μmのセパレータを得た。
(Example 2)
Cross-linked PMMA fine particles (resin B) [“Ganz Pearl 0104” (trade name) manufactured by Ganz Kasei Co., Ltd., average particle size 1 μm, Tg = about 120 ° C., B R = 0.5, B T = 2.3]: 1 kg, Water: 800 g, isopropyl alcohol (IPA): 200 g, and as a binder, polyvinyl butyral (PVB) [“Surek KX-5” (trade name) manufactured by Sekisui Chemical Co., Ltd.]: 375 g was put in a container, and a disperser at 2800 rpm. The mixture was stirred and dispersed for 1 hour under the conditions. In addition, as filler particles, alumina (Al 2 O 3 ) fine particles (“Sumiko Random AA04” (trade name) manufactured by Sumitomo Chemical Co., Ltd.), heat resistant temperature: 180 ° C. or higher, average particle size: 0.4 μm, particle size distribution: 0.00 3 to 0.7 μm]: 3 kg and the above binder (PVB): 750 g were added and stirred for 3 hours to obtain a uniform slurry. A 28 μm thick non-woven fabric made of PBT (Tapyrus Co., Ltd.) was passed through this slurry, and the slurry was applied by pulling up and then dried to obtain a separator having a thickness of 35 μm.

(実施例3)
バインダとして、SBRラテックス〔JSR社製“TRD−2001”(商品名)〕:300gおよびCMC〔ダイセル化学社製“2200”〕:30gと、水:4kgとを容器に入れ、均一に溶解するまで室温にて撹拌した。さらに、架橋PMMA微粒子(樹脂B)の水分散体〔ガンツ化成社製“スタフィロイド”(商品名)、平均粒径0.3μm、BR=1.2、BT=1.2〕:2.5kgを加え、ディスパーで、2800rpmの条件で1時間撹拌して分散させた。これに、フィラー粒子として、実施例1と同じ板状ベーマイト微粒子“BMM”:3kgを加え、ディスパーで、2800rpmの条件で3時間撹拌して均一なスラリーとした。このスラリーを、アプリケーターを用いて、厚さ23μmのPP製不織布(日本バイリーン社製)上に、ギャップを50μmにして摺り切り塗布し、乾燥して、厚さ30μmのセパレータを得た。
(Example 3)
As a binder, SBR latex [“TRD-2001” (trade name) manufactured by JSR Corporation]: 300 g and CMC [“2200” manufactured by Daicel Chemical Industries, Ltd.]: 30 g and water: 4 kg are placed in a container and dissolved uniformly. Stir at room temperature. Further, an aqueous dispersion of crosslinked PMMA fine particles (resin B) [“STAPHYLOID” (trade name) manufactured by Gantz Kasei Co., Ltd., average particle size: 0.3 μm, B R = 1.2, B T = 1.2]: 2 0.5 kg was added and dispersed with stirring with a disper at 2800 rpm for 1 hour. To this, 3 kg of the same plate-like boehmite fine particles “BMM” as in Example 1 were added and stirred with a disper at 2800 rpm for 3 hours to obtain a uniform slurry. Using an applicator, this slurry was applied onto a 23 μm-thick PP non-woven fabric (manufactured by Nippon Vilene Co., Ltd.) with a gap of 50 μm and dried to obtain a separator having a thickness of 30 μm.

(実施例4)
実施例3と同じスラリーに、さらに、樹脂Aとして、実施例1と同じポリエチレン粉末の水分散液“ケミパールW−700”:1kgを加え、ディスパーで、2800rpmの条件で1時間撹拌して分散させた。以下、実施例3と同様にして厚さ30μmのセパレータを得た。
Example 4
To the same slurry as in Example 3, 1 kg of the same polyethylene powder aqueous dispersion “Chemipearl W-700” as in Example 1 is added as Resin A, and dispersed with stirring with a disperser at 2800 rpm for 1 hour. It was. Thereafter, a separator having a thickness of 30 μm was obtained in the same manner as in Example 3.

(実施例5)
実施例2のアルミナ微粒子に代え、板状アルミナ微粒子〔キンセイマテック社製“セラフ”(商品名)〕:3kgを加えてスラリーを作製し、これを、アプリケーターを用いて、厚さ15μmのPET製不織布(フロイデンベルグ社製)上に、ギャップを50μmにして摺り切り塗布した以外は実施例2と同様にして、厚さ20μmのセパレータを得た。
(Example 5)
In place of the alumina fine particles of Example 2, plate-like alumina fine particles [“Seraph” (trade name) manufactured by Kinsei Matec Co., Ltd.]: 3 kg was added to prepare a slurry, and this was made of PET having a thickness of 15 μm using an applicator. A separator having a thickness of 20 μm was obtained in the same manner as in Example 2 except that a non-woven fabric (manufactured by Freudenberg Co., Ltd.) was applied with a gap of 50 μm.

(実施例6)
実施例2と同じ架橋PMMA微粒子(樹脂B)“ガンツパール0104”の水分散体:1kgに、溶媒として水:2kg、バインダとして、エチレン−酢酸ビニル共重合体(EVA)のエマルジョン〔酢酸ビニル由来の構造単位が20モル%、住化ケムテックス社製“住化フレックスS850HQ”(商品名)〕:100gを加え、ディスパーで、2800rpmの条件で1時間攪拌して分散させた。これに、フィラー粒子として、アルミナ繊維〔電気化学工業社製“デンカアルセンB100”(商品名)〕:1.5kgを加え、均一になるまで室温にて撹拌した。このスラリーを、ダイコーターを用いて、塗布厚さ50μmでPET基材上に塗布し、乾燥した後、PET基材から剥離することにより、アルミナ繊維により形成された多孔質基体と架橋PMMA微粒子とを有する厚さ15μmのセパレータを得た。
(Example 6)
Water dispersion of the same crosslinked PMMA fine particles (resin B) “Gantz Pearl 0104” as in Example 2: 1 kg, water: 2 kg as a solvent, and an ethylene-vinyl acetate copolymer (EVA) emulsion as a binder [from vinyl acetate The structural unit was 20 mol%, “Sumika Flex S850HQ” (trade name) manufactured by Sumika Chemtex Co., Ltd.]: 100 g was added, and the mixture was dispersed with stirring with a disper at 2800 rpm for 1 hour. To this was added 1.5 kg of alumina fiber [Denka Alsen B100 (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd.] as filler particles, and the mixture was stirred at room temperature until uniform. The slurry was applied on a PET substrate with a coating thickness of 50 μm using a die coater, dried, and then peeled off from the PET substrate, whereby a porous substrate formed of alumina fibers, crosslinked PMMA fine particles, A separator having a thickness of 15 μm was obtained.

