JP2001131541A - Material for organic electroluminescent element and electroluminescent element using the same - Google Patents

Material for organic electroluminescent element and electroluminescent element using the same

Info

Publication number
JP2001131541A
JP2001131541A JP34784899A JP34784899A JP2001131541A JP 2001131541 A JP2001131541 A JP 2001131541A JP 34784899 A JP34784899 A JP 34784899A JP 34784899 A JP34784899 A JP 34784899A JP 2001131541 A JP2001131541 A JP 2001131541A
Authority
JP
Japan
Prior art keywords
substituted
unsubstituted
general formula
group
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34784899A
Other languages
Japanese (ja)
Other versions
JP4117093B2 (en
Inventor
Chishio Hosokawa
地潮 細川
Masakazu Funahashi
正和 舟橋
Hisayuki Kawamura
久幸 川村
Hiromasa Arai
宏昌 新井
Hidetoshi Koga
英俊 古賀
Hideji Ikeda
秀嗣 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP34784899A priority Critical patent/JP4117093B2/en
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to US09/623,057 priority patent/US6743948B1/en
Priority to KR1020057012450A priority patent/KR20050084517A/en
Priority to KR1020067007393A priority patent/KR100688696B1/en
Priority to KR1020087015376A priority patent/KR100869615B1/en
Priority to KR1020067007392A priority patent/KR100688695B1/en
Priority to CNB998034193A priority patent/CN1219747C/en
Priority to PCT/JP1999/007390 priority patent/WO2000039247A1/en
Priority to KR1020077025201A priority patent/KR100869622B1/en
Priority to EP06110875A priority patent/EP1666561A1/en
Priority to KR1020007009371A priority patent/KR100688694B1/en
Priority to KR1020077013672A priority patent/KR100835021B1/en
Priority to KR1020067018289A priority patent/KR100743337B1/en
Priority to KR1020057012448A priority patent/KR20050084516A/en
Priority to EP99961465A priority patent/EP1061112A4/en
Priority to EP07100259.6A priority patent/EP1775335B9/en
Publication of JP2001131541A publication Critical patent/JP2001131541A/en
Priority to US10/179,179 priority patent/US6951693B2/en
Priority to US10/814,121 priority patent/US20050038296A1/en
Priority to US11/344,604 priority patent/US20060189828A1/en
Priority to US11/624,255 priority patent/US20070142671A1/en
Publication of JP4117093B2 publication Critical patent/JP4117093B2/en
Application granted granted Critical
Priority to US12/637,468 priority patent/US20100160687A1/en
Priority to US13/079,225 priority patent/US20110175521A1/en
Priority to US13/362,533 priority patent/US20120153815A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B6/00Anthracene dyes not provided for above
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Abstract

PROBLEM TO BE SOLVED: To provide a material for organic electroluminescent(EL) elements that has high luminous efficiency, high heat resistance and long durability and the organic EL elements using the same. SOLUTION: The objective material for organic EL elements are represented by general formula 1 [A is a substituted or unsubstituted 22-60C arylene; X1 to X4 are independently a substituted or unsubstituted 6-30C arylene where X1 and X2 or X3 and X4 may link to each other, respectively; Y1 to Y4 independently represent general formula 2; a to d are each an integer of 0-2 where a+b+c+d>0 in the case of A<=26 and the number of anthracene nucleus is 1 or 0; (In general formula 2, R1 to R4 are independently H, a substituted or unsubstituted 1-20C alkyl, a substituted or unsubstituted 6-20C aryl, cyano, or R1 and R2 or R3 and R4 bond to form a triple bond; Z is a substituted or unsubstituted 6-20C aryl; n represents 0 or 1)].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は壁掛テレビの平面発
光体やディスプレイのバックライト等の光源として使用
され、発光効率が高く、耐熱性が高く、寿命が長い有機
エレクトロルミネッセンス素子用材料およびそれを使用
した有機エレクトロルミネッセンス素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a light source for a flat light-emitting body of a wall-mounted television or a backlight of a display, and has a high luminous efficiency, a high heat resistance and a long life, and a material for an organic electroluminescent element. The present invention relates to an organic electroluminescence device used.

【0002】[0002]

【従来の技術】有機物質を使用した有機エレクトロルミ
ネッセンス(EL)素子は、固体発光型の安価な大面積
フルカラー表示素子としての用途が有望視され、多くの
開発が行われている。一般にEL素子は、発光層および
該層をはさんだ一対の対向電極から構成されている。発
光は、両電極間に電界が印加されると、陰極側から電子
が注入され、陽極側から正孔が注入される。さらに、こ
の電子が発光層において正孔と再結合し、励起状態を生
成し、励起状態が基底状態に戻る際にエネルギーを光と
して放出する現象である。従来の有機EL素子は、無機
発光ダイオードに比べて駆動電圧が高く、発光輝度や発
光効率も低かった。また、特性劣化も著しく実用化には
至っていなかった。最近の有機EL素子は徐々に改良さ
れているものの、未だ充分な発光効率、耐熱性、寿命を
有していなかった。例えば、特開平8-12600 号公報には
EL素子に使用できるフェニルアントラセン誘導体が開
示されているが、この化合物を利用した有機EL素子は
発光効率が2〜4cd/A程度しかなく、より高い効率
が求められていた。また、特開平8-199162号公報には、
発光層にアミンまたはジアミン誘導体からなる蛍光性ド
ーパントを含有するEL素子が開示されている。しかし
ながら、このEL素子は発光効率が4〜6cd/Aであ
るものの、寿命が初期輝度300cd/m2 で700時
間しかなく、より長寿命が求められていた。さらに、特
開平9-268284号公報にはフェニルアントラセン基を有す
るEL素子用材料が開示されているが、高温で長時間使
用すると発光輝度の低下が大きく耐熱性が不充分であっ
た。これらの素子は、橙色〜赤色の発光をせず、赤色発
光はEL素子のフルカラー化に不可欠であるため橙色〜
赤色の発光する素子が望まれていた。
2. Description of the Related Art Organic electroluminescence (EL) devices using organic substances are expected to be used as inexpensive, large-area, full-color display devices of the solid-state emission type, and many developments have been made. Generally, an EL element includes a light-emitting layer and a pair of opposed electrodes sandwiching the light-emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Further, the electrons recombine with holes in the light emitting layer to generate an excited state, and emit energy as light when the excited state returns to the ground state. Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic light emitting diodes. In addition, the characteristic deterioration was remarkable, and it had not been put to practical use. Although recent organic EL devices have been gradually improved, they have not yet had sufficient luminous efficiency, heat resistance, and life. For example, Japanese Patent Application Laid-Open No. 8-12600 discloses a phenylanthracene derivative that can be used in an EL device. An organic EL device using this compound has a luminous efficiency of only about 2 to 4 cd / A, and a higher efficiency is obtained. Was required. Also, JP-A-8-199162 discloses that
An EL device in which a light emitting layer contains a fluorescent dopant composed of an amine or diamine derivative is disclosed. However, this EL element has a luminous efficiency of 4 to 6 cd / A, but has a lifetime of only 700 hours at an initial luminance of 300 cd / m 2 , and a longer lifetime is required. Furthermore, Japanese Patent Application Laid-Open No. 9-268284 discloses a material for an EL device having a phenylanthracene group. However, when used at a high temperature for a long time, the emission luminance is greatly reduced and the heat resistance is insufficient. These devices do not emit orange to red light, and red light is indispensable for full color EL devices.
A device that emits red light has been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記の課題
を解決するためになされたもので、発光効率が高く、寿
命が長いのみならず、耐熱性も高い有機エレクトロルミ
ネッセンス素子用材料およびそれを使用した有機エレク
トロルミネッセンス素子を提供することを目的とするも
のである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a material for an organic electroluminescence device having high luminous efficiency, long life and high heat resistance. It is an object of the present invention to provide an organic electroluminescence device using the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記の好
ましい性質を有する有機エレクトロルミネッセンス素子
用材料およびそれを使用した有機エレクトロルミネッセ
ンス素子を開発すべく鋭意研究を重ねた結果、下記一般
式〔1〕で示される化合物を利用することによりその目
的を達成し得ることを見出した。本発明は、かかる知見
に基づいて完成したものである。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a material for an organic electroluminescent device having the above-mentioned preferable properties and an organic electroluminescent device using the same. It has been found that the object can be achieved by using the compound represented by [1]. The present invention has been completed based on such findings.

【0005】すなわち、本発明の有機エレクトロルミネ
ッセンス素子用材料(以下、有機EL素子用材料)は、
下記一般式〔1〕で示される化合物である。 一般式〔1〕
That is, the material for an organic electroluminescent device of the present invention (hereinafter referred to as a material for an organic EL device) comprises:
It is a compound represented by the following general formula [1]. General formula [1]

【化17】 〔式中、Aは置換もしくは未置換の炭素原子数22〜6
0のアリーレン基を表す。X1 〜X4 は、それぞれ独立
に、置換もしくは未置換の炭素原子数6〜30のアリー
レン基を表す。Y1 〜Y4 は、それぞれ独立に、下記一
般式〔2〕で示される有機基を表す。a〜dは0〜2の
整数を表す。ただし、Aの炭素原子数26以下の場合に
はa+b+c+d>0であり、A中に2以上のアントラ
セン核は含まれない。 一般式〔2〕
Embedded image [In the formula, A is a substituted or unsubstituted carbon atom having 22 to 6 carbon atoms.
Represents an arylene group of 0. X 1 to X 4 each independently represent a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Y 1 to Y 4 each independently represent an organic group represented by the following general formula [2]. a to d represent an integer of 0 to 2. However, when A has 26 or less carbon atoms, a + b + c + d> 0, and A does not include two or more anthracene nuclei. General formula [2]

【化18】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
Embedded image (Wherein, R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
It represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a cyano group, or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded. Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. n represents 0 or 1. )]

【0006】本発明の有機EL素子用材料は、下記一般
式〔3〕で示される化合物であってもよい。 一般式〔3〕
[0006] The material for an organic EL device of the present invention may be a compound represented by the following general formula [3]. General formula [3]

【化19】 〔式中、Bは置換もしくは未置換の炭素原子数6〜60
のアリーレン基を表す。X1 〜X4 は、それぞれ独立
に、置換もしくは未置換の炭素原子数6〜30のアリー
レン基を表す。Y1 〜Y4 は、それぞれ独立に、上記一
般式〔2〕で示される有機基を表す。a〜dは0〜2の
整数を表す。ただし、B、X1 、X2 、X3及びX4
中の少なくとも1つはクリセン核を含有する。〕
Embedded image [Wherein B is a substituted or unsubstituted carbon atom having 6 to 60 carbon atoms.
Represents an arylene group. X 1 to X 4 each independently represent a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Y 1 to Y 4 each independently represent an organic group represented by the general formula [2]. a to d represent an integer of 0 to 2. However, at least one of B, X 1 , X 2 , X 3 and X 4 contains a chrysene nucleus. ]

【0007】上記一般式〔3〕は、下記一般式〔4〕,
〔5〕又は〔6〕であることが好ましい。 一般式〔4〕
The above general formula [3] is represented by the following general formula [4],
[5] or [6] is preferable. General formula [4]

【化20】 〔式中、X1 〜X4 、Y1 〜Y4 及びa〜dは、それぞ
れ独立に、上記一般式〔3〕と同一である。〕
Embedded image [Wherein, X 1 to X 4 , Y 1 to Y 4 and a to d are each independently the same as in the above general formula [3]. ]

【0008】一般式〔5〕The general formula [5]

【化21】 〔式中、B、X1 〜X2 、Y1 〜Y2 及びa〜bは、そ
れぞれ独立に、上記一般式〔3〕と同一である。〕
Embedded image [Wherein, B, X 1 -X 2 , Y 1 -Y 2 and a-b are each independently the same as in the above general formula [3]. ]

【0009】一般式〔6〕The general formula [6]

【化22】 〔式中、B、X1 〜X2 、Y1 〜Y2 及びa〜bは、そ
れぞれ独立に、上記一般式〔3〕と同一である。〕
Embedded image [Wherein, B, X 1 -X 2 , Y 1 -Y 2 and a-b are each independently the same as in the above general formula [3]. ]

【0010】本発明の有機EL素子用材料は、下記一般
式〔7〕で示される化合物であってもよい。 一般式〔7〕
The material for an organic EL device of the present invention may be a compound represented by the following general formula [7]. General formula [7]

【化23】 〔式中、Dはテトラセン核もしくはペンタセン核を含有
する2価の基を表す。X 1 〜X4 は、それぞれ独立に、
置換もしくは未置換の炭素原子数6〜30のアリーレン
基を表し、X1 とX2 、X4 とX3 は互いに連結してい
てもよい。Y1 〜Y4 は、それぞれ独立に、上記一般式
〔2〕で示される有機基を表す。a〜dは0〜2の整数
を表す。〕
Embedded image[Wherein D contains a tetracene nucleus or a pentacene nucleus
Represents a divalent group. X 1~ XFourAre, independently of each other,
Substituted or unsubstituted arylene having 6 to 30 carbon atoms
X represents a group1And XTwo, XFourAnd XThreeAre connected to each other
You may. Y1~ YFourIs, independently of each other,
Represents an organic group represented by [2]. ad is an integer of 0 to 2
Represents ]

【0011】上記一般式〔7〕は、下記一般式〔8〕で
あることが好ましい。
The above general formula [7] is preferably the following general formula [8].

【化24】 一般式〔8〕 〔式中、X1 〜X4 、Y1 〜Y4 及びa〜dは、それぞ
れ独立に、上記一般式〔7〕と同一である。R51〜R60
は、それぞれ独立に、水素原子、置換もしくは未置換の
炭素原子数1〜20のアルキル基、置換もしくは未置換
の炭素原子数6〜20のアリール基、シアノ基を表す。
隣接するR51〜R60は、互いに連結して飽和もしくは不
飽和の炭素環を形成していても良い。〕
Embedded image In the formula, X 1 to X 4 , Y 1 to Y 4 and a to d are each independently the same as in the above general formula [7]. R 51 to R 60
Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a cyano group.
Adjacent R 51 to R 60 may be linked to each other to form a saturated or unsaturated carbon ring. ]

【0012】本発明の有機EL素子用材料は、下記一般
The material for an organic EL device of the present invention has the following general formula:

〔9〕で示される化合物であってもよい。 一般式The compound represented by [9] may be used. General formula

〔9〕[9]

【化25】 〔式中、Eはアリール基置換もしくは未置換のアントラ
セン核からなる2価の基を表す。X5 〜X8 は、それぞ
れ独立に、置換もしくは未置換の炭素原子数6〜20の
アリーレン基を表し、X5 とX6 、X7 とX8 は互いに
連結していても良い。Y1 〜Y4 は、それぞれ独立に、
上記一般式〔2〕で示される有機基を表す。a〜dは0
〜2の整数を表す。ただし、Eが未置換の
Embedded image [In the formula, E represents a divalent group comprising an aryl group-substituted or unsubstituted anthracene nucleus. X 5 to X 8 each independently represent a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , and X 7 and X 8 may be connected to each other. Y 1 to Y 4 are each independently:
Represents an organic group represented by the general formula [2]. ad is 0
Represents an integer of 22. However, E is unsubstituted

【化26】 である時は、X5 〜X8 の少なくとも2つは置換もしく
は未置換の
Embedded image When at least two of X 5 to X 8 are substituted or unsubstituted

【化27】 を含む。〕Embedded image including. ]

【0013】本発明の有機EL素子用材料は、下記一般
The material for an organic EL device of the present invention has the following general formula:

〔9〕で示される化合物であってもよい。 一般式〔10〕The compound represented by [9] may be used. General formula [10]

【化28】 〔式中、Ar1 とAr3 は、それぞれ独立に、置換もし
くは未置換のフェニレン、置換もしくは未置換の1,3
ナフタレン、置換もしくは未置換の1,8ナフタレン、
置換もしくは未置換のフルオレン又は置換もしくは未置
換のビフェニルからなる2価の基を表し、Ar2 は、置
換もしくは未置換のアントラセン核、置換もしくは未置
換のピレン核、置換もしくは未置換のフェナントレン
核、置換もしくは未置換のクリセン核、置換もしくは未
置換のペンタセン核、置換もしくは未置換のナフタセン
核又は置換もしくは未置換のフルオレン核からなる2価
の基を表す。X5 〜X8 は、それぞれ独立に、置換もし
くは未置換の炭素原子数6〜20のアリーレン基を表
し、X5 とX6 、X7 とX8 は互いに連結していても良
い。Y1 〜Y4 は、それぞれ独立に、上記一般式〔2〕
で示される有機基を表す。a〜dは0〜2の整数を表
し、a+b+c+d≦2である。eは0もしくは1、f
は1もしくは2を表す。ただし、Ar2 がアントラセン
核の場合は、a=b=c=dで、かつAr1 とAr3
共にp−フェニレン基の場合を除く。〕
Embedded image [Wherein, Ar 1 and Ar 3 each independently represent a substituted or unsubstituted phenylene, a substituted or unsubstituted 1,3
Naphthalene, substituted or unsubstituted 1,8 naphthalene,
Represents a divalent group consisting of a substituted or unsubstituted fluorene or a substituted or unsubstituted biphenyl, and Ar 2 represents a substituted or unsubstituted anthracene nucleus, a substituted or unsubstituted pyrene nucleus, a substituted or unsubstituted phenanthrene nucleus, A divalent group consisting of a substituted or unsubstituted chrysene nucleus, a substituted or unsubstituted pentacene nucleus, a substituted or unsubstituted naphthacene nucleus or a substituted or unsubstituted fluorene nucleus. X 5 to X 8 each independently represent a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , and X 7 and X 8 may be connected to each other. Y 1 to Y 4 are each independently represented by the above general formula [2]
Represents an organic group represented by a to d represent integers of 0 to 2, and a + b + c + d ≦ 2. e is 0 or 1, f
Represents 1 or 2. However, when Ar 2 is an anthracene nucleus, a = b = c = d and the case where both Ar 1 and Ar 3 are p-phenylene groups is excluded. ]

【0014】上記一般式〔1〕、〔3〕〜〔10〕で示
される有機EL素子用材料は、有機エレクトロルミネッ
センス素子用発光材料としても使用できる。本発明の有
機エレクトロルミネッセンス素子(以下、有機EL素
子)は、一対の電極間に発光層または発光層を含む複数
層の有機化合物薄膜を形成してなる有機エレクトロルミ
ネッセンス素子において、少なくとも一層が上記一般式
〔1〕、〔3〕〜〔10〕で示される有機EL素子用材
料を含有する層である。上記有機EL素子は、上記一般
式〔1〕、〔3〕〜〔10〕で示される有機EL素子用
材料を正孔注入材料、正孔輸送材料及びドーピング材料
の中から選ばれる少なくとも一種類の材料として含有す
る層を、該電極間に形成していることが好ましい。上記
有機EL素子は、上記一般式〔1〕、〔3〕〜〔10〕
で示される有機EL素子用材料を発光層に0.1〜20
重量%含有することが好ましい。上記有機EL素子は、
正孔注入材料、正孔輸送材料及びドーピング材料の中か
ら選ばれる少なくとも一種類の材料に、上記一般式
〔1〕、〔3〕〜〔10〕で示される有機EL素子用材
料を、それぞれ独立に0.1〜20重量%含有すること
が好ましい。上記発光層は、スチルベン誘導体及び上記
一般式〔1〕、〔3〕〜〔10〕で示される有機EL素
子用材料を含有する層であることが好ましい。上記有機
EL素子は、芳香族三級アミン誘導体および/またはフ
タロシアニン誘導体を含有する層を、発光層と陽極との
間に形成していてもよい。
The materials for organic EL devices represented by the general formulas [1] and [3] to [10] can also be used as light emitting materials for organic electroluminescence devices. An organic electroluminescence device (hereinafter, referred to as an organic EL device) of the present invention is an organic electroluminescence device comprising a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer formed between a pair of electrodes, wherein at least one of the organic electroluminescence devices has the general structure described above. This is a layer containing the organic EL element materials represented by the formulas [1] and [3] to [10]. The above-mentioned organic EL element is obtained by converting the material for an organic EL element represented by the general formulas [1] and [3] to [10] into at least one kind selected from a hole injection material, a hole transport material and a doping material. It is preferable that a layer contained as a material is formed between the electrodes. The above-mentioned organic EL device is prepared by using the above general formulas [1], [3] to [10]
The organic EL device material represented by
It is preferable that the content be contained by weight. The organic EL element is
The organic EL element materials represented by the general formulas [1], [3] to [10] are independently added to at least one kind of material selected from a hole injection material, a hole transport material, and a doping material. Is preferably 0.1 to 20% by weight. The light emitting layer is preferably a layer containing a stilbene derivative and a material for an organic EL device represented by the general formulas [1], [3] to [10]. In the organic EL device, a layer containing an aromatic tertiary amine derivative and / or a phthalocyanine derivative may be formed between the light emitting layer and the anode.