(実施例7)
バインダとして、実施例3と同じSBRラテックス“TRD−2001”:100gおよびCMC“2200”:30gと、水:6kgとを容器に入れ、均一に溶解するまで室温にて撹拌した。さらに、ベーマイト(大明化学社製、平均粒径2μm):1kgを加え、ディスパーで、2800rpmの条件で1時間攪拌して分散させた。これに、PEエマルジョン〔三井化学社製“W−700”(商品名)〕:1kg(固形分)を加え、ディスパーで、2800rpmの条件で3時間撹拌して均一なスラリーとした。以下、実施例1と同様にして、厚さ20μmのセパレータを得た。
(Example 7)
As a binder, the same SBR latex “TRD-2001”: 100 g and CMC “2200”: 30 g as in Example 3 and water: 6 kg were placed in a container and stirred at room temperature until evenly dissolved. Further, 1 kg of boehmite (manufactured by Daimei Chemical Co., Ltd., average particle size 2 μm) was added, and the mixture was stirred and dispersed with a disper at 2800 rpm for 1 hour. PE emulsion [Mitsui Chemicals "W-700" (trade name)]: 1 kg (solid content) was added thereto, and the mixture was stirred with a disper at 2800 rpm for 3 hours to obtain a uniform slurry. Thereafter, a separator having a thickness of 20 μm was obtained in the same manner as in Example 1.

(参考例1)
バインダとして、EVA〔酢酸ビニル由来の構造単位が34モル%、日本ユニカー社製〕:100gを、溶媒であるトルエン:6kgとともに容器に入れ、均一に溶解するまで室温にて撹拌してバインダ溶液を得た。次いで、樹脂Aとして、ポリエチレン粉末〔住友精化社製“フロービーズLE1080”(商品名)〕:500gを上記バインダ溶液に加え、ディスパーで、2800rpmの条件で1時間攪拌して分散させた。これに、フィラー粒子として、実施例2と同じアルミナ微粒子“スミコランダムAA04”:2kgを加え、ディスパーで、2800rpmの条件で3時間攪拌して分散させ、セパレータ形成用の均一な液状組成物を得た。このスラリーを、アプリケーターを用いて、50μmのギャップを通して前述した負極の負極合剤層上に摺り切り塗布した後、乾燥させて、負極の両面に、負極と一体化された厚さ15μmのセパレータを形成した。
(Reference Example 1)
As a binder, EVA (the structural unit derived from vinyl acetate is 34 mol%, manufactured by Nihon Unicar Co., Ltd.): 100 g was placed in a container together with 6 kg of toluene as a solvent, and stirred at room temperature until evenly dissolved to obtain a binder solution. Obtained. Next, 500 g of polyethylene powder [“Flow Beads LE1080” (trade name) manufactured by Sumitomo Seika Co., Ltd.]: 500 g was added as the resin A to the above binder solution, and dispersed with stirring with a disperser at 2800 rpm for 1 hour. To this, 2 kg of the same alumina fine particle “Sumicorundum AA04” as in Example 2 was added as filler particles, and dispersed with stirring with a disperser at 2800 rpm for 3 hours to obtain a uniform liquid composition for forming a separator. It was. This slurry was applied by applying it onto the negative electrode mixture layer of the negative electrode described above through a gap of 50 μm using an applicator, and then dried to form a separator having a thickness of 15 μm integrated with the negative electrode on both sides of the negative electrode. Formed.

この負極の断面の走査型電子顕微鏡写真を図1に、また、そのセパレータ部分を拡大した走査型電子顕微鏡写真を図2に示す。図1において、1はセパレータであり、2は負極である。また、図2において、3はフィラー粒子、4はバインダ、5は多孔質基体、6はシャットダウン樹脂である。図1および図2の写真より、フィラー粒子3およびバインダ4で構成された多孔質基体5と、シャットダウン樹脂6とからなるセパレータ1とが、負極2上に形成されている様子がわかる。参考例1では、シャットダウン樹脂として、融点が80〜130℃の範囲にある樹脂A(ポリエチレン)を用い、フィラー粒子として、アルミナ微粒子を用いたが、樹脂Bを用いた場合、あるいは、ベーマイトを用いた場合でも同様に、セパレータを電極上に直接形成することが可能である。   A scanning electron micrograph of the cross section of the negative electrode is shown in FIG. 1, and a scanning electron micrograph in which the separator portion is enlarged is shown in FIG. In FIG. 1, 1 is a separator and 2 is a negative electrode. In FIG. 2, 3 is filler particles, 4 is a binder, 5 is a porous substrate, and 6 is a shutdown resin. 1 and 2, it can be seen that the porous substrate 5 composed of the filler particles 3 and the binder 4 and the separator 1 made of the shutdown resin 6 are formed on the negative electrode 2. In Reference Example 1, resin A (polyethylene) having a melting point in the range of 80 to 130 ° C. was used as the shutdown resin, and alumina fine particles were used as the filler particles. However, when resin B was used, boehmite was used. Similarly, the separator can be directly formed on the electrode.

(参考例2)
ポリエチレン粉末の量を1kgに変更した以外は参考例1と同様にして、負極の両面にセパレータを形成した。
(Reference Example 2)
Separators were formed on both sides of the negative electrode in the same manner as in Reference Example 1 except that the amount of polyethylene powder was changed to 1 kg.

(実施例8)
実施例7と同様のスラリーを、参考例1と同様にして、前述の正極の正極合剤層上に塗布し、乾燥させることにより、正極の両面に、正極と一体化された厚さ10μmのセパレータを形成した。
(Example 8)
A slurry similar to that in Example 7 was applied onto the positive electrode mixture layer of the positive electrode described above in the same manner as in Reference Example 1 and dried, so that the both sides of the positive electrode had a thickness of 10 μm integrated with the positive electrode. A separator was formed.

(比較例1)
市販の厚さ20μmのポリエチレン製微多孔膜を比較例1のセパレータとした。
(Comparative Example 1)
A commercially available polyethylene microporous film having a thickness of 20 μm was used as the separator of Comparative Example 1.

(比較例2)
フィラー粒子として、アルミナ微粒子〔住友化学社製“AKP−30”(商品名)、平均粒径:0.3μm〕:1kg、水:800g、イソプロピルアルコール(IPA):200g、および、バインダとして、実施例1と同じPVB“エスレックKX−5”:375gを容器に入れ、ディスパーで、2800rpmの条件で1時間撹拌して分散させて均一なスラリーとした。このスラリー中に、厚さ15μmのPP製不織布(ニッポン高度紙社製)を通し、引き上げ塗布によりスラリーを塗布した後、乾燥して、厚さ20μmのセパレータを得た。
(Comparative Example 2)
As filler particles, alumina fine particles [“AKP-30” (trade name) manufactured by Sumitomo Chemical Co., Ltd., average particle size: 0.3 μm]: 1 kg, water: 800 g, isopropyl alcohol (IPA): 200 g, and implemented as a binder The same PVB “ESREC KX-5” as in Example 1: 375 g was put in a container, and dispersed with stirring with a disper at 2800 rpm for 1 hour to obtain a uniform slurry. A 15 μm thick PP non-woven fabric (manufactured by Nippon Kogyo Paper Co., Ltd.) was passed through the slurry, and the slurry was applied by pulling up and then dried to obtain a separator having a thickness of 20 μm.

(比較例3)
アルミナ微粒子に代えて、実施例1と同じポリエチレン粉末(樹脂A)の水分散液“ケミパールW−700”を用いた以外は比較例2と同様にして、厚さ20μmのセパレータを得た。
(Comparative Example 3)
A separator having a thickness of 20 μm was obtained in the same manner as in Comparative Example 2, except that the same polyethylene powder (resin A) aqueous dispersion “Chemipearl W-700” as in Example 1 was used instead of the alumina fine particles.

(参考例3)
アルミナ微粒子に代えて、実施例1と同様の板状ベーマイト微粒子“BMM”を用いた以外は比較例2と同様にして、厚さ20μmのセパレータを得た。
(Reference Example 3)
A separator having a thickness of 20 μm was obtained in the same manner as in Comparative Example 2 except that the same plate-like boehmite fine particles “BMM” as in Example 1 were used in place of the alumina fine particles.

上記実施例1〜8、参考例1〜3および比較例1〜3のセパレータの構成を表1に示す。   Table 1 shows the configurations of the separators of Examples 1 to 8, Reference Examples 1 to 3, and Comparative Examples 1 to 3.

Figure 2008243825
Figure 2008243825

作製された各セパレータについて、以下の方法により、収縮率とシャットダウン温度を測定した。   About each produced separator, the shrinkage rate and the shutdown temperature were measured with the following method.

上記実施例1〜7、参考例3および比較例1〜3のセパレータを、それぞれ4cm×4cmの大きさに切断し、クリップで固定した2枚のステンレス板で挟みこみ、150℃の恒温槽内に30分放置した後に取り出して、各セパレータ片の長さを測定し、試験前の長さと比較してその減少率をセパレータの収縮率として求めた。   The separators of Examples 1 to 7, Reference Example 3 and Comparative Examples 1 to 3 were each cut into a size of 4 cm × 4 cm and sandwiched between two stainless plates fixed by clips, and in a thermostatic chamber at 150 ° C. Then, the length of each separator piece was measured, and the reduction rate was determined as the shrinkage rate of the separator in comparison with the length before the test.

また、電極と一体化された実施例8および参考例1〜2のセパレータについては、電極とともに150℃の恒温槽内に60分放置した後に取り出して、セパレータの長辺の長さを加熱前と比較して収縮率を求めた。各セパレータの収縮率を表2に示す。   Moreover, about the separator of Example 8 and Reference Examples 1-2 integrated with the electrode, it was taken out after being left in a thermostatic bath at 150 ° C. for 60 minutes together with the electrode, and the length of the long side of the separator was set to before heating. The shrinkage rate was obtained by comparison. Table 2 shows the shrinkage ratio of each separator.

Figure 2008243825
Figure 2008243825

また、実施例1〜7および比較例1〜3のセパレータの室温(25℃)における透気度の測定を、JIS P 8117に準拠した方法で行い、ガーレー値、すなわち、0.879g/mm2(8620Pa)の圧力下で100mLの空気が膜を透過する秒数を求めた。さらに、実施例1、実施例7および比較例1〜3のセパレータについて、以下の方法により、80℃〜150℃の範囲でガーレー値の変化を測定した。各セパレータを、80℃の恒温槽中で10分間保持した後、取り出して室温(25℃)まで徐冷し、上記方法により80℃まで昇温後のガーレー値を測定した。以後、5℃刻みで150℃まで温度を上昇させ、それぞれの温度でセパレータを10分間保持した後、上記と同様にしてガーレー値を測定した。求めたガーレー値の温度による変化から、ガーレー値が1×104sec/100mLを超えたときの温度を、セパレータのシャットダウン温度とした。なお、シャットダウン樹脂を含まない比較例2のセパレータでは、シャットダウンが生じなかったため、シャットダウン温度は測定できなかった。 Moreover, the air permeability at room temperature (25 ° C.) of the separators of Examples 1 to 7 and Comparative Examples 1 to 3 was measured by a method based on JIS P 8117, and the Gurley value, that is, 0.879 g / mm 2. The number of seconds during which 100 mL of air permeates the membrane under a pressure of (8620 Pa) was determined. Furthermore, about the separator of Example 1, Example 7, and Comparative Examples 1-3, the change of the Gurley value was measured in the range of 80 to 150 degreeC with the following method. Each separator was held for 10 minutes in a constant temperature bath at 80 ° C., then taken out and slowly cooled to room temperature (25 ° C.), and the Gurley value after the temperature was raised to 80 ° C. by the above method was measured. Thereafter, the temperature was increased to 150 ° C. in increments of 5 ° C., and the separator was held at each temperature for 10 minutes, and then the Gurley value was measured in the same manner as described above. The temperature at which the Gurley value exceeded 1 × 10 4 sec / 100 mL from the change in the obtained Gurley value depending on the temperature was taken as the shutdown temperature of the separator. In the separator of Comparative Example 2 that did not contain the shutdown resin, the shutdown temperature could not be measured because the shutdown did not occur.