【0015】[0015]

【発明の実施の形態】本発明における一般式〔1〕で示
される化合物のAは、置換もしくは未置換の炭素原子数
22〜60のアリーレン基を表し、具体例としてビフェ
ニル、ターフェニル、ナフタレン、アントラセン、フェ
ナントレン、ピレン、フルオレン、チオフェン、コロネ
ン、フルオランテンなどから形成されるか又はこれらを
互いに複数連結し形成される2価の基などが挙げられ
る。また一般式〔1〕で示される化合物のX1 〜X
4 は、それぞれ独立に、置換もしくは未置換の炭素原子
数6〜30のアリーレン基を表し、具体例としてフェニ
レン、ビフェニル、ターフェニル、ナフタレン、アント
ラセン、フェナントレン、ピレン、フルオレン、チオフ
ェン、コロネン、クリセン骨格を含有する1価又は2価
の基が挙げられる。また、X1 とX2 、X3 とX4 は互
いに連結していてもよい。X1 〜X4 に置換する基とし
ては、それぞれ独立に、炭素原子数1〜20のアルキル
基、炭素原子数1〜20のアルコキシ基、炭素原子数6
〜20のアリール基を示すが、置換基としてアリールオ
キシ基、アリールチオ基、アリールアルキル基及びアリ
ールケトン基等は除外する。これらの除外する置換基を
含有する化合物は、蒸着の際に熱分解し易く、発光素子
の寿命も劣るからである。一般式〔1〕において、a〜
dは0〜2の整数を表す。ただし、Aの炭素原子数26
以下の場合にはa+b+c+d>0であり、A中に2以
上のアントラセン核は含まれない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, A of the compound represented by the general formula [1] represents a substituted or unsubstituted arylene group having 22 to 60 carbon atoms, and specific examples thereof include biphenyl, terphenyl, naphthalene, Examples include a divalent group formed from anthracene, phenanthrene, pyrene, fluorene, thiophene, coronene, fluoranthene, or the like, or a plurality of these linked to each other. X 1 to X of the compound represented by the general formula [1]
4 independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and specific examples thereof include phenylene, biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, pyrene, fluorene, thiophene, coronene, and chrysene skeleton. And a monovalent or divalent group containing X 1 and X 2 , and X 3 and X 4 may be connected to each other. The groups to be substituted on X 1 to X 4 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon atom having 6 carbon atoms.
To 20 aryl groups, but excluding an aryloxy group, an arylthio group, an arylalkyl group, an arylketone group and the like as substituents. Compounds containing these excluded substituents are liable to be thermally decomposed at the time of vapor deposition, and the life of the light-emitting element is also inferior. In the general formula [1], a to
d represents an integer of 0 to 2. However, A has 26 carbon atoms.
In the following cases, a + b + c + d> 0, and A does not include two or more anthracene nuclei.

【0016】本発明における一般式〔2〕で示される有
機基のR1 〜R4 は、それぞれ独立に、水素原子、置換
もしくは未置換の炭素原子数1〜20のアルキル基、置
換もしくは未置換の炭素原子数6〜20のアリール基も
しくはシアノ基を表す。R1〜R4 の具体例は、置換も
しくは未置換のアルキル基としては、メチル基、エチル
基、プロピル基、ブチル基、sec−ブチル基、ter
t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、
オクチル基、ステアリル基、2−フェニルイソプロピル
基、トリクロロメチル基、トリフルオロメチル基、ベン
ジル基、α−フェノキシベンジル基、α,α−ジメチル
ベンジル基、α,α−メチルフェニルベンジル基、α,
α−ジトリフルオロメチルベンジル基、トリフェニルメ
チル基、α−ベンジルオキシベンジル基等がある。置換
もしくは未置換のアリール基としては、フェニル基、2
−メチルフェニル基、3−メチルフェニル基、4−メチ
ルフェニル基、4−エチルフェニル基、ビフェニル基、
4−メチルビフェニル基、4−エチルビフェニル基、4
−シクロヘキシルビフェニル基、ターフェニル基、3,
5−ジクロロフェニル基、ナフチル基、5−メチルナフ
チル基、アントリル基、ピレニル基等が挙げられる。
In the present invention, R 1 to R 4 of the organic group represented by the general formula [2] each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkyl group. Represents an aryl group or a cyano group having 6 to 20 carbon atoms. Specific examples of R 1 to R 4 include, as a substituted or unsubstituted alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group,
t-butyl group, pentyl group, hexyl group, heptyl group,
Octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α,
α-ditrifluoromethylbenzyl group, triphenylmethyl group, α-benzyloxybenzyl group and the like. Examples of the substituted or unsubstituted aryl group include a phenyl group, 2
-Methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-ethylphenyl group, biphenyl group,
4-methylbiphenyl group, 4-ethylbiphenyl group, 4
-Cyclohexylbiphenyl group, terphenyl group, 3,
Examples include a 5-dichlorophenyl group, a naphthyl group, a 5-methylnaphthyl group, an anthryl group, and a pyrenyl group.

【0017】本発明における一般式〔2〕で示される有
機基のZは、置換もしくは未置換の炭素原子数6〜20
のアリール基を表す。Zの具体例は、フェニル基、ビフ
ェニル基、ターフェニル基、ナフチル基、アントリル
基、フェナントリル基、フルオレニル基、ピレニル基、
チオフェン基等のアリール基であり、上記アリール基は
置換基を有していても良い。置換基の具体例は、R1
4 で記述したアルキル基およびアリール基に加えて、
アルコキシ基、アミノ基、シアノ基、水酸基、カルボン
酸基、エーテル基、エステル基等がある。一般式〔2〕
のnは0もしくは1を表す。このように、本発明におけ
る一般式〔1〕で示される化合物は、中心にジアミン構
造を有し末端にスチリルアミン構造を有することによ
り、イオン化エネルギーが5.6eV以下となり正孔が
注入しやすく、正孔移動度が10-42/V・s以上とな
り、正孔注入材料、正孔輸送材料として優れている。ま
た、中心に有するポリフェニル構造により電子親和力が
2.5eV以上となり、電子が注入しやすい。さらに、
上記A構造の炭素原子数が22以上であるため、容易に
非晶質の薄膜を形成でき、ガラス転移温度が100℃以
上となり耐熱性に優れる。A構造中に2以上のアントラ
セン核を含むと、化合物〔1〕が熱分解してしまう可能
性がある。尚、X1 とX2 、X3 とX4 が単結合又は炭
素環結合などで連結した化合物は、ガラス転移温度が向
上し耐熱性が優れる。
In the present invention, Z of the organic group represented by the general formula [2] is a substituted or unsubstituted carbon atom having 6 to 20 carbon atoms.
Represents an aryl group. Specific examples of Z include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, a pyrenyl group,
An aryl group such as a thiophene group, and the aryl group may have a substituent. Specific examples of the substituent include R 1 to
In addition to the alkyl and aryl groups described for R 4 ,
Examples include an alkoxy group, an amino group, a cyano group, a hydroxyl group, a carboxylic acid group, an ether group, and an ester group. General formula [2]
N represents 0 or 1. As described above, since the compound represented by the general formula [1] in the present invention has a diamine structure at the center and a styrylamine structure at the terminal, the ionization energy becomes 5.6 eV or less, and holes are easily injected, The hole mobility is 10 −4 m 2 / V · s or more, which is excellent as a hole injection material and a hole transport material. Further, the electron affinity becomes 2.5 eV or more due to the polyphenyl structure at the center, and electrons are easily injected. further,
Since the structure A has 22 or more carbon atoms, an amorphous thin film can be easily formed, and the glass transition temperature is 100 ° C. or more, which is excellent in heat resistance. When the structure A contains two or more anthracene nuclei, the compound [1] may be thermally decomposed. A compound in which X 1 and X 2 and X 3 and X 4 are linked by a single bond or a carbon ring bond has an improved glass transition temperature and excellent heat resistance.

【0018】本発明における一般式〔3〕〜〔6〕で示
される化合物のBは、置換もしくは未置換の炭素原子数
6〜60のアリーレン基を表し、具体例としてビフェニ
ル、ターフェニル、ナフタレン、アントラセン、フェナ
ントレン、ピレン、フルオレン、チオフェン、コロネ
ン、フルオランテンなどから形成されるか又はこれらを
互いに複数連結し形成される2価の基などが挙げられ
る。また、X1 〜X4 、Y 1 〜Y4 及びa〜dは、上記
一般式〔1〕と同様である。ただし、B、X1 、X 2
3 又はX4 のいずれか1つはクリセン核を含有する。
The compounds represented by the general formulas [3] to [6] in the present invention.
B of the compound to be prepared is the number of substituted or unsubstituted carbon atoms
Represents an arylene group of 6 to 60;
, Terphenyl, naphthalene, anthracene, phena
Nthrene, pyrene, fluorene, thiophene, corone
Or fluoranthene, etc.
And a divalent group formed by connecting a plurality of groups to each other.
You. Also, X1~ XFour, Y 1~ YFourAnd ad are above
The same as in the general formula [1]. However, B, X1, X Two,
XThreeOr XFourOne contains a chrysene nucleus.

【0019】このように、本発明における一般式〔3〕
〜〔6〕で示される化合物は、中心にジアミン構造を有
し末端にスチリルアミン構造を有することにより、イオ
ン化エネルギーが5.6eV以下となり正孔が注入しや
すく、正孔移動度が10-4 2/V・s以上となり、正孔
注入材料、正孔輸送材料として優れている。また、B、
1 、X2 、X3 又はX4 のいずれか1つに含まれるク
リセン核により、耐久性、耐熱性が向上する。これによ
り、長時間の駆動が可能で、さらに高温下で保存又は駆
動できる有機EL素子が得られる。さらに、一般式
〔3〕〜〔6〕の化合物をドーピング材料として使用す
ると、有機EL素子の寿命が伸び、発光層の材料として
使用すると、発光効率が向上する。
As described above, the general formula [3] of the present invention is used.
Compounds represented by (6) to (6) have a diamine structure at the center.
Having a styrylamine structure at the terminal
Energy becomes 5.6 eV or less and holes are injected.
Quick, hole mobility is 10-Fourm Two/ V · s or more and holes
Excellent as injection material and hole transport material. Also, B,
X1, XTwo, XThreeOr XFourKu included in any one of
The licene nucleus improves durability and heat resistance. This
And can be driven for a long time.
A movable organic EL element is obtained. In addition, the general formula
Uses the compounds of [3] to [6] as doping materials
Then, the life of the organic EL element is extended, and
When used, the luminous efficiency is improved.

【0020】本発明における一般式〔7〕で示される化
合物のDは、置換もしくは未置換のテトラセン核もしく
はペンタセン核を含有する2価の基を表し、具体例とし
てビフェニル、ナフタレン、アントラセン、フェナント
レン、フルオレン及びチオフェンの中から選ばれる少な
くとも一種類とテトラセン核もしくはペンタセン核を複
数連結し形成される2価の基などが挙げられる。また、
1 〜X4 、Y1 〜Y 4 及びa〜dは、上記一般式
〔1〕と同様である。ただし、X1 とX2 、X4 とX3
は互いに連結していてもよい。
In the present invention, the compound represented by the general formula [7]
D in the compound is a substituted or unsubstituted tetracene nucleus or
Represents a divalent group containing a pentacene nucleus.
Biphenyl, naphthalene, anthracene, phenanthate
Selected from among len, fluorene and thiophene
At least one species and a tetracene or pentacene nucleus
And a divalent group formed by several linkages. Also,
X1~ XFour, Y1~ Y FourAnd ad are the above general formulas
Same as [1]. Where X1And XTwo, XFourAnd XThree
May be connected to each other.

【0021】本発明における一般式〔8〕で示される化
合物のX1 〜X4 、Y1 〜Y4 及びa〜dは、それぞれ
独立に、上記一般式〔1〕と同様である。R51〜R
60は、それぞれ独立に、水素原子、置換もしくは未置換
の炭素原子数1〜20のアルキル基、置換もしくは未置
換の炭素原子数1〜20のアルコキシ基、置換もしくは
未置換の炭素原子数6〜20のアリール基、シアノ基を
表す。隣接するR51〜R60は、互いに連結して飽和もし
くは不飽和で置換もしくは未置換の炭素環を形成してい
てもよい。一般式〔7〕又は〔8〕における上記置換に
用いる基としては、それぞれ独立に、炭素原子数1〜2
0のアルキル基、炭素原子数1〜20のアルコキシ基、
炭素原子数6〜20のアリール基を示すが、置換基とし
てアリールオキシ基、アリールチオ基、アリールアルキ
ル基及びアリールケトン基等は除外する。これらの置換
基を含有する化合物は、蒸着の際に熱分解し易く、発光
素子の寿命も劣るからである。
X 1 to X 4 , Y 1 to Y 4 and a to d of the compound represented by the general formula [8] in the present invention are each independently the same as in the above general formula [1]. R 51 to R
60 is each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 6 to 20 carbon atoms. 20 represents an aryl group or a cyano group. Adjacent R 51 to R 60 may be linked to each other to form a saturated or unsaturated, substituted or unsubstituted carbon ring. The groups used for the above substitution in the general formula [7] or [8] each independently have 1 to 2 carbon atoms.
An alkyl group of 0, an alkoxy group having 1 to 20 carbon atoms,
An aryl group having 6 to 20 carbon atoms is shown, but an aryloxy group, an arylthio group, an arylalkyl group, an aryl ketone group, or the like is excluded as a substituent. Compounds containing these substituents are liable to be thermally decomposed at the time of vapor deposition, and the life of the light-emitting element is inferior.

【0022】このように、本発明における一般式〔7〕
で示される化合物は、テトラセンもしくはペンタセン構
造を有することにより、橙色〜赤色領域に強い蛍光性を
有する。また、ジアミン構造を有することにより正孔が
注入されやすく、発光層中にこの化合物を含有すると、
正孔が捕捉されやすく、電子と正孔が再結合しやすい。
このため、高効率の黄色、橙色又は赤色の発光素子が得
られる。特に、一般式〔7〕で示される化合物は、ドー
ピング材料として用いたときに発光素子が長寿命であ
り、従来にない安定性が得られる。
As described above, the general formula [7] in the present invention is used.
Has strong fluorescence in the orange to red region by having a tetracene or pentacene structure. Further, by having a diamine structure, holes are easily injected, and when this compound is contained in the light emitting layer,
Holes are easily captured, and electrons and holes are easily recombined.
Therefore, a highly efficient yellow, orange, or red light-emitting element can be obtained. In particular, when the compound represented by the general formula [7] is used as a doping material, the light-emitting element has a long life and unprecedented stability can be obtained.

【0023】本発明における一般式General formula in the present invention

〔9〕で示される化
合物のEは、アリール基置換もしくは未置換のアントラ
セン核からなる2価の基を表す。X5 〜X8 は、それぞ
れ独立に、置換もしくは未置換の炭素原子数6〜20の
アリーレン基を表し、具体例としてフェニレン、ビフェ
ニル、ターフェニル、ナフタレン、アントラセン、フェ
ナントレン、フルオレン、チオフェン骨格を含有する1
価又は2価の基が挙げられる。また、X5 とX6 、X7
とX8 は互いに連結していても良い。Y1 〜Y 4 及びa
〜dは、上記一般式〔1〕と同様である。ただし、Eが
未置換の
Chemical represented by [9]
E of the compound is an aryl-substituted or unsubstituted anthra
Represents a divalent group comprising a sen nucleus. XFive~ X8Each
Independently of each other, substituted or unsubstituted C 6-20
Represents an arylene group, specific examples of which include phenylene and biphenyl
Nil, terphenyl, naphthalene, anthracene,
1 containing nanthrene, fluorene, thiophene skeleton
And divalent or divalent groups. Also, XFiveAnd X6, X7
And X8May be connected to each other. Y1~ Y FourAnd a
To d are the same as those in the general formula [1]. Where E is
Unsubstituted

【化29】 である時は、X5 〜X8 の少なくとも2つは置換もしく
は未置換の
Embedded image When at least two of X 5 to X 8 are substituted or unsubstituted

【化30】 を含む。Embedded image including.

【0024】このように、本発明における一般式Thus, the general formula of the present invention

〔9〕
で示される化合物は、ジアミン構造を有することにより
イオン化エネルギーが5.6eV以下となり正孔が注入
しやすく、正孔移動度が10-42/V・s以上となり、
正孔注入材料、正孔輸送材料として優れている。また、
中心に置換もしくは未置換のアントラセン核を有するこ
とにより、電子が注入がしやすい。さらに、中心のアン
トラセン核Eが未置換である場合には、ガラス転移温度
が100℃以下と低くなるので、上記したように少なく
とも2つのアリール基置換、好ましくは2〜4置換を行
うことによりガラス転移温度が向上する。また、このよ
うな特定のビフェニル構造は、一般式
[9]
The compound represented by has a diamine structure, has an ionization energy of 5.6 eV or less, easily injects holes, and has a hole mobility of 10 -4 m 2 / V · s or more.
Excellent as a hole injection material and a hole transport material. Also,
By having a substituted or unsubstituted anthracene nucleus at the center, electrons can be easily injected. Further, when the central anthracene nucleus E is unsubstituted, the glass transition temperature becomes as low as 100 ° C. or lower, and thus the glass is obtained by performing at least two aryl group substitutions, preferably 2 to 4 substitutions as described above. The transition temperature is improved. Also, such a specific biphenyl structure has the general formula

〔9〕で示される
化合物の可溶度を上げ、精製を容易にする。上記構造以
外のパラ位にフェニル基がある場合には精製が困難で不
純物が増加し、得られる有機EL素子の特性が悪化す
る。また、このようなアリール基置換により、分子同士
の会合対形成が抑制され、蛍光量子効率が向上し、有機
EL素子の発光効率が向上する。
The solubility of the compound represented by [9] is increased to facilitate purification. When there is a phenyl group at the para-position other than the above structure, purification is difficult, impurities increase, and the characteristics of the obtained organic EL device deteriorate. Further, by such aryl group substitution, formation of association pairs between molecules is suppressed, the fluorescence quantum efficiency is improved, and the luminous efficiency of the organic EL device is improved.

【0025】本発明における一般式〔10〕で示される
化合物のAr1 とAr3 は、それぞれ独立に、置換もし
くは未置換のフェニレン、置換もしくは未置換の1,3
ナフタレン、置換もしくは未置換の1,8ナフタレン、
置換もしくは未置換のフルオレン又は置換もしくは未置
換のビフェニルからなる2価の基を表し、Ar2 は、置
換もしくは未置換のアントラセン核、置換もしくは未置
換のピレン核、置換もしくは未置換のフェナントレン
核、置換もしくは未置換のクリセン核、置換もしくは未
置換のペンタセン核、置換もしくは未置換のナフタセン
核又は置換もしくは未置換のフルオレン核からなる2価
の基を表す。具体例として、
In the present invention, Ar 1 and Ar 3 in the compound represented by the general formula [10] each independently represent a substituted or unsubstituted phenylene, a substituted or unsubstituted 1,3
Naphthalene, substituted or unsubstituted 1,8 naphthalene,
Represents a divalent group consisting of a substituted or unsubstituted fluorene or a substituted or unsubstituted biphenyl, and Ar 2 represents a substituted or unsubstituted anthracene nucleus, a substituted or unsubstituted pyrene nucleus, a substituted or unsubstituted phenanthrene nucleus, A divalent group consisting of a substituted or unsubstituted chrysene nucleus, a substituted or unsubstituted pentacene nucleus, a substituted or unsubstituted naphthacene nucleus or a substituted or unsubstituted fluorene nucleus. As a specific example,

【0026】[0026]

【化31】 Embedded image

【0027】[0027]

【化32】 が挙げられる。Embedded image Is mentioned.

【0028】また、X5 〜X8 及びY1 〜Y4 は、それ
ぞれ独立に、上記一般式
X 5 to X 8 and Y 1 to Y 4 are each independently the above-mentioned general formula

〔9〕と同様である。a〜dは
0〜2の整数を表し、a+b+c+d≦2である。eは
0もしくは1、fは1もしくは2を表す。ただし、Ar
2 がアントラセン核の場合は、a=b=c=dで、かつ
Ar1 とAr3 が共にp−フェニレン基の場合を除く。
Same as [9]. a to d represent integers of 0 to 2, and a + b + c + d ≦ 2. e represents 0 or 1, and f represents 1 or 2. Where Ar
When 2 is an anthracene nucleus, a = b = c = d and the case where both Ar 1 and Ar 3 are p-phenylene groups is excluded.

【0029】このように、本発明における一般式〔1
0〕で示される化合物は、ジアミン構造を有することに
よりイオン化エネルギーが5.6eV以下となり正孔が
注入しやすく、正孔移動度が10-42/V・s以上とな
り、正孔注入材料、正孔輸送材料、特に発光材料として
優れている。また、中心に縮合環を含むポリフェニル構
造により、電子が注入がしやすい。また、ポリフェニル
構造とジアミン構造を併せ持つことにより、非晶質の安
定な薄膜が形成でき、ガラス転移温度が100℃以上で
あり耐熱性に優れる。さらに、一般式〔2〕の構造を2
つ以上含む場合には、薄膜形成の際に蒸着により熱分解
するため、a+b+c+d≦2とする必要がある。Ar
2 がアントラセン核の場合は、Ar1 とAr3 を上記の
ような特定構造とすることにより、化合物の熱分解や蒸
着時の酸化が避けられる。
As described above, the general formula [1]
The compound represented by formula [0] has a diamine structure, so that the ionization energy is 5.6 eV or less, holes are easily injected, the hole mobility is 10 -4 m 2 / V · s or more, and the hole injection material It is excellent as a hole transport material, particularly as a light emitting material. In addition, the polyphenyl structure containing a condensed ring at the center facilitates injection of electrons. Further, by having both a polyphenyl structure and a diamine structure, a stable amorphous thin film can be formed, and the glass transition temperature is 100 ° C. or higher, and the heat resistance is excellent. Further, the structure of the general formula [2] is
If more than one is included, it is necessary to satisfy a + b + c + d ≦ 2 because it is thermally decomposed by vapor deposition when forming a thin film. Ar
When 2 is an anthracene nucleus, by making Ar 1 and Ar 3 have the specific structure as described above, thermal decomposition of the compound and oxidation during vapor deposition can be avoided.

【0030】以下に、本発明の一般式〔1〕の化合物の
代表例(1)〜(28)、一般式〔3〕〜〔6〕の化合
物の代表例(29)〜(56)、一般式〔7〕の化合物
の代表例(57)〜(74)、一般式〔8〕の化合物の
代表例(75)〜(86)、一般式
Hereinafter, typical examples (1) to (28) of the compounds of the general formula [1] and typical examples (29) to (56) of the compounds of the general formulas [3] to [6] of the present invention will be described. Representative examples (57) to (74) of the compound of the formula [7], representative examples (75) to (86) of the compound of the general formula [8], a general formula

〔9〕の化合物の代
表例(87)〜(104)、一般式〔10〕の化合物の
代表例(105)〜(126)を例示するが、本発明は
この代表例に限定されるものではない。
Representative examples (87) to (104) of the compound of [9] and representative examples (105) to (126) of the compound of the general formula [10] are shown, but the present invention is not limited to these representative examples. Absent.