一方、実施例2〜6のセパレータは、以下の方法により、シャットダウン温度を求めた。4cm×4cmの大きさに切断された各セパレータ片を、端子付きの2枚のステンレス板で挟みこみ、アルミラミネートフィルムの袋に挿入し、非水電解液を注入した後、端子の先を袋の外に出した状態で袋を封止して試験用の試料とした。ここで、非水電解液としては、エチレンカーボネートとエチルメチルカーボネートを体積比1:2で混合した溶媒にLiPF6を1.2mol/Lの濃度で溶解させた溶液を用いた。 On the other hand, the separator of Examples 2-6 calculated | required shutdown temperature with the following method. Each separator piece cut to a size of 4cm x 4cm is sandwiched between two stainless plates with terminals, inserted into a bag of aluminum laminate film, injected with non-aqueous electrolyte, and then the tip of the terminal is put into the bag The bag was sealed in a state where it was taken out of the bag to prepare a test sample. Here, as the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2 was used.

上記試料を恒温槽に入れ、HIOKI社製の接点抵抗計“3560ACミリオームハイテスタ”(商品名)により、上記端子に1kHzの交流を印加したときの抵抗値を測定しながら、室温(25℃)から毎分1℃の割合で温度上昇させて加熱し、内部抵抗の温度による変化を求めた。そして、抵抗値が室温(25℃)での値の10倍以上となったときの温度を、そのセパレータのシャットダウン温度とした。   Place the above sample in a thermostat and measure the resistance value when applying a 1 kHz alternating current to the terminal with a contact resistance meter “3560 AC milliohm high tester” (trade name) manufactured by HIOKI, at room temperature (25 ° C.) The temperature was increased at a rate of 1 ° C./minute and heated, and the change in internal resistance with temperature was determined. The temperature at which the resistance value was 10 times or more the value at room temperature (25 ° C.) was taken as the shutdown temperature of the separator.

上記実施例1〜7および比較例1〜3のセパレータのガーレー値およびシャットダウン温度を表3に示す。   Table 3 shows the Gurley values and shutdown temperatures of the separators of Examples 1 to 7 and Comparative Examples 1 to 3.

Figure 2008243825
Figure 2008243825

なお、電極と一体化されたセパレータについては、後述するように、電池の組み立て後に、電池の内部抵抗の温度による変化を測定することにより、当該セパレータのシャットダウン温度を求めた。   In addition, about the separator integrated with the electrode, the shutdown temperature of the said separator was calculated | required by measuring the change with the temperature of the internal resistance of a battery after the assembly of a battery so that it may mention later.

<電池の作製と評価>
実施例1〜7、参考例3および比較例1〜3のセパレータを、それぞれ、前述の正極および負極とともに渦巻状に巻回して巻回電極体を作製した。この巻回電極体を押しつぶして扁平状にし、電池容器内に装填し、前述と同じ構成の非水電解液を注入した後、封止を行って、実施例1A〜7A、参考例3Aおよび比較例1A〜3Aのリチウム二次電池を作製した。
<Production and evaluation of battery>
The separators of Examples 1 to 7, Reference Example 3 and Comparative Examples 1 to 3 were wound in a spiral shape together with the positive electrode and the negative electrode, respectively, to produce a wound electrode body. The wound electrode body is crushed into a flat shape, loaded into a battery container, injected with a non-aqueous electrolyte having the same structure as described above, and then sealed, and Examples 1A to 7A, Reference Example 3A and Comparative Example The lithium secondary batteries of Examples 1A to 3A were prepared.

また、正極あるいは負極と一体化された実施例8および参考例1〜2のセパレータは、当該セパレータを介して正極あるいは負極とその対極とを重ね合わせ、上記と同様にしてリチウム二次電池を組み立て、実施例8Aおよび参考例1A〜2Aのリチウム二次電池とした。   In addition, the separators of Example 8 and Reference Examples 1 and 2 integrated with the positive electrode or the negative electrode overlap the positive electrode or the negative electrode and the counter electrode through the separator, and assemble a lithium secondary battery in the same manner as described above. The lithium secondary batteries of Example 8A and Reference Examples 1A to 2A were obtained.

まず、電極と一体化されたセパレータのシャットダウン温度の測定例を以下に示す。上記実施例8Aおよび参考例1A〜2Aのリチウム二次電池を恒温槽に入れ、前記セパレータ単独での内部抵抗の測定と同様にして、30℃から150℃まで毎分1℃の割合で温度上昇させて加熱し、電池の内部抵抗の温度による変化を求めた。そして、抵抗値が30℃での値の5倍以上に上昇したときの温度を、そのセパレータのシャットダウン温度とした。また、前記ガーレー値の変化によりシャットダウン温度を求める方法と比較するため、比較例1Aの電池の内部抵抗の温度による変化も上記と同様にして求め、比較例1のセパレータのシャットダウン温度を求めたが、前記ガーレー値の変化によりシャットダウン温度を求める方法とほぼ同じ結果が得られた。さらに、比較例3Aの電池についても、同様に内部抵抗の温度による変化を測定しようとしたが、電池作製時に内部短絡が生じていることが判明し、電池としての評価を行うことができなかった。すなわち、比較例3のセパレータは、フィラー粒子を含まないため、セパレータの強度が弱く、電池作製時に内部短絡を生じたものと思われる。   First, an example of measuring the shutdown temperature of a separator integrated with an electrode is shown below. The lithium secondary batteries of Example 8A and Reference Examples 1A to 2A were placed in a thermostatic bath, and the temperature was increased from 30 ° C. to 150 ° C. at a rate of 1 ° C. per minute in the same manner as the measurement of the internal resistance of the separator alone. The battery was heated and the change in the internal resistance of the battery with temperature was determined. The temperature at which the resistance value increased to 5 times or more of the value at 30 ° C. was taken as the shutdown temperature of the separator. Moreover, in order to compare with the method of obtaining the shutdown temperature by the change of the Gurley value, the change of the internal resistance of the battery of Comparative Example 1A due to the temperature was obtained in the same manner as described above, and the shutdown temperature of the separator of Comparative Example 1 was obtained. As a result, almost the same result as the method of obtaining the shutdown temperature by the change of the Gurley value was obtained. Further, for the battery of Comparative Example 3A, an attempt was made to measure the change in internal resistance with temperature in the same manner. However, it was found that an internal short circuit occurred during battery production, and the evaluation as a battery could not be performed. . That is, since the separator of Comparative Example 3 does not contain filler particles, the strength of the separator is weak, and it seems that an internal short circuit occurred during battery production.

上記測定の結果を表4に示す。また、参考例2Aおよび比較例1Aの内部抵抗の温度による変化をそれぞれ図3および図4に示す。   The measurement results are shown in Table 4. Further, changes in internal resistance of Reference Example 2A and Comparative Example 1A with temperature are shown in FIGS. 3 and 4, respectively.

Figure 2008243825
Figure 2008243825

表3および表4に示すように、本発明の実施例1〜8および参考例1〜2のセパレータでは、シャットダウン温度が103〜125℃の範囲となり、電池の高温での安全性を確保するのに適切な温度範囲でシャットダウンを生じた。一方、比較例1のセパレータでは、シャットダウン温度は130℃を超えており、電池の熱暴走温度により近い温度であった。また、比較例2のセパレータは、シャットダウン樹脂を持たないため、シャットダウンが生じなかった。   As shown in Table 3 and Table 4, in the separators of Examples 1 to 8 and Reference Examples 1 and 2 of the present invention, the shutdown temperature is in the range of 103 to 125 ° C., which ensures the safety of the battery at high temperatures. Shutdown occurred in the proper temperature range. On the other hand, in the separator of Comparative Example 1, the shutdown temperature exceeded 130 ° C., which was closer to the thermal runaway temperature of the battery. Moreover, since the separator of Comparative Example 2 did not have the shutdown resin, the shutdown did not occur.

実施例1、実施例7〜8および参考例1〜2のセパレータは、樹脂Aが溶融することにより空孔を塞いでシャットダウンを生じさせるもので、従来のリチウム二次電池で用いられている微多孔膜(比較例1)と同じ機構によるものである。また、実施例2〜6のセパレータでは、樹脂Bの膨潤および電解液の液枯れによりシャットダウンを生じさせているが、従来の方法と同様のシャットダウン効果を生じさせることができた。なお、実施例4では、樹脂Bだけでなく樹脂Aも有していることから、上記の両方の機構によりシャットダウンが生じるものと思われる。また、樹脂Aを用いる前者の機構では、フリーの電解液がそのまま残存するが、樹脂Bを用いる後者の機構では、電解液が樹脂Bに吸収され充放電反応に関わる電解液が枯渇するため、高温安全性の点からは、樹脂Bを含有することが望ましいものと思われる。   The separators of Example 1, Examples 7 to 8 and Reference Examples 1 to 2 are those that close the pores by causing the resin A to melt and cause shutdown, and are used in conventional lithium secondary batteries. This is due to the same mechanism as the porous membrane (Comparative Example 1). In the separators of Examples 2 to 6, the shutdown was caused by the swelling of the resin B and the electrolyte withering, but the shutdown effect similar to the conventional method could be produced. In Example 4, since not only the resin B but also the resin A is included, it is considered that shutdown is caused by both the above-described mechanisms. In the former mechanism using the resin A, a free electrolyte remains as it is, but in the latter mechanism using the resin B, the electrolyte is absorbed by the resin B and the electrolyte related to the charge / discharge reaction is depleted. From the viewpoint of high temperature safety, it seems desirable to contain the resin B.

また、表2に示すように、本発明の実施例1〜8および参考例1〜3のセパレータは、シャットダウン温度を超えて加熱した後のセパレータの収縮がごくわずかであるのに対し、比較例1のセパレータは、シャットダウン温度を超えた後にセパレータが大きく収縮していた。このため、150℃以上の耐熱温度を有する多孔質基体を備えた電池(参考例2A)では、図3に示すように、150℃に達するまで内部抵抗が低下することなくシャットダウンの状態が保たれ、シャットダウン後の安全性が維持されるが、比較例1Aの電池では、図4に示すように、セパレータの収縮により内部抵抗が急激に低下して内部短絡を生じやすい状態となる。   In addition, as shown in Table 2, the separators of Examples 1 to 8 and Reference Examples 1 to 3 of the present invention have a slight shrinkage of the separator after being heated above the shutdown temperature, while being comparative examples. In the separator No. 1, the separator contracted greatly after exceeding the shutdown temperature. For this reason, in the battery (Reference Example 2A) including a porous substrate having a heat resistant temperature of 150 ° C. or higher, as shown in FIG. 3, the shutdown state is maintained without decreasing the internal resistance until reaching 150 ° C. Although the safety after the shutdown is maintained, in the battery of Comparative Example 1A, as shown in FIG. 4, the internal resistance rapidly decreases due to the contraction of the separator, and an internal short circuit is likely to occur.

次に、実施例1A〜2A、参考例1A〜2Aおよび比較例1Aの電池について、以下の条件で充放電を行い、負荷特性の測定を行った。充電は、0.2Cの電流値で電池電圧が4.2Vになるまで定電流充電を行い、次いで、4.2Vでの定電圧充電を行う定電流−定電圧充電とした。充電終了までの総充電時間は、実施例1A〜2Aの電池では15時間とし、参考例1A〜2Aおよび比較例1Aの電池では7.5時間とした。充電後の電池は、0.2Cおよび2Cの放電電流で、それぞれ電池電圧が3.0Vになるまで放電を行い、0.2Cおよび2Cの放電における放電容量をそれぞれ求め、0.2Cの放電容量に対する2Cの放電容量の割合を負荷特性として評価した。その結果を表5に示す。   Next, the batteries of Examples 1A to 2A, Reference Examples 1A to 2A and Comparative Example 1A were charged and discharged under the following conditions, and the load characteristics were measured. The charging was constant current-constant voltage charging in which constant current charging was performed until the battery voltage reached 4.2 V at a current value of 0.2 C, and then constant voltage charging at 4.2 V was performed. The total charging time until the end of charging was 15 hours for the batteries of Examples 1A to 2A, and 7.5 hours for the batteries of Reference Examples 1A to 2A and Comparative Example 1A. The battery after charging is discharged at a discharge current of 0.2C and 2C until the battery voltage reaches 3.0 V, respectively, and the discharge capacities at the discharges of 0.2C and 2C are obtained, respectively. The ratio of the discharge capacity of 2C to the load characteristic was evaluated as load characteristics. The results are shown in Table 5.

Figure 2008243825
Figure 2008243825

上記実施例1A〜2Aおよび参考例1A〜2Aの電池は、負荷特性が従来のセパレータを用いた比較例1Aの電池と同等以上であり、電池として問題なく機能していた。   The batteries of Examples 1A to 2A and Reference Examples 1A to 2A had load characteristics equivalent to or higher than those of Comparative Example 1A using a conventional separator, and functioned without problems.