【0031】[0031]

【化33】 Embedded image

【0032】[0032]

【化34】 Embedded image

【0033】[0033]

【化35】 Embedded image

【0034】[0034]

【化36】 Embedded image

【0035】[0035]

【化37】 Embedded image

【0036】[0036]

【化38】 Embedded image

【0037】[0037]

【化39】 Embedded image

【0038】[0038]

【化40】 Embedded image

【0039】[0039]

【化41】 Embedded image

【0040】[0040]

【化42】 Embedded image

【0041】[0041]

【化43】 Embedded image

【0042】[0042]

【化44】 Embedded image

【0043】[0043]

【化45】 Embedded image

【0044】[0044]

【化46】 Embedded image

【0045】[0045]

【化47】 Embedded image

【0046】[0046]

【化48】 Embedded image

【0047】[0047]

【化49】 Embedded image

【0048】[0048]

【化50】 Embedded image

【0049】[0049]

【化51】 Embedded image

【0050】[0050]

【化52】 Embedded image

【0051】[0051]

【化53】 Embedded image

【0052】[0052]

【化54】 Embedded image

【0053】[0053]

【化55】 Embedded image

【0054】[0054]

【化56】 Embedded image

【0055】[0055]

【化57】 Embedded image

【0056】[0056]

【化58】 Embedded image

【0057】[0057]

【化59】 Embedded image

【0058】[0058]

【化60】 Embedded image

【0059】[0059]

【化61】 Embedded image

【0060】[0060]

【化62】 Embedded image

【0061】[0061]

【化63】 Embedded image

【0062】[0062]

【化64】 Embedded image

【0063】[0063]

【化65】 Embedded image

【0064】[0064]

【化66】 Embedded image

【0065】[0065]

【化67】 Embedded image

【0066】[0066]

【化68】 Embedded image

【0067】本発明の一般式〔1〕、〔3〕〜〔10〕
で示される化合物は、中心A又はBのポリフェニル構造
とアミン構造が連結していることにより、固体状態で強
い蛍光性を持ち、電場発光性にも優れ、蛍光量子効率が
0.3以上である。また、一般式〔7〕及び〔8〕で示
される化合物は、テトラセン核もしくはペンタセン核含
有構造とアミン構造が連結していることにより、黄色、
橙色又は赤色の蛍光領域において、固体状態又は分散状
態で強い蛍光性を持ち、電場発光性にも優れている。ま
た、本発明の一般式〔1〕、〔3〕〜〔10〕で示され
る化合物は、金属電極もしくは有機薄膜層からの優れた
正孔注入性および正孔輸送性、金属電極もしくは有機薄
膜層からの優れた電子注入性および電子輸送性を併せて
持ち合わせているので、発光材料として有効に使用する
ことができ、更には、正孔輸送性材料、電子輸送性材料
もしくはドーピング材料を使用してもさしつかえない。
特に一般式〔7〕及び〔8〕で示される化合物は、ドー
ピング材料として用いると、電子と正孔の再結合中心と
なるため、赤系統の高効率の発光が得られる。特に、一
般式〔8〕で示される化合物は、特定の結合位にてアリ
ールアミンとテトラセンが結合しているため高性能であ
る。
The general formulas [1], [3] to [10] of the present invention
The compound represented by has strong fluorescence in the solid state due to the connection between the polyphenyl structure of the center A or B and the amine structure, has excellent electroluminescence, and has a fluorescence quantum efficiency of 0.3 or more. is there. In addition, the compounds represented by the general formulas [7] and [8] have yellow,
In the orange or red fluorescent region, it has strong fluorescence in a solid state or a dispersed state, and also has excellent electroluminescence. Further, the compounds represented by the general formulas [1] and [3] to [10] of the present invention have excellent hole injecting property and hole transporting property from a metal electrode or an organic thin film layer, and a metal electrode or an organic thin film layer. Since it has excellent electron injecting and electron transporting properties, it can be used effectively as a light emitting material.Furthermore, using a hole transporting material, an electron transporting material or a doping material I can't wait.
In particular, when the compounds represented by the general formulas [7] and [8] are used as a doping material, they serve as recombination centers of electrons and holes, so that red-type highly efficient light emission can be obtained. In particular, the compound represented by the general formula [8] has high performance because arylamine and tetracene are bonded at a specific bonding position.

【0068】本発明の有機EL素子は、陽極と陰極間に
一層もしくは多層の有機薄膜を形成した素子である。一
層型の場合、陽極と陰極との間に発光層を設けている。
発光層は、発光材料を含有し、それに加えて陽極から注
入した正孔、もしくは陰極から注入した電子を発光材料
まで輸送させるために、正孔注入材料もしくは電子注入
材料を含有しても良い。しかしながら、本発明の発光材
料は、極めて高い蛍光量子効率、高い正孔輸送能力およ
び電子輸送能力を併せ持ち、均一な薄膜を形成すること
ができるので、本発明の発光材料のみで発光層を形成す
ることも可能である。多層型の有機EL素子は、(陽極
/正孔注入層/発光層/陰極)、(陽極/発光層/電子
注入層/陰極)、(陽極/正孔注入層/発光層/電子注
入層/陰極)の多層構成で積層したものがある。一般式
〔1〕及び〔3〕〜〔8〕の化合物は、高い発光特性を
持ち、優れた正孔注入性、正孔輸送特性および電子注入
性、電子輸送特性を有しているので、発光材料として発
光層に使用することができる。
The organic EL device of the present invention is a device in which one or more organic thin films are formed between an anode and a cathode. In the case of a single layer type, a light emitting layer is provided between an anode and a cathode.
The light-emitting layer contains a light-emitting material and may further contain a hole-injection material or an electron-injection material for transporting holes injected from an anode or electrons injected from a cathode to the light-emitting material. However, since the light emitting material of the present invention has extremely high fluorescence quantum efficiency, high hole transporting ability and electron transporting ability and can form a uniform thin film, a light emitting layer is formed only with the light emitting material of the present invention. It is also possible. The multilayer type organic EL device includes (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole injection layer / light emitting layer / electron injection layer / (Cathode). Since the compounds of the general formulas [1] and [3] to [8] have high light-emitting properties and excellent hole-injecting properties, hole-transporting properties, electron-injecting properties and electron-transporting properties, It can be used for the light emitting layer as a material.

【0069】発光層には、必要に応じて、本発明の一般
式〔1〕及び〔3〕〜〔10〕の化合物に加えてさらな
る公知の発光材料、ドーピング材料、正孔注入材料や電
子注入材料を使用することもできる。有機EL素子は、
多層構造にすることにより、クエンチングによる輝度や
寿命の低下を防ぐことができる。必要があれば、発光材
料、ドーピング材料、正孔注入材料や電子注入材料を組
み合わせて使用することができる。また、ドーピング材
料により、発光輝度や発光効率の向上、赤色や青色の発
光を得ることもできる。また、正孔注入層、発光層、電
子注入層は、それぞれ二層以上の層構成により形成され
ても良い。その際には、正孔注入層の場合、電極から正
孔を注入する層を正孔注入層、正孔注入層から正孔を受
け取り発光層まで正孔を輸送する層を正孔輸送層と呼
ぶ。同様に、電子注入層の場合、電極から電子を注入す
る層を電子注入層、電子注入層から電子を受け取り発光
層まで電子を輸送する層を電子輸送層と呼ぶ。これらの
各層は、材料のエネルギー準位、耐熱性、有機層もしく
は金属電極との密着性等の各要因により選択されて使用
される。
In the light emitting layer, if necessary, in addition to the compounds of the general formulas [1] and [3] to [10] of the present invention, further known light emitting materials, doping materials, hole injection materials, electron injection materials, etc. Materials can also be used. Organic EL elements
With a multi-layer structure, a decrease in luminance and life due to quenching can be prevented. If necessary, a combination of a light emitting material, a doping material, a hole injection material, and an electron injection material can be used. Further, with the use of the doping material, emission luminance and emission efficiency can be improved, and red and blue light emission can be obtained. Further, each of the hole injection layer, the light emitting layer, and the electron injection layer may be formed in a layer structure of two or more layers. In this case, in the case of a hole injection layer, a layer for injecting holes from the electrode is a hole injection layer, and a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer is a hole transport layer. Call. Similarly, in the case of an electron injection layer, a layer that injects electrons from the electrode is called an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer is called an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or the metal electrode.

【0070】一般式〔1〕及び〔3〕〜〔10〕の化合
物と共に発光層に使用できる発光材料またはドーピング
材料としては、アントラセン、ナフタレン、フェナント
レン、ピレン、テトラセン、コロネン、クリセン、フル
オレセイン、ペリレン、フタロペリレン、ナフタロペリ
レン、ペリノン、フタロペリノン、ナフタロペリノン、
ジフェニルブタジエン、テトラフェニルブタジエン、ク
マリン、オキサジアゾール、アルダジン、ビスベンゾキ
サゾリン、ビススチリル、ピラジン、シクロペンタジエ
ン、キノリン金属錯体、アミノキノリン金属錯体、ベン
ゾキノリン金属錯体、イミン、ジフェニルエチレン、ビ
ニルアントラセン、ジアミノカルバゾール、ピラン、チ
オピラン、ポリメチン、メロシアニン、イミダゾールキ
レート化オキシノイド化合物、キナクリドン、ルブレ
ン、スチルベン系誘導体及び蛍光色素等が挙げられる
が、これらに限定されるものではない。特に、化合物
〔7〕及び〔8〕と共に発光層に使用できる発光材料ま
たはドーピング材料としては、キノリン金属錯体及びス
チルベン系誘導体である。
The light emitting material or doping material which can be used in the light emitting layer together with the compounds of the general formulas [1] and [3] to [10] includes anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, Phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone,
Diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diamino Examples include, but are not limited to, carbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelated oxinoid compounds, quinacridone, rubrene, stilbene derivatives, and fluorescent dyes. In particular, luminescent materials or doping materials that can be used in the luminescent layer together with the compounds [7] and [8] include quinoline metal complexes and stilbene derivatives.

【0071】正孔注入材料としては、正孔を輸送する能
力を持ち、陽極からの正孔注入効果、発光層または発光
材料に対して優れた正孔注入効果を有し、発光層で生成
した励起子の電子注入層または電子注入材料への移動を
防止し、かつ薄膜形成能力の優れた化合物が好ましい。
具体的には、フタロシアニン誘導体、ナフタロシアニン
誘導体、ポルフィリン誘導体、オキサゾール、オキサジ
アゾール、トリアゾール、イミダゾール、イミダゾロ
ン、イミダゾールチオン、ピラゾリン、ピラゾロン、テ
トラヒドロイミダゾール、オキサゾール、オキサジアゾ
ール、ヒドラゾン、アシルヒドラゾン、ポリアリールア
ルカン、スチルベン、ブタジエン、ベンジジン型トリフ
ェニルアミン、スチリルアミン型トリフェニルアミン、
ジアミン型トリフェニルアミン等と、それらの誘導体、
およびポリビニルカルバゾール、ポリシラン、導電性高
分子等の高分子材料が挙げられるが、これらに限定され
るものではない。
The hole injecting material has the ability to transport holes, has the effect of injecting holes from the anode, and has an excellent hole injecting effect on the light emitting layer or the light emitting material. A compound that prevents excitons from migrating to the electron injection layer or the electron injection material and has excellent thin film forming ability is preferable.
Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Alkanes, stilbene, butadiene, benzidine-type triphenylamine, styrylamine-type triphenylamine,
Diamine-type triphenylamine and the like, derivatives thereof,
And polymer materials such as polyvinyl carbazole, polysilane, and conductive polymers, but are not limited thereto.

【0072】本発明の有機EL素子において使用できる
正孔注入材料の中で、さらに効果的な正孔注入材料は、
芳香族三級アミン誘導体もしくはフタロシアニン誘導体
である。芳香族三級アミン誘導体の具体例は、トリフェ
ニルアミン、トリトリルアミン、トリルジフェニルアミ
ン、N,N’−ジフェニル−N,N’−(3−メチルフ
ェニル)−1,1’−ビフェニル−4,4’−ジアミ
ン、N,N,N’,N’−(4−メチルフェニル)−
1,1’−フェニル−4,4’−ジアミン、N,N,
N’,N’−(4−メチルフェニル)−1,1’−ビフ
ェニル−4,4’−ジアミン、N,N’−ジフェニル−
N,N’−ジナフチル−1,1’−ビフェニル−4,
4’−ジアミン、N,N’−(メチルフェニル)−N,
N’−(4−n−ブチルフェニル)−フェナントレン−
9,10−ジアミン、N,N−ビス(4−ジ−4−トリ
ルアミノフェニル)−4−フェニル−シクロヘキサン
等、もしくはこれらの芳香族三級アミン骨格を有したオ
リゴマーもしくはポリマーであるが、これらに限定され
るものではない。フタロシアニン(Pc)誘導体の具体
例は、H2 Pc、CuPc、CoPc、NiPc、Zn
Pc、PdPc、FePc、MnPc、ClAlPc、
ClGaPc、ClInPc、ClSnPc、Cl2
iPc、(HO)AlPc、(HO)GaPc、VOP
c、TiOPc、MoOPc、GaPc−O−GaPc
等のフタロシアニン誘導体およびナフタロシアニン誘導
体でがあるが、これらに限定されるものではない。
Among the hole injection materials that can be used in the organic EL device of the present invention, more effective hole injection materials are
It is an aromatic tertiary amine derivative or a phthalocyanine derivative. Specific examples of the aromatic tertiary amine derivative include triphenylamine, tolylamine, tolylphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl)-
1,1′-phenyl-4,4′-diamine, N, N,
N ', N'-(4-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-diphenyl-
N, N'-dinaphthyl-1,1'-biphenyl-4,
4'-diamine, N, N '-(methylphenyl) -N,
N '-(4-n-butylphenyl) -phenanthrene-
9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, and the like, or oligomers or polymers having an aromatic tertiary amine skeleton. However, the present invention is not limited to this. Specific examples of the phthalocyanine (Pc) derivative include H 2 Pc, CuPc, CoPc, NiPc, Zn
Pc, PdPc, FePc, MnPc, ClAlPc,
ClGaPc, ClInPc, ClSnPc, Cl 2 S
iPc, (HO) AlPc, (HO) GaPc, VOP
c, TiOPc, MoOPc, GaPc-O-GaPc
Phthalocyanine derivatives and naphthalocyanine derivatives, but are not limited thereto.

【0073】電子注入材料としては、電子を輸送する能
力を持ち、陰極からの電子注入効果、発光層または発光
材料に対して優れた電子注入効果を有し、発光層で生成
した励起子の正孔注入層への移動を防止し、かつ薄膜形
成能力の優れた化合物が好ましい。具体的には、フルオ
レノン、アントラキノジメタン、ジフェノキノン、チオ
ピランジオキシド、オキサゾール、オキサジアゾール、
トリアゾール、イミダゾール、ペリレンテトラカルボン
酸、フレオレニリデンメタン、アントラキノジメタン、
アントロン等とそれらの誘導体が挙げられるが、これら
に限定されるものではない。また、正孔注入材料に電子
受容物質を、電子注入材料に電子供与性物質を添加する
ことにより電子注入性を向上させることもできる。
The electron injecting material has the ability to transport electrons, has the effect of injecting electrons from the cathode, and has an excellent effect of injecting electrons into the light emitting layer or the light emitting material. Compounds that prevent migration to the hole injection layer and have excellent thin film forming ability are preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole,
Triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane,
Examples include, but are not limited to, anthrones and their derivatives. The electron injecting property can be improved by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.

【0074】本発明の有機EL素子において、さらに効
果的な電子注入材料は、金属錯体化合物もしくは含窒素
五員環誘導体である。金属錯体化合物の具体例は、8−
ヒドロキシキノリナートリチウム、ビス(8−ヒドロキ
シキノリナート)亜鉛、ビス(8−ヒドロキシキノリナ
ート)銅、ビス(8−ヒドロキシキノリナート)マンガ
ン、トリス(8−ヒドロキシキノリナート)アルミニウ
ム、トリス(2−メチル−8−ヒドロキシキノリナー
ト)アルミニウム、トリス(8−ヒドロキシキノリナー
ト)ガリウム、ビス(10−ヒドロキシベンゾ[h]キ
ノリナート)ベリリウム、ビス(10−ヒドロキシベン
ゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−
キノリナート)クロロガリウム、ビス(2−メチル−8
−キノリナート)(o−クレゾラート)ガリウム、ビス
(2−メチル−8−キノリナート)(1−ナフトラー
ト)アルミニウム、ビス(2−メチル−8−キノリナー
ト)(2−ナフトラート)ガリウム等が挙げられるが、
これらに限定されるものではない。
In the organic EL device of the present invention, a more effective electron injecting material is a metal complex compound or a nitrogen-containing five-membered ring derivative. A specific example of the metal complex compound is 8-
Lithium hydroxyquinolinato, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc , Bis (2-methyl-8-
Quinolinato) chlorogallium, bis (2-methyl-8)
-Quinolinato) (o-cresolate) gallium, bis (2-methyl-8-quinolinato) (1-naphtholate) aluminum, bis (2-methyl-8-quinolinato) (2-naphtholate) gallium, and the like,
It is not limited to these.

【0075】また、含窒素五員誘導体は、オキサゾー
ル、チアゾール、オキサジアゾール、チアジアゾールも
しくはトリアゾール誘導体が好ましい。具体的には、
2,5−ビス(1−フェニル)−1,3,4−オキサゾ
ール、ジメチルPOPOP、2,5−ビス(1−フェニ
ル)−1,3,4−チアゾール、2,5−ビス(1−フ
ェニル)−1,3,4−オキサジアゾール、2−(4’
−tert−ブチルフェニル)−5−( 4”−ビフェニ
ル) 1,3,4−オキサジアゾール、2,5−ビス(1
−ナフチル)−1,3,4−オキサジアゾール、1,4
−ビス[2−( 5−フェニルオキサジアゾリル) ]ベン
ゼン、1,4−ビス[2−( 5−フェニルオキサジアゾ
リル) −4−tert−ブチルベンゼン]、2−(4’
−tert−ブチルフェニル)−5−( 4”−ビフェニ
ル) −1,3,4−チアジアゾール、2,5−ビス(1
−ナフチル)−1,3,4−チアジアゾール、1,4−
ビス[2−( 5−フェニルチアジアゾリル) ]ベンゼ
ン、2−(4’−tert−ブチルフェニル)−5−(
4”−ビフェニル) −1,3,4−トリアゾール、2,
5−ビス(1−ナフチル)−1,3,4−トリアゾー
ル、1,4−ビス[2−( 5−フェニルトリアゾリル)
]ベンゼン等が挙げられるが、これらに限定されるも
のではない。
The five-membered nitrogen-containing derivative is preferably an oxazole, thiazole, oxadiazole, thiadiazole or triazole derivative. In particular,
2,5-bis (1-phenyl) -1,3,4-oxazole, dimethyl POPOP, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) ) -1,3,4-oxadiazole, 2- (4 ′
-Tert-butylphenyl) -5- (4 "-biphenyl) 1,3,4-oxadiazole, 2,5-bis (1
-Naphthyl) -1,3,4-oxadiazole, 1,4
-Bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4 '
-Tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-thiadiazole, 2,5-bis (1
-Naphthyl) -1,3,4-thiadiazole, 1,4-
Bis [2- (5-phenylthiadiazolyl)] benzene, 2- (4'-tert-butylphenyl) -5- (
4 "-biphenyl) -1,3,4-triazole, 2,
5-bis (1-naphthyl) -1,3,4-triazole, 1,4-bis [2- (5-phenyltriazolyl)
], But not limited thereto.

【0076】本発明の有機EL素子においては、発光層
中に、一般式〔1〕及び〔3〕〜〔8〕の化合物の他
に、発光材料、ドーピング材料、正孔注入材料および電
子注入材料の少なくとも1種が同一層に含有されてもよ
い。また、本発明により得られた有機EL素子の、温
度、湿度、雰囲気等に対する安定性の向上のために、素
子の表面に保護層を設けたり、シリコンオイル、樹脂等
により素子全体を保護することも可能である。
In the organic EL device of the present invention, in addition to the compounds of the general formulas [1] and [3] to [8], a light emitting material, a doping material, a hole injection material and an electron injection material are provided in the light emitting layer. May be contained in the same layer. In order to improve the stability of the organic EL device obtained according to the present invention with respect to temperature, humidity, atmosphere, and the like, a protective layer may be provided on the surface of the device, or the entire device may be protected with silicon oil, resin, or the like. Is also possible.

【0077】有機EL素子の陽極に使用される導電性材
料としては、4eVより大きな仕事関数を持つものが適
しており、炭素、アルミニウム、バナジウム、鉄、コバ
ルト、ニッケル、タングステン、銀、金、白金、パラジ
ウム等およびそれらの合金、ITO基板、NESA基板
に使用される酸化スズ、酸化インジウム等の酸化金属、
さらにはポリチオフェンやポリピロール等の有機導電性
樹脂が用いられる。陰極に使用される導電性物質として
は、4eVより小さな仕事関数を持つものが適してお
り、マグネシウム、カルシウム、錫、鉛、チタニウム、
イットリウム、リチウム、ルテニウム、マンガン、アル
ミニウム等およびそれらの合金が用いられるが、これら
に限定されるものではない。合金としては、マグネシウ
ム/銀、マグネシウム/インジウム、リチウム/アルミ
ニウム等が代表例として挙げられるが、これらに限定さ
れるものではない。合金の比率は、蒸着源の温度、雰囲
気、真空度等により制御され、適切な比率に選択され
る。陽極および陰極は、必要があれば二層以上の層構成
により形成されていても良い。
As the conductive material used for the anode of the organic EL element, a material having a work function of more than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum , Palladium and their alloys, tin oxide used for ITO substrate, NESA substrate, metal oxide such as indium oxide,
Further, an organic conductive resin such as polythiophene or polypyrrole is used. As the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, and magnesium, calcium, tin, lead, titanium,
Yttrium, lithium, ruthenium, manganese, aluminum and the like and alloys thereof are used, but not limited thereto. Representative examples of the alloy include magnesium / silver, magnesium / indium, and lithium / aluminum, but are not limited thereto. The ratio of the alloy is controlled by the temperature, atmosphere, degree of vacuum, and the like of the evaporation source, and is selected to be an appropriate ratio. The anode and the cathode may be formed by two or more layers if necessary.