さらに、実施例2A〜8A、参考例3Aおよび比較例1A〜2Aの電池について、上記条件にて充電(総充電時間:15時間)を行い、その後0.2Cで3.0Vになるまで放電を行い、充電容量および放電容量をそれぞれ求め、充電容量に対する放電容量の割合を充電効率として評価した。その結果を表6に示す。   Further, the batteries of Examples 2A to 8A, Reference Example 3A and Comparative Examples 1A to 2A were charged under the above conditions (total charging time: 15 hours), and then discharged until reaching 3.0V at 0.2C. The charge capacity and the discharge capacity were obtained, and the ratio of the discharge capacity to the charge capacity was evaluated as the charge efficiency. The results are shown in Table 6.

Figure 2008243825
Figure 2008243825

実施例2A〜8Aおよび参考例3Aの電池は、比較例1Aと同じく充電効率がほぼ100%となり、充電時のリチウムデンドライトの生成が抑止されていた。特に、セパレータに、フィラー粒子としてベーマイトを含む電池では、実施例8A(セパレータ厚み:10μm)に示されるように、セパレータ厚みが薄くてもリチウムデンドライトの生成が抑止され、セパレータの薄膜化に好適な特性を有していた。   In the batteries of Examples 2A to 8A and Reference Example 3A, the charging efficiency was almost 100% as in Comparative Example 1A, and the generation of lithium dendrite during charging was suppressed. In particular, in a battery including boehmite as filler particles in the separator, as shown in Example 8A (separator thickness: 10 μm), generation of lithium dendrite is suppressed even when the separator thickness is small, which is suitable for thinning the separator. Had characteristics.

一方、フィラー粒子としてアルミナ微粒子を用いた比較例2A(セパレータ厚み:20μm)の電池では、リチウムデンドライトの生成による内部短絡のため、充放電効率が低下したことから、フィラー粒子の種類によっては、粒子形状やシャットダウン樹脂粒子の有無により、リチウムデンドライトの生成のしやすさに差が生じるものと思われる。   On the other hand, in the battery of Comparative Example 2A (separator thickness: 20 μm) using alumina fine particles as filler particles, charge / discharge efficiency was reduced due to internal short circuit due to generation of lithium dendrite. It seems that there is a difference in the ease of lithium dendrite formation depending on the shape and the presence or absence of shutdown resin particles.

以上説明したように、150℃以上の耐熱温度を有する多孔質基体と、フィラー粒子と、融点が80〜130℃の範囲にある樹脂A、および、加熱により電解液を吸収して膨潤しかつ温度上昇とともに膨潤度が増大する樹脂Bより選ばれる少なくとも1種の樹脂とを含む多孔質膜によりセパレータを構成することにより、従来のセパレータと同等以上の特性を有し、高温での安全性に優れた電気化学素子用セパレータおよびそれを用いた電気化学素子を提供することができる。   As described above, the porous substrate having a heat resistant temperature of 150 ° C. or higher, the filler particles, the resin A having a melting point in the range of 80 to 130 ° C., and the electrolyte swells and swells by heating. By configuring the separator with a porous film containing at least one resin selected from the resin B whose degree of swelling increases with increase, the separator has characteristics equivalent to or better than those of conventional separators and is excellent in safety at high temperatures. An electrochemical element separator and an electrochemical element using the same can be provided.

参考例1の負極断面の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the negative electrode cross section of the reference example 1 is shown. 図1のセパレータ部分を拡大した走査型電子顕微鏡写真を示す。The scanning electron micrograph which expanded the separator part of FIG. 1 is shown. 参考例2Aの電池の内部抵抗の温度変化を示す図である。It is a figure which shows the temperature change of the internal resistance of the battery of the reference example 2A. 比較例1Aの電池の内部抵抗の温度変化を示す図である。It is a figure which shows the temperature change of the internal resistance of the battery of the comparative example 1A.

符号の説明Explanation of symbols

1 セパレータ
2 負極
3 フィラー粒子
4 バインダ
5 多孔質基体
6 シャットダウン樹脂
1 Separator 2 Negative Electrode 3 Filler Particle 4 Binder 5 Porous Substrate 6 Shutdown Resin

Claims (30)

150℃以上の耐熱温度を有する多孔質基体であって、
少なくとも一部が、耐熱性および電気絶縁性を有しかつ電気化学的に安定な板状の粒子で構成されており、
前記板状の粒子の数平均粒子径が、0.1μm以上15μm以下であり、
前記板状の粒子をバインダ樹脂により一体化して形成されていることを特徴とするセパレータ用多孔質基体。
A porous substrate having a heat resistant temperature of 150 ° C. or higher,
At least a part is composed of plate-like particles having heat resistance and electrical insulation and electrochemically stable,
The number average particle diameter of the plate-like particles is 0.1 μm or more and 15 μm or less,
A porous substrate for a separator, wherein the plate-like particles are integrally formed with a binder resin.
前記板状の粒子として、無機酸化物または無機窒化物を含む請求項1に記載のセパレータ用多孔質基体。   The porous substrate for a separator according to claim 1, wherein the plate-like particles include an inorganic oxide or an inorganic nitride. 前記無機酸化物が、SiO2、Al23、TiO2およびZrO2より選ばれる少なくとも1種である請求項2に記載のセパレータ用多孔質基体。 The porous substrate for a separator according to claim 2 , wherein the inorganic oxide is at least one selected from SiO 2 , Al 2 O 3 , TiO 2, and ZrO 2 . 前記板状の粒子の板面を、前記多孔質基体の膜面の方向に配向させた請求項1〜3のいずれかに記載のセパレータ用多孔質基体。   The porous substrate for a separator according to any one of claims 1 to 3, wherein a plate surface of the plate-like particles is oriented in a direction of a film surface of the porous substrate. 前記板状の粒子のアスペクト比が、2〜100である請求項1〜4のいずれかに記載のセパレータ用多孔質基体。   The porous substrate for a separator according to any one of claims 1 to 4, wherein the plate-like particles have an aspect ratio of 2 to 100. 前記板状の粒子の平板面における長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値が、1以上3以下である請求項1〜5のいずれかに記載のセパレータ用多孔質基体。   The average value of the ratio of the long axis direction length to the short axis direction length (long axis direction length / short axis direction length) on the flat plate surface of the plate-like particles is 1 or more and 3 or less. A porous substrate for a separator according to any one of the above. 請求項1〜6のいずれかに記載のセパレータ用多孔質基体と、融点が80〜130℃の範囲にある樹脂とを含む多孔質膜よりなることを特徴とする電気化学素子用セパレータ。   A separator for an electrochemical element comprising the porous substrate for a separator according to any one of claims 1 to 6 and a porous film containing a resin having a melting point in the range of 80 to 130 ° C. 前記多孔質基体の占める割合が、セパレータの全構成成分の全体積中、10体積%以上90体積%以下である請求項7に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 7, wherein a ratio of the porous substrate is 10% by volume or more and 90% by volume or less in a total volume of all components of the separator. 前記融点が80〜130℃の範囲にある樹脂は、前記多孔質基体の表面に積層されて一体化されている請求項7または8に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 7 or 8, wherein the resin having a melting point in the range of 80 to 130 ° C is laminated and integrated on the surface of the porous substrate. 150℃以上の耐熱温度を有する多孔質基体と、耐熱性および電気絶縁性を有しかつ電気化学的に安定な板状の粒子と、融点が80〜130℃の範囲にある樹脂とを含む多孔質膜よりなり、
前記板状の粒子の数平均粒子径が、0.1μm以上15μm以下であることを特徴とする電気化学素子用セパレータ。
A porous body comprising a porous substrate having a heat resistant temperature of 150 ° C. or higher, plate-like particles having heat resistance and electrical insulation and electrochemical stability, and a resin having a melting point in the range of 80 to 130 ° C. It consists of a membrane,
The number average particle diameter of the said plate-shaped particle | grain is 0.1 micrometer or more and 15 micrometers or less, The separator for electrochemical elements characterized by the above-mentioned.
前記板状の粒子は、前記多孔質基体の空孔内に存在する請求項10に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 10, wherein the plate-like particles are present in pores of the porous substrate. 前記融点が80〜130℃の範囲にある樹脂は、前記多孔質基体の空孔内に存在する請求項10または11に記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to claim 10 or 11, wherein the resin having a melting point in the range of 80 to 130 ° C is present in the pores of the porous substrate. 前記板状の粒子として、無機酸化物または無機窒化物を含む請求項10〜12のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 10 to 12, comprising an inorganic oxide or an inorganic nitride as the plate-like particles. 前記無機酸化物が、SiO2、Al23、TiO2およびZrO2より選ばれる少なくとも1種である請求項13に記載の電気化学素子用セパレータ。 The separator for an electrochemical element according to claim 13, wherein the inorganic oxide is at least one selected from SiO 2 , Al 2 O 3 , TiO 2, and ZrO 2 . 前記板状の粒子の板面を、セパレータの膜面の方向に配向させた請求項10〜14のいずれかに記載の電気化学素子用セパレータ。   The separator for electrochemical devices according to any one of claims 10 to 14, wherein the plate surface of the plate-like particles is oriented in the direction of the film surface of the separator. 前記板状の粒子のアスペクト比が、2〜100である請求項10〜15のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 10 to 15, wherein an aspect ratio of the plate-like particles is 2 to 100. 前記板状の粒子の平板面における長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値が、1以上3以下である請求項10〜16のいずれかに記載の電気化学素子用セパレータ。   The average value of the ratio of the long axis direction length to the short axis direction length (long axis direction length / short axis direction length) on the flat plate surface of the plate-like particles is 1 or more and 3 or less. The separator for electrochemical devices according to any one of the above. 前記板状の粒子の含有量が、セパレータの全構成成分の全体積中、20体積%以上である請求項10〜17のいずれかに記載の電気化学素子用セパレータ。   18. The separator for an electrochemical element according to claim 10, wherein the content of the plate-like particles is 20% by volume or more in the total volume of all the constituent components of the separator. 前記板状の粒子の含有量が、セパレータの全構成成分の全体積中、80体積%以下である請求項10〜18のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 10 to 18, wherein the content of the plate-like particles is 80% by volume or less in the total volume of all the constituent components of the separator. 前記融点が80〜130℃の範囲にある樹脂は、ポリエチレン、エチレン−ビニルモノマー共重合体およびポリオレフィンワックスより選ばれる少なくとも1種である請求項7〜19のいずれかに記載の電気化学素子用セパレータ。   The electrochemical element separator according to any one of claims 7 to 19, wherein the resin having a melting point in the range of 80 to 130 ° C is at least one selected from polyethylene, ethylene-vinyl monomer copolymer and polyolefin wax. . 150℃以上の耐熱温度を有する繊維状物を含む請求項7〜20のいずれかに記載の電気化学素子用セパレータ。   The separator for electrochemical elements according to any one of claims 7 to 20, comprising a fibrous material having a heat resistant temperature of 150 ° C or higher. 前記繊維状物は、セルロースおよびその変成体、ポリオレフィン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミド、ポリイミドおよび無機酸化物よりなる群から選択される少なくとも1種から構成されている請求項21に記載の電気化学素子用セパレータ。   The said fibrous material is comprised from at least 1 sort (s) selected from the group which consists of a cellulose and its modified material, polyolefin, polyester, polyacrylonitrile, aramid, polyamideimide, a polyimide, and an inorganic oxide. Electrochemical element separator. 空隙率が20%以上である請求項7〜22のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 7 to 22, wherein the porosity is 20% or more. 空隙率が70%以下である請求項7〜23のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 7 to 23, wherein the porosity is 70% or less. ガーレー値で表される透気度が、10〜300(sec/100mL)である請求項7〜24のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 7 to 24, wherein the air permeability represented by a Gurley value is 10 to 300 (sec / 100 mL). 厚みが3μm以上30μm以下である請求項7〜25のいずれかに記載の電気化学素子用セパレータ。   The separator for an electrochemical element according to any one of claims 7 to 25, having a thickness of 3 µm to 30 µm. 請求項1〜6のいずれかに記載の多孔質基体と一体化されたことを特徴とする電極。   An electrode integrated with the porous substrate according to claim 1. 正極、負極、非水電解液および請求項7〜26のいずれかに記載の電気化学素子用セパレータを含むことを特徴とする電気化学素子。   27. An electrochemical element comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator for an electrochemical element according to any one of claims 7 to 26. 前記セパレータは、前記正極および前記負極より選ばれる少なくとも一方と一体化されている請求項28に記載の電気化学素子。   The electrochemical device according to claim 28, wherein the separator is integrated with at least one selected from the positive electrode and the negative electrode. 前記正極および前記負極より選ばれる少なくとも一方は、請求項27に記載の電極である請求項28に記載の電気化学素子。   29. The electrochemical device according to claim 28, wherein at least one selected from the positive electrode and the negative electrode is the electrode according to claim 27.
JP2008124988A 2005-12-08 2008-05-12 Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element Active JP5148360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124988A JP5148360B2 (en) 2005-12-08 2008-05-12 Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/022540 2005-12-08
PCT/JP2005/022540 WO2006062153A1 (en) 2004-12-08 2005-12-08 Separator for electrochemical device and electrochemical device
JP2008124988A JP5148360B2 (en) 2005-12-08 2008-05-12 Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006329646A Division JP4184404B2 (en) 2005-12-08 2006-12-06 Electrochemical element separator and electrochemical element