【0078】有機EL素子では、効率良く発光させるた
めに、少なくとも一方の面は素子の発光波長領域におい
て充分透明にすることが望ましい。また、基板も透明で
あることが望ましい。透明電極は、上記の導電性材料を
使用して、蒸着やスパッタリング等の方法で所定の透光
性が確保するように設定する。発光面の電極は、光透過
率を10%以上にすることが望ましい。基板は、機械
的、熱的強度を有し、透明性を有するものであれば限定
されるものではないが、ガラス基板および透明性樹脂フ
ィルムがある。透明性樹脂フィルムとしては、ポリエチ
レン、エチレン−酢酸ビニル共重合体、エチレン−ビニ
ルアルコール共重合体、ポリプロピレン、ポリスチレ
ン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポ
リビニルアルコール、ポリビニルブチラール、ナイロ
ン、ポリエーテルエーテルケトン、ポリサルホン、ポリ
エーテルサルフォン、テトラフルオロエチレン−パーフ
ルオロアルキルビニルエーテル共重合体、ポリビニルフ
ルオライド、テトラフルオロエチレン−エチレン共重合
体、テトラフルオロエチレン−ヘキサフルオロプロピレ
ン共重合体、ポリクロロトリフルオロエチレン、ポリビ
ニリデンフルオライド、ポリエステル、ポリカーボネー
ト、ポリウレタン、ポリイミド、ポリエーテルイミド、
ポリイミド、ポリプロピレン等が挙げられる。
In the organic EL device, it is desirable that at least one surface is sufficiently transparent in the emission wavelength region of the device in order to emit light efficiently. Further, it is desirable that the substrate is also transparent. The transparent electrode is set using the above-described conductive material so as to secure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface desirably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strengths and is transparent, and includes a glass substrate and a transparent resin film. As the transparent resin film, polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide,
Examples include polyimide and polypropylene.

【0079】本発明に係わる有機EL素子の各層の形成
は、真空蒸着、スパッタリング、プラズマ、イオンプレ
ーティング等の乾式成膜法やスピンコーティング、ディ
ッピング、フローコーティング等の湿式成膜法のいずれ
の方法を適用することができる。膜厚は特に限定される
ものではないが、適切な膜厚に設定する必要がある。膜
厚が厚すぎると、一定の光出力を得るために大きな印加
電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピ
ンホール等が発生して、電界を印加しても充分な発光輝
度が得られない。通常の膜厚は5nmから10μmの範
囲が適しているが、10nmから0.2μmの範囲がさ
らに好ましい。
The layers of the organic EL device according to the present invention can be formed by any of dry film forming methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dipping and flow coating. Can be applied. The film thickness is not particularly limited, but needs to be set to an appropriate film thickness. If the film thickness is too large, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too small, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but is more preferably in the range of 10 nm to 0.2 μm.

【0080】湿式成膜法の場合、各層を形成する材料
を、エタノール、クロロホルム、テトラヒドロフラン、
ジオキサン等の適切な溶媒に溶解または分散させて薄膜
を形成するが、その溶媒はいずれであっても良い。ま
た、いずれの有機薄膜層においても、成膜性向上、膜の
ピンホール防止等のため適切な樹脂や添加剤を使用して
も良い。使用の可能な樹脂としては、ポリスチレン、ポ
リカーボネート、ポリアリレート、ポリエステル、ポリ
アミド、ポリウレタン、ポリスルフォン、ポリメチルメ
タクリレート、ポリメチルアクリレート、セルロース等
の絶縁性樹脂およびそれらの共重合体、ポリ−N−ビニ
ルカルバゾール、ポリシラン等の光導電性樹脂、ポリチ
オフェン、ポリピロール等の導電性樹脂を挙げられる。
また、添加剤としては、酸化防止剤、紫外線吸収剤、可
塑剤等を挙げられる。
In the case of the wet film forming method, the material forming each layer is made of ethanol, chloroform, tetrahydrofuran,
The thin film is formed by dissolving or dispersing in a suitable solvent such as dioxane, and any solvent may be used. In any of the organic thin film layers, a suitable resin or additive may be used for improving film forming properties, preventing pinholes in the film, and the like. Examples of usable resins include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, and poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
In addition, examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

【0081】以上のように、有機EL素子の発光層に本
発明の化合物を用いることにより、低い印加電圧で実用
上充分な発光輝度が得られるため、発光効率が高く、劣
化しずらいため寿命も長く、さらには耐熱性にも優れた
有機EL素子を得ることができる。
As described above, by using the compound of the present invention in the light-emitting layer of an organic EL device, a practically sufficient light-emitting luminance can be obtained at a low applied voltage, the light-emitting efficiency is high, and the life is hardly deteriorated. It is possible to obtain an organic EL element which is long and has excellent heat resistance.

【0082】本発明の有機EL素子は、壁掛けテレビの
フラットパネルディスプレイ等の平面発光体、複写機、
プリンター、液晶ディスプレイのバックライト又は計器
類等の光源、表示板、標識灯等に利用できる。本発明の
材料は、有機EL素子だけでなく、電子写真感光体、光
電変換素子、太陽電池、イメージセンサー等の分野にお
いても使用できる。
The organic EL device of the present invention can be used for a flat light-emitting body such as a flat panel display of a wall-mounted television, a copying machine,
It can be used for a light source such as a printer, a backlight of a liquid crystal display or instruments, a display board, a sign lamp, and the like. The material of the present invention can be used not only in organic EL devices but also in the fields of electrophotographic photoreceptors, photoelectric conversion devices, solar cells, image sensors and the like.

【0083】[0083]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(2)、2,5−ビス(1−ナフチル)−
1,3,4−オキサジアゾール、ポリカーボネート樹脂
(帝人化成:パンライトK−1300)を5:3:2の
重量比でテトラヒドロフランに溶解させ、スピンコーテ
ィング法により膜厚100nmの発光層を得た。その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの電極を形成して有機
EL素子を得た。この素子の発光特性は、直流電圧5V
の印加電圧で発光輝度200(cd/m2)、最高輝度1
4000(cd/m2)、発光効率2.1(lm/W)の
発光が得られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. Example 1 The above compound (2), 2,5-bis (1-naphthyl)-as a luminescent material was placed on a washed glass plate with an ITO electrode.
1,3,4-oxadiazole and a polycarbonate resin (Teijin Kasei: Panlite K-1300) were dissolved in tetrahydrofuran at a weight ratio of 5: 3: 2, and a 100 nm-thick light emitting layer was obtained by spin coating. . An electrode having a thickness of 150 nm was formed thereon using an alloy obtained by mixing aluminum and lithium at a ratio of 3% by weight of lithium to obtain an organic EL device. The light-emitting characteristics of this element are as follows: DC voltage 5 V
Emission luminance 200 (cd / m 2 ) at the applied voltage of 1 and maximum luminance 1
Light emission of 4000 (cd / m 2 ) and luminous efficiency of 2.1 (lm / W) was obtained.

【0084】実施例2 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(9)を真空蒸着して膜厚100nmの発光
層を作成し、その上に、アルミニウムとリチウムをリチ
ウム3重量%の割合で混合した合金で膜厚100nmの
電極を形成して有機EL素子を得た。発光層は10-6
orrの真空中で、基板温度が室温の条件下で蒸着し
た。この素子の発光特性は、直流電圧5Vの印加電圧で
発光輝度110(cd/m2)、最高輝度20000(c
d/m2)、発光効率2.1(lm/W)の発光が得られ
た。
Example 2 The above compound (9) was vacuum-deposited as a luminescent material on a washed glass plate with an ITO electrode to form a luminescent layer having a thickness of 100 nm. An electrode having a thickness of 100 nm was formed from an alloy mixed at a ratio of 100% to obtain an organic EL device. Emitting layer is 10 -6 T
Vapor deposition was performed at a substrate temperature of room temperature in a vacuum of orr. The light emission characteristics of this element are such that a light emission luminance of 110 (cd / m 2 ) and a maximum luminance of 20,000 (c) are obtained by applying a DC voltage of 5 V.
d / m 2 ) and luminescence efficiency of 2.1 (lm / W) was obtained.

【0085】実施例3 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(2)を真空蒸着して膜厚50nmの発光層
を形成した。次いで、下記化合物(Alq)
Example 3 The above compound (2) as a luminescent material was vacuum-deposited on a washed glass plate with an ITO electrode to form a luminescent layer having a thickness of 50 nm. Then, the following compound (Alq)

【化69】 を真空蒸着して膜厚10nmの電子注入層を作成し、そ
の上に、アルミニウムとリチウムをリチウム3重量%の
割合で混合した合金で膜厚100nmの電極を形成して
有機EL素子を得た。発光層および電子注入層は10-6
Torrの真空中で、基板温度室温の条件下で蒸着し
た。この素子の発光特性は、直流電圧5Vの印加電圧で
発光輝度約600(cd/m2)、最高輝度30000
(cd/m2)、発光効率3.0(lm/W)の青緑色発
光が得られた。さらに初期発光輝度600(cd/m2)
で、定電流駆動したところ半減寿命は2000時間と長
かった。
Embedded image Was vacuum-deposited to form an electron injection layer having a thickness of 10 nm, and an electrode having a thickness of 100 nm was formed thereon by using an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. . The light emitting layer and the electron injection layer are 10 -6
Vapor deposition was performed in a Torr vacuum at a substrate temperature of room temperature. The light emission characteristics of this element are such that a light emission luminance of about 600 (cd / m 2 ) and a maximum luminance of 30000 are obtained at an applied voltage of 5 V DC.
(Cd / m 2 ) and blue-green light emission with a luminous efficiency of 3.0 (lm / W) were obtained. Furthermore, initial light emission luminance 600 (cd / m 2 )
The half-life was as long as 2000 hours when driven at a constant current.

【0086】実施例4〜16 洗浄したITO電極付きガラス板上に、第1表に示す発
光材料を真空蒸着して膜厚80nmの発光層を得た。さ
らに、電子注入材料として上記化合物(Alq)を真空
蒸着して膜厚20nmの電子注入層を作成し、その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの膜厚の電極を形成し
て有機EL素子を得た。各層は10-6Torrの真空中
で、基板温度室温の条件下で蒸着した。この素子の発光
特性を第1表に示す。また本実施例の有機EL素子は、
全て最高輝度10000(cd/m2)以上の高輝度特性
を有していた。
Examples 4 to 16 The luminescent materials shown in Table 1 were vacuum-deposited on the cleaned glass plate with ITO electrodes to obtain a luminescent layer having a thickness of 80 nm. Further, the above compound (Alq) was vacuum-deposited as an electron injecting material to form an electron injecting layer having a thickness of 20 nm, and an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium was formed thereon. An electrode having a film thickness was formed to obtain an organic EL device. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. Table 1 shows the emission characteristics of this device. Further, the organic EL element of this embodiment
All had high luminance characteristics of 10000 (cd / m 2 ) or higher.

【0087】[0087]

【表1】 [Table 1]

【0088】実施例17 洗浄したITO電極付きガラス板上に、正孔注入材とし
て下記化合物(TPD74)を膜厚60nmに真空蒸着
した。
Example 17 The following compound (TPD74) as a hole injecting material was vacuum-deposited to a thickness of 60 nm on a washed glass plate with ITO electrodes.

【化70】 次に、正孔輸送材として下記化合物(NPD)を膜厚2
0nmに真空蒸着した。
Embedded image Next, the following compound (NPD) was used as a hole transport material to a thickness of 2
Vacuum deposited to 0 nm.

【化71】 次に、発光材料として4,4’−ビス(2,2−ジフェ
ニルビニル)ビフェニル(DPVBi)および上記化合
物(3)を、化合物(3)の割合が5重量%、膜厚40
nmとなるように同時蒸着した。尚、化合物(3)は蛍
光性のドーパントとして機能する。次に、電荷注入材と
して上記化合物(Alq)を膜厚20nmで蒸着し、さ
らにLiFを膜厚0.5nmで蒸着後アルミニウムを膜
厚100nm蒸着し電極を形成して有機EL素子を得
た。各層は10-6Torrの真空中で、基板温度室温の
条件下で蒸着した。この素子の発光特性は、直流電圧5
Vの印加電圧で発光輝度750(cd/m2)と高輝度で
あった。さらに初期発光輝度400(cd/m2)で、定
電流駆動したところ半減寿命は3000時間と長寿命で
あった。
Embedded image Next, 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi) and the above compound (3) were used as a light emitting material at a ratio of the compound (3) of 5% by weight and a film thickness of 40%.
nm. Note that the compound (3) functions as a fluorescent dopant. Next, the above compound (Alq) was deposited as a charge injecting material in a thickness of 20 nm, LiF was deposited in a thickness of 0.5 nm, and aluminum was deposited in a thickness of 100 nm to form an electrode, thereby obtaining an organic EL element. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. The light-emitting characteristics of this element are as follows.
With an applied voltage of V, the light emission luminance was 750 (cd / m 2 ), which was high. Further, when the device was driven at a constant current with an initial light emission luminance of 400 (cd / m 2 ), the half life was 3000 hours, which was a long life.

【0089】比較例1 発光材料として下記化合物(比較例1)を使用したこと
を除き、実施例1と同様にして有機EL素子を作製し
た。
Comparative Example 1 An organic EL device was produced in the same manner as in Example 1, except that the following compound (Comparative Example 1) was used as a light emitting material.

【化72】 得られた素子の発光特性は、直流電圧5Vの印加電圧で
発光輝度60(cd/m 2)、発光効率0.34(lm/
W)と充分な性能が得られなかった。
Embedded imageThe light emission characteristics of the obtained device were measured by applying a DC voltage of 5 V.
Light emission luminance 60 (cd / m Two), Luminous efficiency 0.34 (lm /
W) and sufficient performance could not be obtained.

【0090】比較例2 発光材料として下記化合物(比較例2)を使用したこと
を除き、実施例3と同様にして有機EL素子を作製し
た。
Comparative Example 2 An organic EL device was produced in the same manner as in Example 3 except that the following compound (Comparative Example 2) was used as a light emitting material.

【化73】 得られた素子の発光特性は、直流電圧5Vの印加電圧で
発光輝度200(cd/m2)、発光効率1.2(lm/
W)であったが、初期発光輝度400(cd/m 2)で定
電流駆動したところ半減寿命は600時間と寿命が短か
った。
Embedded imageThe light emission characteristics of the obtained device were measured by applying a DC voltage of 5 V.
Luminance 200 (cd / mTwo), Luminous efficiency 1.2 (lm /
W), but the initial emission luminance was 400 (cd / m Two)
Is half life reduced to 600 hours when driven by current?
Was.

【0091】耐熱性試験 実施例2、実施例3、比較例1及び比較例2で作製した
有機EL素子を、発光輝度を測定してから100℃の恒
温槽内に入れ、一定の電流値で500時間経過後に再度
発光輝度を測定し槽内に入れる前の発光輝度と比較して
輝度保持率を算出した。その結果、実施例2、実施例
3、比較例1及び比較例2の有機EL素子の輝度保持率
は、それぞれ85%、90%、25%、30%であっ
た。このように、比較例1及び比較例2で使用した発光
材料の化合物はガラス転移温度が100℃以下であるた
め輝度を保持することができなかった。これに対し、実
施例2及び実施例3で使用した発光材料の化合物はガラ
ス転移温度が110℃以上であるため耐熱性が高く、長
時間に渡り充分輝度を保持することができる。
Heat Resistance Test The organic EL devices produced in Examples 2, 3, Comparative Example 1 and Comparative Example 2 were measured for light emission luminance and then placed in a thermostat at 100 ° C., at a constant current value. After the elapse of 500 hours, the emission luminance was measured again, and the luminance retention was calculated by comparing with the emission luminance before being put into the tank. As a result, the luminance retention rates of the organic EL devices of Example 2, Example 3, Comparative Example 1, and Comparative Example 2 were 85%, 90%, 25%, and 30%, respectively. As described above, the compounds of the light emitting materials used in Comparative Examples 1 and 2 were unable to maintain luminance because the glass transition temperature was 100 ° C. or less. On the other hand, since the compounds of the light emitting materials used in Examples 2 and 3 have a glass transition temperature of 110 ° C. or higher, they have high heat resistance and can maintain sufficient luminance for a long time.

【0092】合成例1(化合物(2)) 中間体Aの合成 200ミリリットル丸底フラスコに、4−ブロモベンズ
アルデヒド 0.38g(2.04mmol)、ベンジ
ルホスホン酸エチルエステル 0.98g(4.29m
mol)、DMSO 40ミリリットルを入れ、tBu
OK 0.5g(4.49mmol)を室温で少しずつ
添加し反応させた。18時間反応させて得られた反応液
を、水500ミリリットル中に注入し、析出した粗結晶
0.5gを濾過により採取した。100ミリリットル丸
底フラスコに、上記粗結晶、KI 2.00g(12.
0mmol)、CuI 1.14g(6.0mmo
l)、HMPA 10ミリリットルを入れ、150℃で
6時間加熱攪拌した。反応終了後、1N−塩酸水 10
ミリリットルを加え、トルエンで有機層を抽出した。濃
縮後にジエチルエーテル/メタノールで再結晶させて精
製し、下記中間体A 0.28g(収率45%)を得
た。
Synthesis Example 1 (Compound (2)) Synthesis of Intermediate A In a 200 ml round bottom flask, 0.38 g (2.04 mmol) of 4-bromobenzaldehyde and 0.98 g (4.29 m) of ethyl benzylphosphonate were added.
mol), 40 ml of DMSO, and tBu
0.5 g (4.49 mmol) of OK was added little by little at room temperature and reacted. The reaction solution obtained by reacting for 18 hours was poured into 500 ml of water, and 0.5 g of precipitated crude crystals were collected by filtration. In a 100 ml round bottom flask, 2.00 g of the above crude crystals, KI (12.
0 mmol), 1.14 g (6.0 mmol) of CuI.
l), 10 ml of HMPA was added, and the mixture was heated and stirred at 150 ° C. for 6 hours. After the reaction, 1N aqueous hydrochloric acid 10
Milliliter was added, and the organic layer was extracted with toluene. After concentration, the residue was purified by recrystallization from diethyl ether / methanol to obtain 0.28 g of the following intermediate A (yield: 45%).

【化74】 Embedded image

【0093】中間体Bの合成 50ミリリットル丸底フラスコ中でp−ブロモアニリン
3g(17.4mmol)を6N−塩酸水 10ミリ
リットルに懸濁し冷却した。内温4℃にて亜硫酸ナトリ
ウム 1.25g(18.1mmol)/水5.3ミリ
リットルをゆっくりと滴下し、同温にて1時間攪拌して
ジアゾニウム水溶液を得た。別途、100ミリリットル
丸底フラスコ中でアントラセン 0.3g(1.7mm
ol)をアセトン 5ミリリットルに溶解した後、塩化
第二銅2水和物 0.46g/水5.7ミリリットルを
加え、4℃まで冷却した。冷却後、上記ジアゾニウム水
溶液を同温にて添加し、室温で一晩反応させた。反応後
析出晶を濾取してメタノールで洗浄後乾燥し、下記中間
体B 0.2g(収率24%)を得た。
Synthesis of Intermediate B In a 50 ml round bottom flask, 3 g (17.4 mmol) of p-bromoaniline was suspended in 10 ml of 6N aqueous hydrochloric acid and cooled. At an internal temperature of 4 ° C., 1.25 g (18.1 mmol) of sodium sulfite / 5.3 ml of water were slowly added dropwise, followed by stirring at the same temperature for 1 hour to obtain a diazonium aqueous solution. Separately, 0.3 g of anthracene (1.7 mm) was placed in a 100 ml round bottom flask.
ol) was dissolved in 5 ml of acetone, and 0.46 g of cupric chloride dihydrate / 5.7 ml of water were added thereto, and the mixture was cooled to 4 ° C. After cooling, the above diazonium aqueous solution was added at the same temperature, and reacted at room temperature overnight. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, and dried to obtain 0.2 g of the following intermediate B (yield: 24%).

【化75】 Embedded image

【0094】化合物(2)の合成 100ミリリットル丸底フラスコ中でアニリン 0.0
18g(0.2mmol)を塩化メチレン 5ミリリッ
トルに溶解し、無水酢酸 0.05g(0.5mmo
l)を加え、室温にて1時間反応させた。その後、反応
溶媒を留去してオイル状の化合物を得た。この化合物
に、中間体A 0.56g(1.8mmol)、炭酸カ
リウム 5g、銅粉 0.3g及びニトロベンゼン 2
0ミリリットルを加え、210℃で2日間加熱攪拌し
た。その後、溶媒を留去し得られた残さに、ジエチレン
グリコール 10ミリリットルと水酸化カリウム3g/
水10ミリリットルを加え、110℃で一晩反応させ
た。反応終了後、酢酸エチル/水を加えて分液し、溶媒
留去後、粗結晶を得た。続いて100ミリリットル丸底
フラスコ中で上記粗結晶、中間体B 0.05g(0.
1mmol)、炭酸カリウム 5g、銅粉 0.3g及
びニトロベンゼン 20ミリリットルを加え、220℃
で2日間加熱攪拌した。反応後析出晶を濾取してメタノ
ールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲ
ル、ヘキサン/トルエン=1/1)で精製し、黄色粉末
0.017gを得た。この粉末は、NMR、IR及び
FD−MS(フィールドディソプーションマススペクト
ル)の測定により、化合物(2)と同定された(収率2
0%)。
Synthesis of Compound (2) In a 100 ml round bottom flask, aniline 0.0
18 g (0.2 mmol) was dissolved in 5 ml of methylene chloride, and 0.05 g (0.5 mmol) of acetic anhydride was dissolved.
l) was added and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. To this compound, 0.56 g (1.8 mmol) of intermediate A, 5 g of potassium carbonate, 0.3 g of copper powder, and 2 g of nitrobenzene 2
After adding 0 ml, the mixture was heated and stirred at 210 ° C. for 2 days. After that, 10 ml of diethylene glycol and 3 g of potassium hydroxide /
10 ml of water was added and reacted at 110 ° C. overnight. After the completion of the reaction, ethyl acetate / water was added to carry out liquid separation, and after distilling off the solvent, crude crystals were obtained. Subsequently, 0.05 g of the above crude crystals, Intermediate B (0.
1 mmol), 5 g of potassium carbonate, 0.3 g of copper powder and 20 ml of nitrobenzene.
For 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol and dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 0.017 g of a yellow powder. This powder was identified as compound (2) by NMR, IR and FD-MS (field desorption mass spectrum) measurements (yield 2).
0%).

【0095】合成例2(化合物(9)) 中間体Cの合成 200ミリリットル丸底フラスコ中でジフェニルアミン
51.2g(0.3mol)、1,4−ジブロモベン
ゼン 71.4g(0.3mol)、tBuOK34.
6g(0.36mol)、PdCl2(PPh3)2 4.2
g(5.9mmol)及びキシレン1.2リットルを混
合し、130℃で一晩攪拌した。反応終了後、有機層を
濃縮し褐色結晶約100gを得た。この結晶をカラムク
ロマトグラフ(シリカゲル、ヘキサン/トルエン=10
/1)で精製し、下記中間体C 28g(収率29%)
を得た。
Synthesis Example 2 (Compound (9)) Synthesis of Intermediate C In a 200 ml round bottom flask, 51.2 g (0.3 mol) of diphenylamine, 71.4 g (0.3 mol) of 1,4-dibromobenzene, tBuOK34 .
6 g (0.36 mol), PdCl 2 (PPh 3 ) 2 4.2
g (5.9 mmol) and 1.2 l of xylene were mixed and stirred at 130 ° C. overnight. After completion of the reaction, the organic layer was concentrated to obtain about 100 g of brown crystals. The crystals were subjected to column chromatography (silica gel, hexane / toluene = 10
/ 1), 28 g of the following intermediate C (29% yield)
I got

【化76】 Embedded image

【0096】化合物(9)の合成 100ミリリットル丸底フラスコ中で中間体B 0.4
8g(1mmol)にジエチルエーテル 10ミリリッ
トルを加え、−78℃に冷却した。そこへn−ブチルリ
チウム 2ミリリットル(1.5M,3mmol)を加
え、1時間攪拌した。次にほう酸トリメチル0.3g
(3mmol)/ジエチルエーテル5ミリリットルを滴
下した。滴下終了後、−78℃にて1時間攪拌し、室温
にて1N−塩酸水 10ミリリットルを加えた。有機層
を分液後、溶媒を留去して粗結晶を得た。100ミリリ
ットル丸底フラスコ中で、上記粗結晶、中間体C 0.
97g(3mmol)、Pd(PPh3)4 12mg、リ
ン酸カリウム 0.32g(1.5mmol)及びDM
F 10ミリリットルを加え、100℃で4時間攪拌し
た。有機層を分液後、溶媒を留去して粗結晶を得た。こ
の粗結晶をカラムクロマトグラフ(シリカゲル、ベンゼ
ン/酢酸エチル=50/1)で精製し、黄色粉末0.1
3gを得た。この粉末は、NMR、IR及びFD−MS
の測定により、化合物(9)と同定された(収率14
%)。
Synthesis of Compound (9) Intermediate B 0.4 in a 100 ml round bottom flask
10 ml of diethyl ether was added to 8 g (1 mmol), and the mixture was cooled to -78 ° C. 2 ml (1.5 M, 3 mmol) of n-butyllithium was added thereto, and the mixture was stirred for 1 hour. Next, 0.3 g of trimethyl borate
(3 mmol) / 5 ml of diethyl ether was added dropwise. After completion of the dropwise addition, the mixture was stirred at -78 ° C for 1 hour, and 10 mL of 1N aqueous hydrochloric acid was added at room temperature. After separating the organic layer, the solvent was distilled off to obtain a crude crystal. In a 100 ml round bottom flask, the above crude crystals, Intermediate C 0.
97 g (3 mmol), 12 mg of Pd (PPh 3 ) 4 , 0.32 g (1.5 mmol) of potassium phosphate and DM
F 10 ml was added, and the mixture was stirred at 100 ° C. for 4 hours. After separating the organic layer, the solvent was distilled off to obtain a crude crystal. The crude crystals were purified by column chromatography (silica gel, benzene / ethyl acetate = 50/1) to give a yellow powder of 0.1%.
3 g were obtained. This powder was obtained by NMR, IR and FD-MS
Was identified as compound (9) (yield 14
%).

【0097】合成例3(化合物(18)) 中間体Dの合成 1,4−ジブロモベンゼン 0.48g(2.0mmo
l)に、Mg及びジエチルエーテルを加えてGrign
ard試薬を調製した。別途、100ミリリットル丸底
フラスコ中に、1,4−ジブロモナフタレン 5.7g
(20.0mmol)、NiCl2 (dppp) 10
mg及びジエチルエーテル 20ミリリットルを加え、
氷欲で冷却した。そこへ上記Grignard試薬を加
え、6時間加熱還流した。反応終了後、1N−塩酸水
10ミリリットルを加えた。有機層を分液後、溶媒を留
去して下記中間体D 0.30(収率30%)を得た。
Synthesis Example 3 (Compound (18)) Synthesis of Intermediate D 0.48 g (2.0 mmol) of 1,4-dibromobenzene
l), Mg and diethyl ether were added to
ard reagent was prepared. Separately, in a 100 ml round bottom flask, 5.7 g of 1,4-dibromonaphthalene was added.
(20.0 mmol), NiCl 2 (dppp) 10
mg and 20 ml of diethyl ether,
Cooled with greed. The above Grignard reagent was added thereto, and the mixture was heated under reflux for 6 hours. After completion of the reaction, 1N hydrochloric acid aqueous solution
10 milliliters were added. After liquid separation of the organic layer, the solvent was distilled off to obtain the following intermediate D 0.30 (yield 30%).

【化77】 Embedded image

【0098】化合物(18)の合成 100ミリリットル丸底フラスコ中でアニリン 0.0
9g(1.0mmol)を塩化メチレン 5ミリリット
ルに溶解し、無水酢酸 0.25g(2.5mmol)
を加え、室温にて1時間反応させた。その後、反応溶媒
を留去してオイル状の化合物を得た。この化合物に、中
間体A 0.4g(4.5mmol)、炭酸カリウム
5g、銅粉 0.3g及びニトロベンゼン 20ミリリ
ットルを加え、210℃で2日間加熱攪拌した。その
後、溶媒を留去し得られた残さに、ジエチレングリコー
ル 10ミリリットルと水酸化カリウム 3g/水10
ミリリットルを加え、110℃で一晩反応させた。反応
終了後、酢酸エチル/水を加えて分液し、溶媒留去後、
粗結晶を得た。続いて100ミリリットル丸底フラスコ
中で、上記粗結晶、中間体D 0.5g(1.0mmo
l)、炭酸カリウム 5g、銅粉 0.3g及びニトロ
ベンゼン 20ミリリットルを加え、220℃で2日間
加熱攪拌した。反応後析出晶を濾取してメタノールで洗
浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキ
サン/トルエン=1/1)で精製し、黄色粉末 0.1
gを得た。この粉末は、NMR、IR及びFD−MSの
測定により、化合物(18)と同定された(収率10
%)。
Synthesis of Compound (18) In a 100 ml round bottom flask, aniline 0.0
9 g (1.0 mmol) was dissolved in 5 ml of methylene chloride, and 0.25 g (2.5 mmol) of acetic anhydride was dissolved.
Was added and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. To this compound, 0.4 g (4.5 mmol) of intermediate A, potassium carbonate
5 g, copper powder 0.3 g and nitrobenzene 20 ml were added, and the mixture was heated and stirred at 210 ° C. for 2 days. Thereafter, the solvent was distilled off, and the residue obtained was mixed with 10 ml of diethylene glycol and 3 g of potassium hydroxide in 10 g of water.
Milliliter was added and reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off.
Crude crystals were obtained. Subsequently, in a 100 ml round bottom flask, 0.5 g of the above crude crystal, Intermediate D (1.0 mmol
l), 5 g of potassium carbonate, 0.3 g of copper powder and 20 ml of nitrobenzene were added, and the mixture was heated and stirred at 220 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to give a yellow powder 0.1
g was obtained. This powder was identified as compound (18) by NMR, IR and FD-MS measurements (yield 10
%).

【0099】実施例18 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(30)、2,5−ビス(1−ナフチル)−
1,3,4−オキサジアゾール、ポリカーボネート樹脂
(帝人化成:パンライトK−1300)を5:3:2の
重量比でテトラヒドロフランに溶解させ、スピンコーテ
ィング法により膜厚100nmの発光層を得た。その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの電極を形成して有機
EL素子を得た。この素子の発光特性は、直流電圧5V
の印加電圧で発光輝度320(cd/m2)、最高輝度1
4000(cd/m2)、発光効率2.5(lm/W)の
発光が得られた。
Example 18 The above compound (30), 2,5-bis (1-naphthyl)-as a luminescent material was placed on a washed glass plate with an ITO electrode.
1,3,4-oxadiazole and a polycarbonate resin (Teijin Kasei: Panlite K-1300) were dissolved in tetrahydrofuran at a weight ratio of 5: 3: 2, and a 100 nm-thick light emitting layer was obtained by spin coating. . An electrode having a thickness of 150 nm was formed thereon using an alloy obtained by mixing aluminum and lithium at a ratio of 3% by weight of lithium to obtain an organic EL device. The light-emitting characteristics of this element are as follows: DC voltage 5 V
Emission luminance 320 (cd / m 2 ), maximum luminance 1
Light emission of 4000 (cd / m 2 ) and luminous efficiency of 2.5 (lm / W) was obtained.

【0100】実施例19 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(37)を真空蒸着して膜厚100nmの発
光層を作成し、その上に、フッ化リチウムで膜厚0.3
nmの無機電子注入層を形成し、さらにアルミニウムで
膜厚100nmの電極を形成して有機EL素子を得た。
発光層は10-6Torrの真空中で、基板温度が室温の
条件下で蒸着した。この素子の発光特性は、直流電圧5
Vの印加電圧で発光輝度110(cd/m2)、最高輝度
20000(cd/m2)、発光効率1.2(lm/W)
の発光が得られた。
Example 19 The above-mentioned compound (37) as a luminescent material was vacuum-deposited on a washed glass plate with an ITO electrode to form a 100 nm-thick luminescent layer, on which lithium fluoride was used to form a luminescent layer having a thickness of 0 nm. .3
After forming an inorganic electron injection layer having a thickness of 100 nm, an electrode having a thickness of 100 nm was formed with aluminum to obtain an organic EL device.
The light emitting layer was deposited in a vacuum of 10 -6 Torr at a substrate temperature of room temperature. The light-emitting characteristics of this element are as follows.
With an applied voltage of V, light emission luminance 110 (cd / m 2 ), maximum luminance 20,000 (cd / m 2 ), light emission efficiency 1.2 (lm / W)
Was obtained.

【0101】実施例20 洗浄したITO電極付きガラス板上に、正孔注入材とし
てCuPcを真空蒸着して膜厚40nmの正孔注入層を
形成した。次に正孔輸送材として上記化合物(47)を
膜厚20nmの正孔輸送層を、さらに上記化合物(Al
q)真空蒸着して膜厚60nmの発光層を形成し、発光
層にルブレンを濃度4重量%となるように添加し、その
上に、アルミニウムとリチウムをリチウム3重量%の割
合で混合した合金で膜厚100nmの電極を形成して有
機EL素子を得た。各層は10-6Torrの真空中で、
基板温度室温の条件下で蒸着した。この素子の発光特性
は、直流電圧5Vの印加電圧で発光輝度約700(cd
/m2)、最高輝度80000(cd/m2)、発光効率
6.0(lm/W)の緑色発光が得られた。さらに初期
発光輝度600(cd/m2)で、定電流駆動したところ
半減寿命は4000時間と長かった。
Example 20 A hole injection layer having a thickness of 40 nm was formed on a washed glass plate with ITO electrodes by vacuum-depositing CuPc as a hole injection material. Next, the above compound (47) was used as a hole transporting material in a hole transporting layer having a thickness of 20 nm.
q) Vacuum evaporation to form a 60 nm-thick light-emitting layer, an alloy in which rubrene is added to the light-emitting layer to a concentration of 4% by weight, and aluminum and lithium are mixed at a ratio of 3% by weight of lithium. To form an electrode having a thickness of 100 nm, thereby obtaining an organic EL device. Each layer is placed in a vacuum of 10 -6 Torr,
The deposition was performed at a substrate temperature of room temperature. The light emission characteristics of this element are such that a light emission luminance of about 700 (cd)
/ M 2), the maximum luminance 80000 (cd / m 2), green light emission efficiency 6.0 (lm / W) was obtained. Furthermore, when the device was driven at a constant current at an initial light emission luminance of 600 (cd / m 2 ), the half life was as long as 4000 hours.

【0102】実施例21〜33 洗浄したITO電極付きガラス板上に、第2表に示す正
孔輸送材料を真空蒸着して膜厚20nmの正孔輸送層を
得た。さらに、発光材料として上記化合物(Alq)を
真空蒸着して膜厚60nmの発光層を作成し、発光層に
ルブレンを濃度4重量%となるように添加し、その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの膜厚の電極を形成し
て有機EL素子を得た。各層は10-6Torrの真空中
で、基板温度室温の条件下で蒸着した。この素子の発光
特性を第2表に示す。また本実施例の有機EL素子は、
全て最高輝度10000(cd/m2)以上の高輝度特性
を有していた。
Examples 21 to 33 A hole transporting layer having a thickness of 20 nm was obtained by vacuum-depositing the hole transporting materials shown in Table 2 on the cleaned glass plate with ITO electrodes. Further, the above compound (Alq) was vacuum-deposited as a light emitting material to form a light emitting layer having a thickness of 60 nm, rubrene was added to the light emitting layer so as to have a concentration of 4% by weight, and aluminum and lithium were further changed to lithium. An electrode having a thickness of 150 nm was formed from an alloy mixed at a ratio of 3% by weight to obtain an organic EL device. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. Table 2 shows the emission characteristics of this device. Further, the organic EL element of this embodiment
All had high luminance characteristics of 10000 (cd / m 2 ) or higher.

【0103】[0103]

【表2】 [Table 2]

【0104】実施例34 洗浄したITO電極付きガラス板上に、正孔注入材とし
て上記化合物(TPD74)を膜厚60nmに真空蒸着
した。次に、正孔輸送材として上記化合物(NPD)を
膜厚20nmに真空蒸着した。次に、発光材料として
4,4’−ビス(2,2−ジフェニルビニル)フェニル
アントラセン(DPVDPAN)およびドーパントとし
て上記化合物(36)を、化合物(36)の割合が2重
量%、膜厚40nmとなるように同時蒸着した。次に、
電荷注入材として上記化合物(Alq)を膜厚20nm
で蒸着し、さらにLiFを膜厚0.5nmで蒸着後アル
ミニウムを膜厚100nm蒸着し電極を形成して有機E
L素子を得た。各層は10-6Torrの真空中で、基板
温度室温の条件下で蒸着した。この素子の発光特性は、
直流電圧8Vの印加電圧で発光輝度500(cd/m2)
と高輝度で、色純度の優れた青色発光であった。さらに
初期発光輝度100(cd/m2)で、定電流駆動したと
ころ半減寿命は7000時間と長寿命であった。尚、こ
の素子の発光スペクトルを測定したところ、DPVBi
と同一であった。すなわち、化合物(36)は発光には
影響しないが、素子に長寿命を与える効果がある。
Example 34 The above compound (TPD74) as a hole injecting material was vacuum-deposited to a thickness of 60 nm on a washed glass plate with ITO electrodes. Next, the compound (NPD) as a hole transporting material was vacuum-deposited to a thickness of 20 nm. Next, 4,4′-bis (2,2-diphenylvinyl) phenylanthracene (DPVDPAN) as a light-emitting material and the above compound (36) as a dopant were added at a ratio of the compound (36) of 2% by weight and a film thickness of 40 nm. Co-evaporation was carried out. next,
The above compound (Alq) is used as a charge injection material in a thickness of 20 nm.
Then, LiF is deposited in a thickness of 0.5 nm, and aluminum is deposited in a thickness of 100 nm to form an electrode.
An L element was obtained. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. The light emission characteristics of this element are:
Light emission luminance of 500 (cd / m 2 ) at an applied voltage of DC voltage of 8 V
And blue light emission with high luminance and excellent color purity. Furthermore, when the device was driven at a constant current with an initial light emission luminance of 100 (cd / m 2 ), the half life was 7000 hours, which was a long life. When the emission spectrum of this device was measured, DPVBi
Was identical to That is, the compound (36) has no effect on light emission, but has an effect of giving a long life to the device.

【0105】比較例3 ドーパントとして上記化合物(36)を添加しないこと
を除き、実施例34と同様にして有機EL素子を作製し
た。この素子について、初期発光輝度100(cd/m
2)で、定電流駆動したところ半減寿命は4000時間と
実施例34に比べ短かった。
Comparative Example 3 An organic EL device was manufactured in the same manner as in Example 34 except that the compound (36) was not added as a dopant. For this element, an initial light emission luminance of 100 (cd / m
In (2 ), the half-life was 4000 hours, which was shorter than that of Example 34 when driven at a constant current.

【0106】比較例4 正孔輸送材料として上記化合物(比較例2)を使用した
ことを除き、実施例20と同様にして有機EL素子を作
製した。得られた素子の発光特性は、直流電圧5Vの印
加電圧で発光輝度300(cd/m2)、発光効率4.2
(lm/W)であったが、初期発光輝度400(cd/
2)で定電流駆動したところ半減寿命は300時間と寿
命が短かった。
Comparative Example 4 An organic EL device was produced in the same manner as in Example 20, except that the above compound (Comparative Example 2) was used as a hole transporting material. The light-emitting characteristics of the obtained device were such that the light-emitting luminance was 300 (cd / m 2 ) and the light-emitting efficiency was 4.2 at an applied voltage of 5 V DC.
(Lm / W), but the initial emission luminance was 400 (cd /
m 2 ), the half-life was 300 hours and the life was short.

【0107】耐熱性試験 実施例20、実施例27及び比較例4で作製した有機E
L素子を、発光輝度を測定してから105℃の恒温槽内
に入れ、一定の電流値で500時間経過後に再度発光輝
度を測定し槽内に入れる前の発光輝度と比較して輝度保
持率を算出した。その結果、実施例20及び実施例2
7、比較例4の有機EL素子の輝度保持率は、それぞれ
87%、90%、25%であった。このように、比較例
4で使用した発光材料の化合物はガラス転移温度が10
5℃以下であるため輝度を保持することができなかっ
た。これに対し、実施例20及び実施例27で使用した
発光材料の化合物はガラス転移温度が110℃以上であ
るため耐熱性が高く、長時間に渡り充分輝度を保持する
ことができる。
Heat resistance test Organic E prepared in Examples 20, 27 and Comparative Example 4
After measuring the light emission luminance, the L element was placed in a constant temperature bath at 105 ° C., and after a lapse of 500 hours at a constant current value, the light emission luminance was measured again and compared with the light emission luminance before being put into the tank, the luminance retention ratio Was calculated. As a result, Example 20 and Example 2
7. The luminance retention rates of the organic EL elements of Comparative Example 4 were 87%, 90%, and 25%, respectively. Thus, the compound of the luminescent material used in Comparative Example 4 has a glass transition temperature of 10
Since the temperature was 5 ° C. or less, the luminance could not be maintained. On the other hand, since the compounds of the light emitting materials used in Examples 20 and 27 have a glass transition temperature of 110 ° C. or higher, they have high heat resistance and can maintain sufficient luminance for a long time.

【0108】合成例4(化合物(30)) 中間体E(6,12−ジヨードクリセン)の合成 300ミリリットル丸底フラスコに、クリセン 5g
(22mmol)、四塩化炭素 100ミリリットルを
入れ、ヨウ素/四塩化炭素 16g(64mmol/1
00ミリリットル)を室温で少しずつ滴下し反応させ
た。反応液を5時間加熱攪拌した後、析出した結晶を濾
取し、四塩化炭素100ミリリットルで洗浄した。得ら
れた粗結晶をトルエン200ミリリットルで再結晶さ
せ、中間体E(収率35%)を得た。
Synthesis Example 4 (Compound (30)) Synthesis of Intermediate E (6,12-Diiodochrysene) 5 g of chrysene was placed in a 300 ml round bottom flask.
(22 mmol) and 100 ml of carbon tetrachloride, and 16 g of iodine / carbon tetrachloride (64 mmol / 1
(00 ml) was added dropwise little by little at room temperature to cause a reaction. After heating and stirring the reaction solution for 5 hours, the precipitated crystals were collected by filtration and washed with 100 ml of carbon tetrachloride. The obtained crude crystals were recrystallized from 200 ml of toluene to obtain Intermediate E (yield 35%).