Publications (3)

Publication Number Publication Date
JP2008243825A true JP2008243825A (en) 2008-10-09
JP2008243825A5 JP2008243825A5 (en) 2009-04-23
JP5148360B2 JP5148360B2 (en) 2013-02-20

Family

ID=39914858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124988A Active JP5148360B2 (en) 2005-12-08 2008-05-12 Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element

Country Status (1)

Country Link
JP (1) JP5148360B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135801A1 (en) 2010-04-27 2011-11-03 パナソニック株式会社 Sheet-like fiber structure, and battery, heat insulation material, waterproof sheet and scaffold for cell culture, each using the sheet-like fiber structure
JP2013025902A (en) * 2011-07-15 2013-02-04 Samsung Yokohama Research Institute Co Ltd Electrode for secondary battery, manufacturing method therefor and secondary battery
JP2013084390A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium ion secondary battery
JP2014096335A (en) * 2012-11-12 2014-05-22 Hokuetsu Kishu Paper Co Ltd Method of manufacturing separator for battery and separator for battery
US9318769B2 (en) 2012-07-12 2016-04-19 Gs Yuasa International Ltd. Electrode assembly and electric storage device
JP2016076474A (en) * 2014-10-02 2016-05-12 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Composite separator with array of particles
US9786888B2 (en) 2010-01-13 2017-10-10 Sony Corporation Separator and nonaqueous electrolyte battery
CN112514153A (en) * 2018-10-12 2021-03-16 株式会社Lg化学 Porous separator and lithium secondary battery comprising same
WO2021085144A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Functional layer for electrochemical elements and method for producing same, separator with functional layer for electrochemical elements and method for producing same, and electrochemical element and method for producing same
CN114556680B (en) * 2019-10-31 2024-04-26 日本瑞翁株式会社 Functional layer for lithium ion secondary battery separator, separator with functional layer for lithium ion secondary battery separator, lithium ion secondary battery, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084987A (en) * 1999-09-14 2001-03-30 Toshiba Corp Electrochemical device
JP2001135295A (en) * 1999-11-10 2001-05-18 Ube Ind Ltd Separator for batteries
JP2001527274A (en) * 1997-12-19 2001-12-25 モルテック・コーポレーション Separator for electrochemical cell
JP2002025531A (en) * 2000-07-07 2002-01-25 Ube Ind Ltd Separator for battery and lithium secondary battery using it
JP2005327633A (en) * 2004-05-14 2005-11-24 Tomoegawa Paper Co Ltd Separator for electronic components, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527274A (en) * 1997-12-19 2001-12-25 モルテック・コーポレーション Separator for electrochemical cell
JP2001084987A (en) * 1999-09-14 2001-03-30 Toshiba Corp Electrochemical device
JP2001135295A (en) * 1999-11-10 2001-05-18 Ube Ind Ltd Separator for batteries
JP2002025531A (en) * 2000-07-07 2002-01-25 Ube Ind Ltd Separator for battery and lithium secondary battery using it
JP2005327633A (en) * 2004-05-14 2005-11-24 Tomoegawa Paper Co Ltd Separator for electronic components, and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859540B2 (en) 2010-01-13 2018-01-02 Sony Corporation Separator and nonaqueous electrolyte battery
US9786888B2 (en) 2010-01-13 2017-10-10 Sony Corporation Separator and nonaqueous electrolyte battery
WO2011135801A1 (en) 2010-04-27 2011-11-03 パナソニック株式会社 Sheet-like fiber structure, and battery, heat insulation material, waterproof sheet and scaffold for cell culture, each using the sheet-like fiber structure
US9932239B2 (en) 2010-04-27 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Sheet-like fiber structure, and battery, heat insulation material, waterproof sheet, scaffold for cell culture, and holding material each using the sheet-like fiber structure
JP2013025902A (en) * 2011-07-15 2013-02-04 Samsung Yokohama Research Institute Co Ltd Electrode for secondary battery, manufacturing method therefor and secondary battery
JP2013084390A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium ion secondary battery
US9318769B2 (en) 2012-07-12 2016-04-19 Gs Yuasa International Ltd. Electrode assembly and electric storage device
JP2014096335A (en) * 2012-11-12 2014-05-22 Hokuetsu Kishu Paper Co Ltd Method of manufacturing separator for battery and separator for battery
JP2016076474A (en) * 2014-10-02 2016-05-12 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Composite separator with array of particles
CN112514153A (en) * 2018-10-12 2021-03-16 株式会社Lg化学 Porous separator and lithium secondary battery comprising same
WO2021085144A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Functional layer for electrochemical elements and method for producing same, separator with functional layer for electrochemical elements and method for producing same, and electrochemical element and method for producing same
CN114556680A (en) * 2019-10-31 2022-05-27 日本瑞翁株式会社 Functional layer for electrochemical element and method for producing same, separator with functional layer for electrochemical element and method for producing same, and electrochemical element and method for producing same
CN114556680B (en) * 2019-10-31 2024-04-26 日本瑞翁株式会社 Functional layer for lithium ion secondary battery separator, separator with functional layer for lithium ion secondary battery separator, lithium ion secondary battery, and method for producing same

Also Published As

Publication number Publication date
JP5148360B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4184404B2 (en) Electrochemical element separator and electrochemical element
JP5093882B2 (en) Electrochemical element separator, electrochemical element and method for producing electrochemical element
JP4151852B2 (en) Electrochemical element separator and manufacturing method thereof, and electrochemical element and manufacturing method thereof
CA2586062C (en) Separator for electrochemical device, and electrochemical device
JP5193998B2 (en) Electrochemical element separator, electrode for electrochemical element, and electrochemical element
JP5937776B2 (en) Battery separator and battery
EP1826842B1 (en) Separator for electrochemical cell and electrochemical cell
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5650738B2 (en) Battery separator and battery
JP5148360B2 (en) Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element
JP5575537B2 (en) Non-aqueous electrolyte battery
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP2009032677A (en) Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP2008066094A (en) Separator for battery, and lithium secondary battery
JP2008004442A (en) Separator for lithium secondary battery, and lithium secondary battery
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP2008004441A (en) Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2008004440A (en) Lithium secondary battery and its using method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250