【0109】化合物(30)の合成 100ミリリットル二口フラスコ中で、4−アミノスチ
ルベン 2g(10mmol)を塩化メチレン 20ミ
リリットルに溶解し、無水酢酸 2.5g(25mmo
l)を加え、室温にて1時間反応させた。その後、反応
溶媒を留去してオイル状の化合物を得た。300ミリリ
ットル二口フラスコ中で、この化合物に、ヨードベンゼ
ン 4.1g(20mmol)、炭酸カリウム 3g
(30mmol)、銅粉 0.06g(1mmol)及
びニトロベンゼン 100ミリリットルを加え、220
℃で2日間加熱攪拌した。その後、溶媒を留去し得られ
た残さに、ジエチレングリコール 10ミリリットルと
水酸化カリウム 30g/水100ミリリットルを加
え、110℃で一晩反応させた。反応終了後、酢酸エチ
ル/水を加えて分液し、溶媒留去後、粗結晶を得た。3
00ミリリットル二口フラスコ中で、得られた粗結晶と
中間体E 2.4g(5mmol)、炭酸カリウム 3
g(20mmol)、銅粉 0.06g(1mmol)
及びニトロベンゼン 100ミリリットルを加え、23
0℃で2日間加熱攪拌した。反応後析出晶を濾取してメ
タノールで洗浄後乾燥し、カラムクロマトグラフ(シリ
カゲル、ヘキサン/トルエン=1/1)で精製し、黄色
粉末1.0gを得た。この粉末は、NMR、IR及びF
D−MSの測定により、化合物(30)と同定された
(収率25%)。
Synthesis of Compound (30) In a 100 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, and 2.5 g (25 mmol) of acetic anhydride was dissolved.
l) was added and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene and 3 g of potassium carbonate were added to this compound.
(30 mmol), 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added, and 220
The mixture was heated and stirred at ℃ for 2 days. Thereafter, 10 ml of diethylene glycol and 30 g of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After the completion of the reaction, ethyl acetate / water was added to carry out liquid separation, and after distilling off the solvent, crude crystals were obtained. Three
In a 00 ml two-neck flask, 2.4 g (5 mmol) of the obtained crude crystal and Intermediate E, potassium carbonate 3
g (20 mmol), copper powder 0.06 g (1 mmol)
And 100 ml of nitrobenzene and add 23
The mixture was heated and stirred at 0 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol and dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 1.0 g of a yellow powder. This powder has NMR, IR and F
The powder was identified as Compound (30) by D-MS measurement (yield: 25%).

【0110】合成例5(化合物(36)) 化合物(36)の合成 100ミリリットル丸底フラスコ中でジフェニルアミン
3.4g(20mmol)、中間体E 4.8g(1
0mmol)、炭酸カリウム 3g(30mmol)、
銅粉 0.06g(1mmol)及びニトロベンゼン
100ミリリットルを加え、210℃で2日間加熱攪拌
した。反応後析出晶を濾取してメタノールで洗浄後乾燥
し、カラムクロマトグラフ(シリカゲル、ヘキサン/ト
ルエン=1/1)で精製し、黄色粉末 2.8gを得
た。この粉末は、NMR、IR及びFD−MSの測定に
より、化合物(36)と同定された(収率50%)。
Synthesis Example 5 (Compound (36)) Synthesis of Compound (36) In a 100 ml round bottom flask, 3.4 g (20 mmol) of diphenylamine and 4.8 g of intermediate E (1
0 mmol), 3 g (30 mmol) of potassium carbonate,
Copper powder 0.06 g (1 mmol) and nitrobenzene
100 ml was added, and the mixture was heated and stirred at 210 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol and dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 2.8 g of a yellow powder. This powder was identified as compound (36) by the measurement of NMR, IR and FD-MS (yield 50%).

【0111】合成例6(化合物(38)) 化合物(38)の合成 アルゴン気流下100ミリリットル四口フラスコに、マ
グネシウム 1.0g(41mmol)、THF 1ミ
リリットル、ヨウ素の小片を入れ、4−ブロモトリフェ
ニルアミン 9.7g(30mmol)/THF 10
0ミリリットルを室温で少しずつ滴下し、滴下終了後6
0℃で1時間加熱攪拌しGrignard試薬を調製し
た。アルゴン気流下300ミリリットル四口フラスコ
に、中間体E 4.8g(10mmol)、THF 5
0ミリリットル、PdCl2(PPh3)2 0.28g
(0.4mmol)及びAlH(iso−Bu)2
1.0Mトルエン溶液 1.0ミリリットル(1mmo
l)を入れ、上記Grignard試薬を室温で滴下し
た後、昇温して一晩還流させた。反応終了後、反応液を
氷水冷却して析出晶を濾取し、アセトンで洗浄した。得
られた粗結晶をアセトン 100ミリリットルで再結晶
させ、黄色粉末 4.3gを得た。この粉末は、NM
R、IR及びFD−MSの測定により、化合物(38)
と同定された(収率60%)。
Synthesis Example 6 (Compound (38)) Synthesis of Compound (38) 1.0 g (41 mmol) of magnesium, 1 ml of THF, and a small piece of iodine were placed in a 100 ml four-necked flask under a stream of argon. 9.7 g (30 mmol) of phenylamine / THF 10
0 ml is added dropwise little by little at room temperature.
The mixture was heated and stirred at 0 ° C. for 1 hour to prepare a Grignard reagent. In a 300 ml four-necked flask under a stream of argon, 4.8 g (10 mmol) of Intermediate E, THF 5
0 ml, PdCl 2 (PPh 3 ) 2 0.28 g
(0.4 mmol) and AlH (iso-Bu) 2 /
1.0M toluene solution 1.0ml (1mmo
l) was added thereto, and the above-mentioned Grignard reagent was added dropwise at room temperature, and then heated to reflux overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with acetone. The obtained crude crystals were recrystallized from 100 ml of acetone to obtain 4.3 g of a yellow powder. This powder is NM
The compound (38) was measured by R, IR and FD-MS.
(60% yield).

【0112】合成例7(化合物(47)) 化合物(47)の合成 100ミリリットル二口フラスコ中で、6−アミノクリ
セン 2.4g(10mmol)を塩化メチレン 20
ミリリットルに溶解し、無水酢酸 2.5g(25mm
ol)を加え、室温にて1時間反応させた。その後、反
応溶媒を留去してオイル状の化合物を得た。300ミリ
リットル二口フラスコ中で、この化合物に、ヨードベン
ゼン 4.1g(20mmol)、炭酸カリウム 3g
(30mmol)、銅粉 0.06g(1mmol)及
びニトロベンゼン 100ミリリットルを加え、220
℃で2日間加熱攪拌した。その後、溶媒を留去し得られ
た残さに、ジエチレングリコール 10ミリリットルと
水酸化カリウム 30g/水100ミリリットルを加
え、110℃で一晩反応させた。反応終了後、酢酸エチ
ル/水を加えて分液し、溶媒留去後、粗結晶を得た。3
00ミリリットル二口フラスコ中で、得られた粗結晶と
4,4’−ジヨードビフェニル 2g(5mmol)、
炭酸カリウム 3g(30mmol)、銅粉0.06g
(1mmol)及びニトロベンゼン 100ミリリット
ルを加え、230℃で2日間加熱攪拌した。反応後析出
晶を濾取してメタノールで洗浄後乾燥し、カラムクロマ
トグラフ(シリカゲル、ヘキサン/トルエン=1/3)
で精製し、黄色粉末 0.8gを得た。この粉末は、N
MR、IR及びFD−MSの測定により、化合物(4
7)と同定された(収率30%)。
Synthesis Example 7 (Compound (47)) Synthesis of Compound (47) In a 100 ml two-necked flask, 2.4 g (10 mmol) of 6-aminochrysene was added to methylene chloride.
Dissolve in milliliter and add 2.5g of acetic anhydride (25mm
ol) and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene and 3 g of potassium carbonate were added to this compound.
(30 mmol), 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added, and 220
The mixture was heated and stirred at ℃ for 2 days. Thereafter, 10 ml of diethylene glycol and 30 g of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After the completion of the reaction, ethyl acetate / water was added to carry out liquid separation, and after distilling off the solvent, crude crystals were obtained. Three
In a 00 ml two-necked flask, 2 g (5 mmol) of the obtained crude crystal and 4,4′-diiodobiphenyl,
Potassium carbonate 3g (30mmol), copper powder 0.06g
(1 mmol) and 100 ml of nitrobenzene were added, and the mixture was heated and stirred at 230 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, and dried, and then subjected to column chromatography (silica gel, hexane / toluene = 1/3).
And 0.8 g of a yellow powder was obtained. This powder is N
According to the measurement of MR, IR and FD-MS, the compound (4
7) (30% yield).

【0113】実施例35 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(58)、2,5−ビス(1−ナフチル)−
1,3,4−オキサジアゾール、ポリカーボネート樹脂
(帝人化成:パンライトK−1300)を5:2:2の
重量比でテトラヒドロフランに溶解させ、スピンコーテ
ィング法により膜厚100nmの発光層を得た。その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの電極を形成して有機
EL素子を得た。この素子の発光特性は、直流電圧5V
の印加電圧で発光輝度130(cd/m2)、最高輝度1
4000(cd/m2)、発光効率1.2(lm/W)の
黄橙色発光が得られた。
Example 35 The above compound (58), 2,5-bis (1-naphthyl)-as a luminescent material was placed on a washed glass plate with an ITO electrode.
1,3,4-oxadiazole and a polycarbonate resin (Teijin Chemical: Panlite K-1300) were dissolved in tetrahydrofuran at a weight ratio of 5: 2: 2, and a 100 nm-thick light emitting layer was obtained by spin coating. . An electrode having a thickness of 150 nm was formed thereon using an alloy obtained by mixing aluminum and lithium at a ratio of 3% by weight of lithium to obtain an organic EL device. The light-emitting characteristics of this element are as follows: DC voltage 5 V
At an applied voltage of 130 (cd / m 2 ) and a maximum luminance of 1
Yellow-orange light emission of 4000 (cd / m 2 ) and luminous efficiency of 1.2 (lm / W) was obtained.

【0114】実施例36 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(71)を真空蒸着して膜厚100nmの発
光層を作成し、その上に、アルミニウムとリチウムをリ
チウム3重量%の割合で混合した合金で膜厚100nm
の電極を形成して有機EL素子を得た。発光層は10-6
Torrの真空中で、基板温度が室温の条件下で蒸着し
た。この素子の発光特性は、直流電圧5Vの印加電圧で
発光輝度120(cd/m2)、最高輝度1800(cd
/m2)、発光効率0.3(lm/W)の橙色発光が得ら
れた。
Example 36 The above-mentioned compound (71) was vacuum-deposited as a luminescent material on a washed glass plate with an ITO electrode to form a 100-nm-thick luminescent layer, on which aluminum and lithium were weighed with 3 weight percent of lithium. % Alloy with a thickness of 100 nm
Was formed to obtain an organic EL device. The light emitting layer is 10 -6
Vapor deposition was performed in a Torr vacuum at a substrate temperature of room temperature. The light-emitting characteristics of this device are such that a light-emitting luminance of 120 (cd / m 2 ) and a maximum luminance of 1800 (cd) are obtained by applying a DC voltage of 5 V.
/ M 2), orange light emission efficiency 0.3 (lm / W) was obtained.

【0115】実施例37 洗浄したITO電極付きガラス板上に、発光材料として
上記化合物(71)を真空蒸着して膜厚50nmの発光
層を形成した。次いで、上記化合物(Alq)を真空蒸
着して膜厚10nmの電子注入層を作成し、その上に、
アルミニウムとリチウムをリチウム3重量%の割合で混
合した合金で膜厚100nmの電極を形成して有機EL
素子を得た。発光層および電子注入層は10-6Torr
の真空中で、基板温度室温の条件下で蒸着した。この素
子の発光特性は、直流電圧5Vの印加電圧で発光輝度約
200(cd/m2)、最高輝度12000(cd/
2)、発光効率1.0(lm/W)の橙色発光が得られ
た。
Example 37 The above-mentioned compound (71) as a luminescent material was vacuum-deposited on a washed glass plate with an ITO electrode to form a 50-nm-thick luminescent layer. Next, the compound (Alq) is vacuum-deposited to form an electron injection layer having a thickness of 10 nm.
An electrode having a thickness of 100 nm is formed of an alloy in which aluminum and lithium are mixed at a ratio of 3% by weight of lithium to form an organic EL.
An element was obtained. The light emitting layer and the electron injection layer are 10 -6 Torr
Vacuum was deposited in a vacuum at a substrate temperature of room temperature. The light emission characteristics of this device are such that a light emission luminance of about 200 (cd / m 2 ) and a maximum luminance of 12000 (cd /
m 2 ), and orange luminescence with a luminous efficiency of 1.0 (lm / W) was obtained.

【0116】実施例38〜46 洗浄したITO電極付きガラス板上に、第3表に示す発
光材料を真空蒸着して膜厚80nmの発光層を得た。さ
らに、電子注入材料として上記化合物(Alq)を真空
蒸着して膜厚20nmの電子注入層を作成し、その上
に、アルミニウムとリチウムをリチウム3重量%の割合
で混合した合金で膜厚150nmの膜厚の電極を形成し
て有機EL素子を得た。各層は10-6Torrの真空中
で、基板温度室温の条件下で蒸着した。この素子の発光
特性を第3表に示す。また本実施例の有機EL素子は、
全て最高輝度5000(cd/m2)以上の高輝度特性を
有していた。
Examples 38 to 46 The luminescent materials shown in Table 3 were vacuum-deposited on the cleaned glass plate with ITO electrodes to obtain a luminescent layer having a thickness of 80 nm. Further, the above compound (Alq) was vacuum-deposited as an electron injecting material to form an electron injecting layer having a thickness of 20 nm, and an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium was formed thereon. An electrode having a film thickness was formed to obtain an organic EL device. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. Table 3 shows the emission characteristics of this device. Further, the organic EL element of this embodiment
All had high luminance characteristics of the maximum luminance of 5000 (cd / m 2 ) or more.

【0117】[0117]

【表3】 [Table 3]

【0118】実施例47 洗浄したITO電極付きガラス板上に、正孔注入材とし
て上記化合物(TPD74)を膜厚60nmに真空蒸着
した。次に、正孔輸送材として下記化合物(NPD)を
膜厚20nmに真空蒸着した。
Example 47 The above compound (TPD74) as a hole injecting material was vacuum-deposited to a thickness of 60 nm on a washed glass plate with ITO electrodes. Next, the following compound (NPD) was vacuum-deposited as a hole-transporting material to a thickness of 20 nm.

【0119】次に、発光材料として4,4’−ビス
(2,2−ジフェニルビニル)ビフェニル(DPVB
i)および上記化合物(58)を、化合物(58)の割
合が5重量%、膜厚40nmとなるように同時蒸着し
た。尚、化合物(58)は蛍光性のドーパントとして機
能する。次に、電荷注入材として上記化合物(Alq)
を膜厚20nmで蒸着し、さらにLiFを膜厚0.5n
mで蒸着後アルミニウムを膜厚100nm蒸着し電極を
形成して有機EL素子を得た。各層は10-6Torrの
真空中で、基板温度室温の条件下で蒸着した。この素子
の発光特性は、直流電圧5Vの印加電圧で黄色発光輝度
600(cd/m2)と高輝度であった。さらに初期発光
輝度400(cd/m2)で、定電流駆動したところ半減
寿命は2800時間と長寿命であった。
Next, 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVB) was used as a light emitting material.
i) and the compound (58) were co-evaporated so that the ratio of the compound (58) was 5% by weight and the film thickness was 40 nm. Note that the compound (58) functions as a fluorescent dopant. Next, the above compound (Alq) is used as a charge injection material.
Is deposited in a thickness of 20 nm, and LiF is further deposited in a thickness of 0.5 n.
After depositing with m, aluminum was deposited to a thickness of 100 nm to form an electrode to obtain an organic EL device. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. The light emission characteristics of this element were as high as yellow light emission luminance of 600 (cd / m 2 ) when a DC voltage of 5 V was applied. Further, when the device was driven at a constant current at an initial luminance of 400 (cd / m 2 ), the half life was 2800 hours, which was a long life.

【0120】実施例48 発光材料として上記化合物(Alq)およびドーパント
として上記化合物(61)を、化合物(61)の割合が
5重量%となるように同時蒸着して発光層を形成したこ
とを除き、実施例47と同様にして有機EL素子を作製
した。この素子の発光特性は、直流電圧5Vの印加電圧
で発光輝度240(cd/m2)の赤色発光が得られ。さ
らに初期発光輝度400(cd/m2)で、定電流駆動し
たところ半減寿命は3200時間と長寿命であった。
Example 48 Except that the above-mentioned compound (Alq) as a luminescent material and the above-mentioned compound (61) as a dopant were co-deposited so that the ratio of the compound (61) was 5% by weight to form a luminescent layer. An organic EL device was produced in the same manner as in Example 47. With respect to the light emission characteristics of this element, red light emission having a light emission luminance of 240 (cd / m 2 ) was obtained with an applied voltage of 5 V DC. Further, when the device was driven at a constant current with an initial light emission luminance of 400 (cd / m 2 ), the half life was as long as 3200 hours.

【0121】比較例5 発光材料として上記化合物(比較例1)を使用したこと
を除き、実施例35と同様にして有機EL素子を作製し
た。得られた素子の発光特性は、直流電圧5Vの印加電
圧で発光輝度60(cd/m2)、発光効率0.34(l
m/W)と充分な性能が得られなかった。また、発光色
は青色であった。
Comparative Example 5 An organic EL device was produced in the same manner as in Example 35, except that the above compound (Comparative Example 1) was used as a light emitting material. The light-emitting characteristics of the obtained device were such that the light-emitting luminance was 60 (cd / m 2 ) and the light-emitting efficiency was 0.34 (l
m / W), sufficient performance could not be obtained. The emission color was blue.

【0122】比較例6 発光材料として上記化合物(比較例2)を使用したこと
を除き、実施例37と同様にして有機EL素子を作製し
た。得られた素子の発光特性は、直流電圧5Vの印加電
圧で発光輝度200(cd/m2)、発光効率1.2(l
m/W)であったが、初期発光輝度400(cd/m2)
で定電流駆動したところ半減寿命は600時間と寿命が
短かった。また、発光色は青色であった。
Comparative Example 6 An organic EL device was produced in the same manner as in Example 37, except that the above compound (Comparative Example 2) was used as a light emitting material. The light emitting characteristics of the obtained device were as follows: light emission luminance 200 (cd / m 2 ) and light emission efficiency 1.2 (l
m / W), but the initial emission luminance was 400 (cd / m 2 ).
And the half-life was 600 hours, which was short. The emission color was blue.

【0123】比較例7 発光材料の上記化合物(58)の代わりに、上記化合物
(比較例1)を使用したことを除き、実施例47と同様
にして有機EL素子を作製した。得られた素子の発光特
性は、直流電圧5Vの印加電圧で発光輝度200(cd
/m2)であったが、初期発光輝度400(cd/m2)で
定電流駆動したところ半減寿命は700時間と寿命が短
かく、発光色は青色であった。
Comparative Example 7 An organic EL device was produced in the same manner as in Example 47, except that the compound (Comparative Example 1) was used instead of the compound (58) as the light emitting material. The light emission characteristics of the obtained device were such that a light emission luminance of 200 (cd) was obtained by applying a DC voltage of 5 V.
/ M 2 ), and when driven at a constant current with an initial luminance of 400 (cd / m 2 ), the half life was short, 700 hours, and the emission color was blue.

【0124】合成例8(化合物(58)) 中間体F(5,11−ジブロモナフタセン)の合成 2リットル丸底フラスコに、5,12−ナフタセンキノ
ン 50g(0.19mmol)、塩化第二錫 108
g(0.57mmol)、酢酸 500ミリリットル、
濃塩酸 200ミリリットルを入れ、2時間加熱攪拌し
反応させた。反応終了後、析出した結晶を濾取し、水洗
浄した後、減圧乾燥機にて一晩乾燥し、粗結晶48gを
得た。アルゴン気流下2リットル四口フラスコに、得ら
れた粗結晶、トリフェニルフォスフィン 50g(0.
19mmol)、DMF 300ミリリットルを入れ、
臭素 64g(0.4mmol)/DMF 200ミリ
リットルを室温で少しずつ滴下し反応させた。滴下終了
後、200℃で一晩加熱攪拌した。反応終了後、減圧蒸
留でDMFを留去し、残さに水 200ミリリットルを
加えた。有機層をトルエン抽出し、硫酸マグネシウムで
乾燥後、ロータリーエバポレーターで減圧濃縮し、オイ
ル状の化合物を得た。カラムクロマトグラフ(シリカゲ
ル、ヘキサン/トルエン=1/1)で精製し、黄色粉末
30gを得た。この粉末は、NMR、IR及びFD−
MSの測定により、中間体Fと同定された(収率40
%)。
Synthesis Example 8 (Compound (58)) Synthesis of Intermediate F (5,11-dibromonaphthacene) In a 2-liter round bottom flask, 50 g (0.19 mmol) of 5,12-naphthacenequinone and stannic chloride 108
g (0.57 mmol), 500 ml of acetic acid,
200 ml of concentrated hydrochloric acid was added, and the mixture was heated and stirred for 2 hours to react. After completion of the reaction, the precipitated crystals were collected by filtration, washed with water, and dried overnight in a vacuum drier to obtain 48 g of crude crystals. In a 2-liter four-necked flask, 50 g of the obtained crude crystal and triphenylphosphine (0.
19 mmol), 300 ml of DMF,
At room temperature, 64 g (0.4 mmol) of bromine / 200 ml of DMF was added dropwise at room temperature to react. After the addition, the mixture was heated and stirred at 200 ° C. overnight. After completion of the reaction, DMF was distilled off under reduced pressure, and 200 ml of water was added to the residue. The organic layer was extracted with toluene, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator to obtain an oily compound. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 30 g of a yellow powder. This powder has NMR, IR and FD-
The powder was identified as Intermediate F by MS measurement (yield: 40
%).

【0125】化合物(58)の合成 100ミリリットル二口フラスコ中で、4−アミノスチ
ルベン 2g(10mmol)を塩化メチレン 20ミ
リリットルに溶解し、無水酢酸 2.5g(25mmo
l)を加え、室温にて1時間反応させた。その後、反応
溶媒を留去してオイル状の化合物を得た。300ミリリ
ットル二口フラスコ中で、この化合物に、ヨードベンゼ
ン 4.1g(20mmol)、炭酸カリウム 3g
(30mmol)、銅粉 0.06g(1mmol)及
びニトロベンゼン 100ミリリットルを加え、220
℃で2日間加熱攪拌した。その後、溶媒を留去し得られ
た残さに、ジエチレングリコール 10ミリリットルと
水酸化カリウム 30g/水100ミリリットルを加
え、110℃で一晩反応させた。反応終了後、酢酸エチ
ル/水を加えて分液し、溶媒留去後、粗結晶を得た。ア
ルゴン気流下100ミリリットル二口フラスコ中で、得
られた粗結晶、中間体F 1.9g(5mmol)、t
BuOK 1.3g(12mmol)、PdCl2(PP
3)2 40mg(5mol%)及びキシレン 30ミリ
リットルを混合し、130℃で一晩攪拌し反応させた。
反応終了後、析出晶を濾取し、メタノールで洗浄した。
カラムクロマトグラフ(シリカゲル、ヘキサン/トルエ
ン=1/1)で精製し、黄色粉末 0.9gを得た。こ
の粉末は、NMR、IR及びFD−MSの測定により、
化合物(58)と同定された(収率25%)。
Synthesis of Compound (58) In a 100 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, and 2.5 g (25 mmol) of acetic anhydride was dissolved.
l) was added and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene and 3 g of potassium carbonate were added to this compound.
(30 mmol), 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added, and 220
The mixture was heated and stirred at ℃ for 2 days. Thereafter, 10 ml of diethylene glycol and 30 g of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After the completion of the reaction, ethyl acetate / water was added to carry out liquid separation, and after distilling off the solvent, crude crystals were obtained. In a 100 ml two-necked flask under a stream of argon, the obtained crude crystals, 1.9 g (5 mmol) of intermediate F, t
1.3 g (12 mmol) of BuOK, PdCl 2 (PP
40 mg (5 mol%) of h 3 ) 2 and 30 ml of xylene were mixed and stirred at 130 ° C. overnight for reaction.
After the completion of the reaction, the precipitated crystals were collected by filtration and washed with methanol.
Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 0.9 g of a yellow powder. This powder was measured by NMR, IR and FD-MS,
It was identified as compound (58) (yield 25%).

【0126】合成例9(化合物(59)) 化合物(59)の合成 アルゴン気流下300ミリリットル四口フラスコに、4
−ヒドロキシスチルベン 2g(10mmol)、トリ
フェニルフォスフィン 5.2g(20mmol)、D
MF 50ミリリットルを入れ、ヨウ素 5g(20m
mol)/DMF 50ミリリットルを室温で少しずつ
滴下し反応させた。滴下終了後、200℃で一晩攪拌し
た。反応終了後、減圧蒸留でDMFを留去し、残さに水
200ミリリットルを加えた。有機層をトルエンで抽
出し、硫酸マグネシウムで乾燥後、ロータリーエバポレ
ーターで減圧濃縮し、オイル状の化合物を得た。カラム
クロマトグラフ(シリカゲル、ヘキサン/トルエン=1
/1)で精製し、黄色粉末2.5gを得た。別途、10
0ミリリットル二口フラスコ中で、4−アミノスチルベ
ン 2g(10mmol)を塩化メチレン 20ミリリ
ットルに溶解し、無水酢酸 2.5g(25mmol)
を加え、室温にて1時間反応させた。その後、反応溶媒
を留去してオイル状の化合物を得た。300ミリリット
ル二口フラスコ中で、この化合物に、上記黄色粉末
2.5g、炭酸カリウム 3g(30mmol)、銅粉
0.06g(1mmol)及びニトロベンゼン 10
0ミリリットルを加え、220℃で2日間加熱攪拌し
た。その後、溶媒を留去し得られた残さに、ジエチレン
グリコール 10ミリリットルと水酸化カリウム 30
g/水 100ミリリットルを加え、110℃で一晩反
応させた。反応終了後、酢酸エチル/水を加えて分液
し、溶媒留去後、粗結晶を得た。300ミリリットル二
口フラスコ中で、上記粗結晶、中間体F 2.4g(5
mmol)、tBuOK 1.3g(12mmol)、
PdCl2(PPh3)2 40mg(5mol%)及びキシ
レン 30ミリリットルを混合し、130℃で一晩攪拌
し反応させた。反応終了後、析出晶を濾取し、メタノー
ルで洗浄、乾燥した。カラムクロマトグラフ(シリカゲ
ル、ヘキサン/トルエン=1/1)で精製し、黄色粉末
0.2gを得た。この粉末は、NMR、IR及びFD
−MSの測定により、化合物(59)と同定された(収
率5%)。
Synthesis Example 9 (Compound (59)) Synthesis of compound (59)
-Hydroxystilbene 2 g (10 mmol), triphenylphosphine 5.2 g (20 mmol), D
Add 50 ml of MF and 5 g of iodine (20 m
(mol) / DMF 50 ml little by little at room temperature for reaction. After the addition, the mixture was stirred at 200 ° C. overnight. After completion of the reaction, DMF was distilled off under reduced pressure, and 200 ml of water was added to the residue. The organic layer was extracted with toluene, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator to obtain an oily compound. Column chromatography (silica gel, hexane / toluene = 1
/ 1) to obtain 2.5 g of a yellow powder. Separately, 10
In a 0 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, and 2.5 g (25 mmol) of acetic anhydride was dissolved.
Was added and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, the yellow powder was added to this compound.
2.5 g, potassium carbonate 3 g (30 mmol), copper powder 0.06 g (1 mmol) and nitrobenzene 10
0 ml was added, and the mixture was heated and stirred at 220 ° C. for 2 days. After that, 10 ml of diethylene glycol and 30 ml of potassium hydroxide were added to the residue obtained by distilling off the solvent.
g / water (100 ml) was added and reacted at 110 ° C. overnight. After the completion of the reaction, ethyl acetate / water was added to carry out liquid separation, and after distilling off the solvent, crude crystals were obtained. In a 300 ml two-necked flask, 2.4 g of the above crude crystal, Intermediate F (5
mmol), 1.3 g (12 mmol) of tBuOK,
40 mg (5 mol%) of PdCl 2 (PPh 3 ) 2 and 30 ml of xylene were mixed and reacted by stirring at 130 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with methanol, and dried. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 0.2 g of a yellow powder. This powder has NMR, IR and FD
The powder was identified as Compound (59) by -MS measurement (yield: 5%).

【0127】合成例10(化合物(61)) 化合物(61)の合成 アルゴン気流下300ミリリットル四口フラスコに、4
−ブロモトリフェニルアミン 9.7g(30mmo
l)、トルエン 50ミリリットル及びジエチルエーテ
ル 50ミリリットルを入れ、氷水で冷却し、n−ブチ
ルリチウム/ヘキサン 22ミリリットル(1.52m
ol/リットル、33mmol)/THF100ミリリ
ットルを室温で少しずつ滴下し反応させた。滴下終了
後、同温で一晩攪拌した。反応終了後、水 50ミリリ
ットルを加え、有機層をジエチルエーテルで抽出し、硫
酸マグネシウムで乾燥後、ロータリーエバポレーターで
減圧濃縮し、オイル状の化合物7.4gを得た。300
ミリリットル四口フラスコに、上記化合物、ヨウ化カリ
ウム 6.6g(40mmol)及び酢酸 100ミリ
リットルを入れ、一時間加熱還流させた。反応終了後、
室温まで冷却して析出晶を濾取した。得られた結晶を水
とアセトンで洗浄して橙色固体2.7gを得た。この橙
色固体は、NMR、IR及びFD−MSの測定により、
化合物(61)と同定された(収率35%)。
Synthesis Example 10 (Compound (61)) Synthesis of Compound (61)
-Bromotriphenylamine 9.7 g (30 mmo
l), toluene (50 ml) and diethyl ether (50 ml) were added, cooled with ice water, and n-butyllithium / hexane (22 ml) (1.52 m
ol / liter, 33 mmol) / 100 ml of THF was added dropwise little by little at room temperature and reacted. After the addition, the mixture was stirred overnight at the same temperature. After completion of the reaction, 50 ml of water was added, the organic layer was extracted with diethyl ether, dried over magnesium sulfate, and concentrated under reduced pressure by a rotary evaporator to obtain 7.4 g of an oily compound. 300
The above compound, 6.6 g (40 mmol) of potassium iodide and 100 ml of acetic acid were placed in a milliliter four-necked flask, and the mixture was heated under reflux for 1 hour. After the reaction,
After cooling to room temperature, the precipitated crystals were collected by filtration. The obtained crystals were washed with water and acetone to obtain 2.7 g of an orange solid. The orange solid was analyzed by NMR, IR and FD-MS to determine
It was identified as compound (61) (yield 35%).

【0128】合成例11(化合物(62)) 中間体G(5,11−ジヨードナフタセン)の合成 500ミリリットル丸底フラスコに、ナフタセン 50
g(0.22mmol)、テトラクロロエタン 200
ミリリットルを入れ、ヨウ素/四塩化炭素 160g
(0.64mol/200ミリリットル)を室温で少し
ずつ滴下し反応させた。反応液を5時間加熱攪拌した
後、析出した結晶を濾取し、メタノール 500ミリリ
ットルで洗浄した。得られた粗結晶をトルエン200ミ
リリットルで再結晶させ、中間体G 34gを得た(収
率40%)。
Synthesis Example 11 (Compound (62)) Synthesis of Intermediate G (5,11-diiodonaphthacene) In a 500 ml round bottom flask, naphthacene 50 was added.
g (0.22 mmol), tetrachloroethane 200
Add milliliter and add 160g of iodine / carbon tetrachloride
(0.64 mol / 200 ml) was added dropwise little by little at room temperature to cause a reaction. After heating and stirring the reaction solution for 5 hours, the precipitated crystals were collected by filtration and washed with 500 ml of methanol. The obtained crude crystals were recrystallized from 200 ml of toluene to obtain 34 g of an intermediate G (yield: 40%).

【0129】化合物(62)の合成 アルゴン気流下100ミリリットル四口フラスコに、マ
グネシウム 1.0g(41mmol)、THF 1ミ
リリットル、ヨウ素の小片を入れ、4−ブロモトリフェ
ニルアミン 9.7g(30mmol)/THF 10
0ミリリットルを室温で少しずつ滴下し、滴下終了後6
0℃で1時間加熱攪拌しGrignard試薬を調製し
た。アルゴン気流下300ミリリットル四口フラスコ
に、中間体G 4.8g(10mmol)、THF 5
0ミリリットル、PdCl2(PPh3)2 0.28g
(0.4mmol)及びAlH(iso−Bu)2
1.0Mトルエン溶液 1.0ミリリットル(1mmo
l)を入れ、上記Grignard試薬を室温で滴下し
た後、昇温して一晩還流させた。反応終了後、反応液を
氷水冷却して析出晶を濾取し、アセトンで洗浄した。得
られた粗結晶をアセトン 100ミリリットルで再結晶
させ、黄色粉末 3.6gを得た。この粉末は、NM
R、IR及びFD−MSの測定により、化合物(62)
と同定された(収率50%)。
Synthesis of Compound (62) 1.0 g (41 mmol) of magnesium, 1 ml of THF, and a small piece of iodine were placed in a 100 ml four-necked flask under a stream of argon, and 9.7 g (30 mmol) of 4-bromotriphenylamine was added. THF 10
0 ml is added dropwise little by little at room temperature.
The mixture was heated and stirred at 0 ° C. for 1 hour to prepare a Grignard reagent. In a 300 ml four-necked flask, 4.8 g (10 mmol) of Intermediate G and THF
0 ml, PdCl 2 (PPh 3 ) 2 0.28 g
(0.4 mmol) and AlH (iso-Bu) 2 /
1.0M toluene solution 1.0ml (1mmo
l) was added thereto, and the above-mentioned Grignard reagent was added dropwise at room temperature, and then heated to reflux overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with acetone. The obtained crude crystals were recrystallized from 100 ml of acetone to obtain 3.6 g of a yellow powder. This powder is NM
The compound (62) was measured by R, IR and FD-MS.
(50% yield).

【0130】実施例49 洗浄したITO電極付きガラス板上に、正孔注入材とし
て上記化合物(TPD74)を膜厚60nmに真空蒸着
した。次に、正孔輸送材として上記化合物(NPD)を
膜厚20nmに真空蒸着した。次に、発光材料として上
記化合物(Alq)およびドーパントとして上記化合物
(75)を、化合物(75)の割合が2重量%、膜厚4
0nmとなるように同時蒸着した。次に、電子注入材と
して上記化合物(Alq)を膜厚20nmで蒸着し、さ
らにLiFを膜厚0.5nmで蒸着後アルミニウムを膜
厚100nm蒸着し電極を形成して有機EL素子を得
た。各層は10-6Torrの真空中で、基板温度室温の
条件下で蒸着した。この素子の発光特性は、直流電圧8
Vの印加電圧で発光輝度500(cd/m2)と高輝度
で、橙色発光であった。さらに初期発光輝度500(c
d/m2)で、定電流駆動したところ半減寿命は2000
時間を越え特に長寿命であった。
Example 49 The above compound (TPD74) as a hole injecting material was vacuum-deposited to a thickness of 60 nm on a washed glass plate with an ITO electrode. Next, the compound (NPD) as a hole transporting material was vacuum-deposited to a thickness of 20 nm. Next, the above compound (Alq) as a light emitting material and the above compound (75) as a dopant were used at a ratio of 2% by weight of the compound (75) and a film thickness of 4%.
Co-evaporation was performed to a thickness of 0 nm. Next, the above-mentioned compound (Alq) was deposited as an electron injecting material in a thickness of 20 nm, LiF was deposited in a thickness of 0.5 nm, and aluminum was deposited in a thickness of 100 nm to form an electrode to obtain an organic EL element. Each layer was deposited at a substrate temperature of room temperature in a vacuum of 10 -6 Torr. The light emission characteristics of this element are as follows: DC voltage 8
With an applied voltage of V, the light emission luminance was 500 (cd / m 2 ), high luminance, and orange light emission. Furthermore, initial light emission luminance 500 (c
d / m 2 ), the half life is 2000 when driven at a constant current.
It was particularly long life over time.

【0131】実施例50 ドーパントとして上記化合物(75)に代えて上記化合
物(86)を添加したことを除き、実施例49と同様に
して有機EL素子を作製した。この素子について、初期
発光輝度500(cd/m2)で、定電流駆動したところ
半減寿命は2000時間と長寿命であった。発光色は朱
色であった。
Example 50 An organic EL device was produced in the same manner as in Example 49, except that the compound (86) was added instead of the compound (75) as a dopant. When the device was driven at a constant current with an initial light emission luminance of 500 (cd / m 2 ), the half life was as long as 2000 hours. The emission color was vermilion.

【0132】実施例51 ドーパントとして上記化合物(75)に代えて上記化合
物(82)を添加したことを除き、実施例49と同様に
して有機EL素子を作製した。この素子について、初期
発光輝度500(cd/m2)で、定電流駆動したところ
半減寿命は2800時間以上と長寿命であった。発光色
は赤色であった。
Example 51 An organic EL device was fabricated in the same manner as in Example 49, except that the compound (82) was added instead of the compound (75) as a dopant. When the device was driven at a constant current at an initial light emission luminance of 500 (cd / m 2 ), the half-life was as long as 2800 hours or more. The emission color was red.

【0133】合成例12(化合物(75)) 化合物(75)の合成 アルゴン気流下200ミリリットル三口フラスコ中で、
6,12−ジブロモナフタセン(40577−78−
4) 2.16g(5.6mmol)、Pd(OAc)
2 0.06g(0.3mmol)、P(tBu)3 0.
23g(1.1mmol)、NaOtBu 1.51g
(15.7mmol)、Ph2 NH 1.89g(1
1.2mmol)及びトルエン 25mlを加え、12
0℃で7時間加熱攪拌し反応させた。反応終了後放冷
し、赤色結晶を濾取した後、トルエンと水で洗浄、減圧
乾燥して赤色粉末 3.02gを得た。この粉末は、N
MR、IR及びFD−MSの測定により、化合物(7
5)と同定された(収率96%)。NMR(CDC1
3、TMS)において、6.8〜7.0(m、2H)、
7.0〜7.4(m、10H)、7.8〜7.9(m、
1H)、8.0〜8.1(m、1H)、8.85(s、
1H)であった。
Synthesis Example 12 (Compound (75)) Synthesis of Compound (75) In a 200 ml three-necked flask under a stream of argon,
6,12-dibromonaphthacene (40577-78-
4) 2.16 g (5.6 mmol), Pd (OAc)
2 0.06 g (0.3 mmol), P (tBu) 30 .
23 g (1.1 mmol), NaOtBu 1.51 g
(15.7 mmol), 1.89 g of Ph 2 NH (1
1.2 mmol) and 25 ml of toluene.
The mixture was heated and stirred at 0 ° C. for 7 hours to be reacted. After completion of the reaction, the reaction solution was allowed to cool, and red crystals were collected by filtration, washed with toluene and water, and dried under reduced pressure to obtain 3.02 g of red powder. This powder is N
According to the measurement of MR, IR and FD-MS, the compound (7
5) (96% yield). NMR (CDC1
3, TMS), 6.8 to 7.0 (m, 2H),
7.0 to 7.4 (m, 10H), 7.8 to 7.9 (m,
1H), 8.0 to 8.1 (m, 1H), 8.85 (s,
1H).

【0134】実施例52 25mm×75mm×1.1mmの大きさのガラス基板
上に、膜厚100nmインジウム・スズ酸化物膜の透明
性アノードを設け、紫外線とオゾンを併用して10分間
洗浄した。このガラス基板を真空茶着装置(日本真空技
術(株))を入れ、約10-4Paに減圧した。その後、
上記TPD74を、蒸着速度0.2nm/秒で60nm
の厚さに蒸着した。次いで、下記構造のTPD78を、
蒸着速度0.2nm/秒で20nmの厚さに蒸着した。
次に、下記構造のDPVDPAN及び発光材料として上
記化合物(100)を同時蒸着して40nmの厚さの発
光層を形成した。この時のDPVDPANの蒸着速度は
0.4nm/秒、化合物(100)の蒸着速度は0.0
1nm/秒であった。さらに、上記Alqを蒸着速度
0.2nm/秒で蒸着し、最後にアルミニウムとリチウ
ムとを同時蒸着することにより、陰極を150nmの厚
さで形成して有機EL素子を得た。この時の、アルミニ
ウムの蒸着速度は1nm/秒であり、リチウムの蒸着速
度は0.004nm/秒であった。
Example 52 A transparent anode of a 100 nm-thick indium-tin oxide film was provided on a glass substrate having a size of 25 mm × 75 mm × 1.1 mm, and washed with ultraviolet light and ozone for 10 minutes. This glass substrate was put in a vacuum tea-coating apparatus (Japan Vacuum Engineering Co., Ltd.) and the pressure was reduced to about 10 −4 Pa. afterwards,
The TPD 74 is deposited at a deposition rate of 0.2 nm / sec at 60 nm.
Deposited to a thickness of Next, a TPD 78 having the following structure is
Deposition was performed to a thickness of 20 nm at a deposition rate of 0.2 nm / sec.
Next, the DPVDPAN having the following structure and the compound (100) as a light emitting material were co-evaporated to form a light emitting layer having a thickness of 40 nm. At this time, the deposition rate of DPVDPAN was 0.4 nm / sec, and the deposition rate of compound (100) was 0.0
It was 1 nm / sec. Further, Alq was vapor-deposited at a vapor deposition rate of 0.2 nm / sec, and finally aluminum and lithium were simultaneously vapor-deposited to form a cathode with a thickness of 150 nm, thereby obtaining an organic EL device. At this time, the deposition rate of aluminum was 1 nm / sec, and the deposition rate of lithium was 0.004 nm / sec.

【化78】 得られた有機EL素子について性能を評価した。第4表
に示す電圧における発光輝度を測定し、発光効率を算出
し、発光色を観察した。さらに、窒素気流下で初期発光
輝度500(cd/m2)で定電流駆動し、発光輝度25
0(cd/m2)となる半減寿命を測定した。これらの結
果を第4表に示す。
Embedded image The performance of the obtained organic EL device was evaluated. The emission luminance at the voltage shown in Table 4 was measured, the emission efficiency was calculated, and the emission color was observed. Further, a constant current drive was performed at an initial light emission luminance of 500 (cd / m 2 ) under a nitrogen gas flow, and the light emission luminance was 25
The half-life which became 0 (cd / m 2 ) was measured. Table 4 shows the results.

【0135】実施例53〜62 実施例52において、化合物(100)の代わりに、発
光材料として第4表に示した化合物を使用した以外は同
様にして有機EL素子を作製し、評価した。それらの結
果を第4表に示す。
Examples 53 to 62 Organic EL devices were prepared and evaluated in the same manner as in Example 52 except that the compounds shown in Table 4 were used as the luminescent materials instead of the compound (100). Table 4 shows the results.

【0136】比較例8 実施例52において、化合物(100)の代わりに、発
光材料として下記ジアミン化合物
Comparative Example 8 In Example 52, the following diamine compound was used as a luminescent material instead of the compound (100).

【化79】 を使用した以外は同様にして有機EL素子を作製し、評
価した。それらの結果を第4表に示す。
Embedded image An organic EL device was prepared and evaluated in the same manner except that was used. Table 4 shows the results.

【0137】[0137]

【表4】 [Table 4]

【0138】第4表に示したように、本発明の一般式
As shown in Table 4, the general formula of the present invention

〔9〕及び〔10〕の化合物を発光材料又は正孔輸送材
料として使用した実施例52〜62の有機EL素子は、
上記比較例8のジアミン化合物を使用した有機EL素子
に比べ発光輝度、発光効率及び寿命共に優れていた。
The organic EL devices of Examples 52 to 62 using the compounds of [9] and [10] as a light emitting material or a hole transport material,
Compared with the organic EL device using the diamine compound of Comparative Example 8, the luminous brightness, the luminous efficiency and the life were excellent.

【0139】合成例13(化合物(100)) 中間体Hの合成 アルゴン気流下、冷却管付き1リットル三口フラスコ中
に、4 −ブロモフタル酸無水物 22.7g(0.1m
ol) 、炭酸ナトリウム 42.4g(0.4mo
l)、水 300ミリリットルを加え、60℃まで加熱
し溶解させた。溶解後室温まで冷却し、フェニルボロン
酸 18.3g(0.15mol) と酢酸パラジウム
0.7g(3mol%)を加え、室温で一晩攪拌した。
反応終了後、水を加えて析出晶を溶解させ、触媒を濾過
にて除去後濃塩酸にて酸析し、析出晶を濾取水洗した。
得られた結晶を酢酸エチルの溶解させ、有機層を抽出し
た。硫酸マグネシウムで乾燥後、ロータリーエバポレー
ターで減圧濃縮し、目的とする中間体H 23.7g
(収率98%)を得た。
Synthesis Example 13 (Compound (100)) Synthesis of Intermediate H In a 1-liter three-necked flask equipped with a condenser under a stream of argon, 22.7 g (0.1 m) of 4-bromophthalic anhydride was placed.
ol), 42.4 g of sodium carbonate (0.4 mol
l), 300 ml of water was added, and the mixture was heated to 60 ° C. and dissolved. After dissolution, the mixture was cooled to room temperature, and 18.3 g (0.15 mol) of phenylboronic acid and palladium acetate were added.
0.7 g (3 mol%) was added, and the mixture was stirred at room temperature overnight.
After completion of the reaction, water was added to dissolve the precipitated crystals, the catalyst was removed by filtration, and then the precipitate was subjected to acid precipitation with concentrated hydrochloric acid.
The obtained crystals were dissolved in ethyl acetate, and the organic layer was extracted. After drying over magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator to obtain 23.7 g of the desired intermediate H.
(98% yield).

【0140】中間体Iの合成 冷却管付き500ミリリットルナスフラスコ中に、中間
体H 23.7g(98mmol)と無水酢酸 200
ミリリットルを加え、80℃にて3時間攪拌した。反応
終了後、過剰な無水酢酸を留去し、目的とする中間体I
22g(収率10%)を得た。 中間体Jの合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、ビフェニル 7.7g(50mmol)、
無水塩化アルミニウム 13.4g(0.1mol)、
1,2−ジクロロエタン 200ミリリットルを加え、
0℃まで冷却した。次に中間体I 22g(98mmo
l)を徐々に添加し、40℃にて2時間攪拌した。反応
終了後に氷水を加え、クロロホルムで分液抽出した。硫
酸マグネシウムで乾燥後、ロータリーエバポレーターで
減圧濃縮し、目的とする中間体J19.0g(収率10
0%)を得た。
Synthesis of Intermediate I In a 500 ml eggplant flask equipped with a condenser, 23.7 g (98 mmol) of Intermediate H and 200 ml of acetic anhydride were added.
Milliliter was added, and the mixture was stirred at 80 ° C for 3 hours. After completion of the reaction, excess acetic anhydride was distilled off to obtain the desired intermediate I
22 g (10% yield) were obtained. Synthesis of Intermediate J Under a stream of argon, 7.7 g (50 mmol) of biphenyl was placed in a 500 ml three-necked flask equipped with a condenser.
13.4 g (0.1 mol) of anhydrous aluminum chloride,
Add 200 ml of 1,2-dichloroethane,
Cooled to 0 ° C. Next, 22 g of Intermediate I (98 mmo
1) was added slowly and stirred at 40 ° C. for 2 hours. After the reaction was completed, ice water was added, and the mixture was separated and extracted with chloroform. After drying over magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator to obtain 19.0 g of the desired intermediate J (yield: 10%).
0%).

【0141】中間体Kの合成 冷却管付き500ミリリットルナスフラスコ中に、ポリ
リン酸 200ミリリットルを入れ、150℃に加熱し
た。次に、中間体J 19g(50mmol)を少量ず
つ添加し、同温にて3時間撹絆した。反応終了後に氷水
を加え、クロロホルムで分液抽出した。硫酸マグネシウ
ムで乾燥後、ロータリーエバポレーターで減圧濃縮し
た。得られた粗結晶を、カラムクロマトグラフ(シリカ
ゲル、クロロホルム/メタノール=99/1)で精製
し、目的とする中間体 K19g(収率55%)を得
た。 中間体Lの合成 アルゴン気流下、冷却管付き500ミリリットルナスフ
ラスコ中に、中間体K19.0g(28mmol)、塩
化スズ 0.19g(1mmol)、酢酸100ミリリ
ットル、濃塩酸 50ミリリットルを加え、2時間加熱
還流した。反応終了後、反応液を氷水冷却して析出晶を
濾取し、水で洗浄し目的とする中間体L 19g(収率
100%)を得た。
Synthesis of Intermediate K 200 ml of polyphosphoric acid was placed in a 500 ml eggplant flask equipped with a cooling tube and heated to 150 ° C. Next, 19 g (50 mmol) of Intermediate J was added little by little, and the mixture was stirred at the same temperature for 3 hours. After the reaction was completed, ice water was added, and the mixture was separated and extracted with chloroform. After drying over magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator. The obtained crude crystals were purified by column chromatography (silica gel, chloroform / methanol = 99/1) to obtain 19 g of the desired intermediate K (yield 55%). Synthesis of Intermediate L Under a stream of argon, 19.0 g (28 mmol) of Intermediate K, 0.19 g (1 mmol) of tin chloride, 100 mL of acetic acid, and 50 mL of concentrated hydrochloric acid were added to a 500 mL eggplant flask equipped with a cooling tube for 2 hours. Heated to reflux. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water to obtain 19 g (yield 100%) of the desired intermediate L.

【0142】中間体Mの合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、中間体L19.0g(28mmol)、ト
リフェニルホスフィン 16g(60mmol)、DM
F 200ミリリットルを加えた。続いて、臭素 9.
6g(60mmol)/DMF 50ミリリットルを徐
々に滴下した後、200℃で8時間加熱撹枠した。反応
終了後、反応液を氷水冷却して析出晶を濾取し、水、メ
タノールで洗浄し目的とする中間体M 6.7g(収率
50%)を得た。 化合物(100)の合成 アルゴン気流下、冷却管付き200ミリリットル三口フ
ラスコ中に、中間体M4.9g(10mmol)、ジフ
ェニルアミン 5.1g(30mmol)、トリス(ジ
ベンジリデシアセトン) ジバラジウム 0.14g
(1.5mol%)、トリ−o−トルイルホスフィン
0.91g(3mol%)、t−ブトキシナトリウム
2.9g(30mmol)、乾燥トルエン 50ミリリ
ットルを加えた後、100℃にて一晩加熱攪拌した。反
応終了後、析出した結晶を濾取し、メタノール100
ミリリットルにて洗浄し、黄色粉末 4.0gを得た。
この粉末は、NMR、IR及びFD−MSの測定によ
り、化合物(100)と同定された(収率60%)。
Synthesis of Intermediate M In a 500 ml three-necked flask equipped with a condenser under an argon stream, 19.0 g (28 mmol) of intermediate L, 16 g (60 mmol) of triphenylphosphine, DM
200 ml of F were added. Subsequently, bromine 9.
After 6 g (60 mmol) / 50 mL of DMF was gradually added dropwise, the mixture was heated and stirred at 200 ° C. for 8 hours. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water and methanol to obtain 6.7 g (yield: 50%) of a target intermediate M. Synthesis of Compound (100) Under a stream of argon, in a 200 ml three-necked flask equipped with a condenser, 4.9 g (10 mmol) of Intermediate M, 5.1 g (30 mmol) of diphenylamine, 0.14 g of tris (dibenzylidesiacetone) divaladium.
(1.5 mol%), tri-o-toluylphosphine
0.91 g (3 mol%), sodium t-butoxide
After adding 2.9 g (30 mmol) and 50 ml of dry toluene, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, and methanol 100
After washing with milliliters, 4.0 g of a yellow powder was obtained.
This powder was identified as compound (100) by NMR, IR and FD-MS measurements (60% yield).

【0143】上記中間体の構造式及び化合物(100)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (100)
Is shown below.

【化80】 Embedded image

【0144】合成例14(化合物(101)) 中間体Nの合成 アルゴン気流下で、冷却管付き500ミリリットルナス
フラスコ中に、2,6−ジヒドロキシーアントラキノン
12g(50mmol)、沃化メチル 42.5g
(0.3mol)、水酸化カリウム 17g(0.3m
ol)、DMSO200ミリリットルを加え、室温で2
時間攪拌した。反応終了後、析出した結晶を濾取し、メ
タノール 100ミリリットルにて洗浄し目的とする中
間体N10.7g(収率80%)を得た。 中間体Oの合成 アルゴン気流下で. 500ミリリットル三口フラスコ中
に、中間体N 10.7(40mmol)、乾燥THF
200ミリリットルを加え−40℃に冷却後、1.5
Mフェニルリチウム/ヘキサン溶液 53ミリリットル
(80mmol)を徐々に滴下した。滴下終了後、室温
にて一晩攪拌した。反応終了後、析出した結晶を濾取
し、メタノール 100ミリリットルに続きアセトン
100ミリリットルにて洗浄した。得られたジオ一ル体
粗結晶はそれ以上精製せず、次の反応に用いた。冷却管
付き500ミリリットルナスフラスコ中に、上記粗結
晶、57%沃化水素水 100ミリリットル、酢酸 2
00ミリリットルを加え、3時間加熱還流した。室温ま
で冷却後、少量の次亜リン酸を加え、過剰な沃化水素を
クエンチした。析出した結晶を濾取し、水 100ミリ
リットル、メタノール 100ミリリットル、アセトン
100ミリリットルの順番で洗浄し目的とする中間体
O10.1g(収率70%)を得た。・
Synthesis Example 14 (Compound (101)) Synthesis of Intermediate N Under a stream of argon, in a 500 ml eggplant flask equipped with a condenser, 12 g (50 mmol) of 2,6-dihydroxy-anthraquinone and 42.5 g of methyl iodide
(0.3 mol), 17 g of potassium hydroxide (0.3 m
ol) and 200 ml of DMSO, and
Stirred for hours. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 10.7 g of the desired intermediate N (yield: 80%). Synthesis of Intermediate O Under an argon stream. In a 500 ml three-necked flask, intermediate N 10.7 (40 mmol), dry THF
After adding 200 ml and cooling to −40 ° C., 1.5
53 ml (80 mmol) of a M phenyllithium / hexane solution was gradually added dropwise. After the addition, the mixture was stirred at room temperature overnight. After completion of the reaction, the precipitated crystals were collected by filtration, and then 100 ml of methanol followed by acetone
Washed with 100 ml. The resulting crude crystals of the diol were used in the next reaction without further purification. The above crude crystals, 100 ml of 57% aqueous hydrogen iodide, and acetic acid 2 were placed in a 500 ml eggplant flask equipped with a cooling tube.
After adding 00 ml, the mixture was heated under reflux for 3 hours. After cooling to room temperature, a small amount of hypophosphorous acid was added to quench excess hydrogen iodide. The precipitated crystals were collected by filtration and washed with 100 ml of water, 100 ml of methanol and 100 ml of acetone in this order to obtain 10.1 g of the desired intermediate O (yield 70%).・

【0145】中間体Pの合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、中間体O10.1g(28mmol)、ト
リフェニルホスフィン 7.9g(30mmol)、D
MF 200ミリリットルを加えた。続いて、臭素
4.8g(30mmol)/DMF 50ミリリットル
を徐々に滴下した後、200℃で8時間加熱撹枠した。
反応終了後、反応液を氷水冷却して析出晶を濾取し、
水、メタノールで洗浄し目的とする中間体P 8.2g
(収率60%)を得た。 化合物(101)の合成 アルゴン気流下、冷却管付き200ミリリットル三口フ
ラスコ中に、中間体P4.9g(30mmol)、ジフ
ェニルアミン 5.1g(30mmol)、トリス(ジ
ベンジリデシアセトン) ジバラジウム 0.14g
(1.5mol%)、トリ−o−トルイルホスフィン
0.91g(3mol%)、t−ブトキシナトリウム
2.9g(30mmol)、乾燥トルエン 50ミリリ
ットルを加えた後、100℃にて一晩加熱攪拌した。反
応終了後、析出した結晶を濾取し、メタノール100ミ
リリットルにて洗浄し、黄色粉末 4.0gを得た。こ
の粉末は、NMR、IR及びFD−MSの測定により、
化合物(101)と同定された(収率60%)。
Synthesis of Intermediate P Under a stream of argon, in a 500 ml three-necked flask equipped with a condenser, 10.1 g (28 mmol) of intermediate O, 7.9 g (30 mmol) of triphenylphosphine, D
200 ml of MF was added. Then bromine
After 4.8 g (30 mmol) / 50 ml of DMF was gradually added dropwise, the mixture was heated and stirred at 200 ° C. for 8 hours.
After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration.
Wash with water and methanol 8.2 g of the desired intermediate P
(60% yield). Synthesis of Compound (101) In a 200 ml three-necked flask equipped with a cooling tube under an argon stream, 4.9 g (30 mmol) of intermediate P, 5.1 g (30 mmol) of diphenylamine, 0.14 g of tris (dibenzylidesiacetone) divalazium
(1.5 mol%), tri-o-toluylphosphine
0.91 g (3 mol%), sodium t-butoxide
After adding 2.9 g (30 mmol) and 50 ml of dry toluene, the mixture was heated and stirred at 100 ° C. overnight. After the completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.0 g of a yellow powder. This powder was measured by NMR, IR and FD-MS,
It was identified as compound (101) (yield 60%).

【0146】上記中間体の構造式及び化合物(101)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (101)
Is shown below.

【化81】 Embedded image

【0147】合成例15(化合物(102)) 中間体Qの合成 アルゴン気流下、冷却管付き300ミリリットル三口フ
ラスコ中に、2−ブロモビフェニル 11.7g(50
mmol)、アニリン 19g(0.2mol)、トリ
ス(ジベンジリデシアセトン) ジバラジウム 0.69
g(1.5mol%)、トリ−o−トルイルホスフィン
0.46g(3mol%)、t−ブトキシナトリウム
7.2g(75mmol)、乾燥トルエン 100ミ
リリットルを加えた後、100℃にて一晩加熱攪拌し
た。反応終了後、析出した結晶を濾取し、メタノール
100ミリリットルにて洗浄して得られた粗結晶を酢酸
エチル 50ミリリットルにて再結晶し、目的とする中
間体Q 9.8g(収率80%)を得た。 化合物(102)の合成 アルゴン気流下、冷却管付き200ミリリットル三口フ
ラスコ中に、9,10−ジブロモアントラセン 2.4
g(10mmol)、中間体Q 7.4g(30mmo
l)、トリス(ジベンジリデシアセトン) ジバラジウム
0.14g(1.5mol%)、トリ−o−トルイル
ホスフィン 0.91g(3mol%)、t−ブトキシ
ナトリウム 2.9g(30mmol)、乾燥トルエン
50ミリリットルを加えた後、100℃にて一晩加熱
攪拌した。反応終了後、析出した結晶を濾取し、メタノ
ール 100ミリリットルにて洗浄し、黄色粉末 4.
3gを得た。この粉末は、NMR、IR及びFD−MS
の測定により、化合物(102)と同定された(収率6
5%)。
Synthesis Example 15 (Compound (102)) Synthesis of Intermediate Q Under a stream of argon, 11.7 g (50 g) of 2-bromobiphenyl was placed in a 300 ml three-necked flask equipped with a condenser.
mmol), aniline 19 g (0.2 mol), tris (dibenzylidesiacetone) dibaradium 0.69
g (1.5 mol%), 0.46 g (3 mol%) of tri-o-toluylphosphine, 7.2 g (75 mmol) of sodium t-butoxy, and 100 ml of dry toluene, and then heated and stirred at 100 ° C. overnight. did. After completion of the reaction, the precipitated crystals were collected by filtration, and methanol
The crude crystals obtained by washing with 100 ml were recrystallized with 50 ml of ethyl acetate to obtain 9.8 g of the desired intermediate Q (yield 80%). Synthesis of Compound (102) 9,10-Dibromoanthracene 2.4 in a 200 ml three-necked flask equipped with a condenser under a stream of argon.
g (10 mmol), 7.4 g of intermediate Q (30 mmol)
l), 0.14 g (1.5 mol%) of tris (dibenzylidesiacetone) divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, dry toluene 50 After adding milliliter, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and yellow powdered.
3 g were obtained. This powder was obtained by NMR, IR and FD-MS
Was identified as compound (102) (yield 6
5%).

【0148】上記中間体の構造式及び化合物(102)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (102)
Is shown below.

【化82】 Embedded image

【0149】合成例16(化合物(103)) 中間体Rの合成 アルゴン気流下、冷却管付き1リットル三口フラスコ中
に、3−フェニルフエノール 34g(0.2mo
l)、トリフェニルホスフィン 58g(0.22mm
ol)、DMF 300ミリリットルを加えた。続い
て、臭素 35g(0.22mmol)/DMF 10
0ミリリットルを徐々に滴下した後、200℃で8時間
加熱撹枠した。反応終了後、反応液を氷水冷却して析出
晶を濾取し、水、メタノールで洗浄し目的とする中間体
R 37g(収率80%)を得た。 中間体Sの合成 アルゴン気流下、冷却管付き300ミリリットル三口フ
ラスコ中に、アニリン19g(0.2mmol)、トリ
ス(ジベンジリデシアセトン) ジバラジウム0.69g
(1.5mol%)、トリ−o−トルイルホスフィン
0.46g(3mol%)、t−ブトキシナトリウム
7.2g(75mmol)、乾燥トルエン 100ミリ
リットルを加えた後、100℃にて一晩加熱攪拌した。
反応終了後、析出した結晶を濾取し、メタノール 10
0ミリリットルにて洗浄して得られた粗結晶を酢酸エチ
ル 50ミリリットルにて再結晶し、目的とする中間体
Q 9.8g(収率80%)を得た。 化合物(103)の合成 アルゴン気流下、冷却管付き200ミリリットル三口フ
ラスコ中に、9,10−ジブロモアントラセン 2.4
g(10mmol)、中間体S 7.4g(30mmo
l)、トリス(ジベンジリデシアセトン) ジバラジウム
0.14g(1.5mol%)、トリ−o−トルイル
ホスフィン 0.91g(3mol%)、t−ブトキシ
ナトリウム 2.9g(30mmol)、乾燥トルエン
50ミリリットルを加えた後、100℃にて一晩加熱
攪拌した。反応終了後、析出した結晶を濾取し、メタノ
ール 100ミリリットルにて洗浄し、黄色粉末 4.
2gを得た。この粉末は、NMR、IR及びFD−MS
の測定により、化合物(103)と同定された(収率7
0%)。
Synthesis Example 16 (Compound (103)) Synthesis of Intermediate R In a 1-liter three-necked flask equipped with a condenser under a stream of argon, 34 g (0.2 mol) of 3-phenylphenol was added.
l), 58 g of triphenylphosphine (0.22 mm
ol) and 300 ml of DMF. Subsequently, 35 g (0.22 mmol) of bromine / DMF 10
After 0 ml was gradually added dropwise, the mixture was heated and stirred at 200 ° C. for 8 hours. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water and methanol to obtain 37 g of the desired intermediate R (yield: 80%). Synthesis of Intermediate S 19 g (0.2 mmol) of aniline and 0.69 g of tris (dibenzylidesiacetone) dibaradium were placed in a 300 ml three-necked flask equipped with a condenser under an argon stream.
(1.5 mol%), tri-o-toluylphosphine
0.46 g (3 mol%), sodium t-butoxide
After adding 7.2 g (75 mmol) and 100 ml of dry toluene, the mixture was heated and stirred at 100 ° C. overnight.
After completion of the reaction, the precipitated crystals were collected by filtration, and methanol 10
The crude crystals obtained by washing with 0 ml were recrystallized with 50 ml of ethyl acetate to obtain 9.8 g of the desired intermediate Q (yield: 80%). Synthesis of Compound (103) 9,10-Dibromoanthracene 2.4 in a 200 ml three-necked flask equipped with a condenser under a stream of argon.
g (10 mmol), 7.4 g of intermediate S (30 mmol)
l), 0.14 g (1.5 mol%) of tris (dibenzylidesiacetone) divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, dry toluene 50 After adding milliliter, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and yellow powdered.
2 g were obtained. This powder was obtained by NMR, IR and FD-MS
Was identified as compound (103) (yield 7
0%).

【0150】上記中間体の構造式及び化合物(103)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (103)
Is shown below.

【化83】 Embedded image

【0151】合成例17(化合物(104)) 中間体Tの合成 アルゴン気流下、冷却管付き300ミリリットル三口フ
ラスコ中に、4−ブロモビフェニル 23g(0.1m
ol)、アミノスチルベン 9.8g(50mmo
l)、トリス(ジベンジリデシアセトン) ジバラジウム
0.69g(1.5mol%)、トリ−o−トルイル
ホスフィン 0.46g(3mol%)、t−ブトキシ
ナトリウム 7.2g(75mmol)、乾燥トルエン
100ミリリットルを加えた後、100℃にて一晩加
熱攪拌した。反応終了後、析出した結晶を濾取し、メタ
ノール 100ミリリットルにて洗浄して得られた粗結
晶を酢酸エチル 50ミリリットルにて再結晶し、目的
とする中間体T 13.9g(収率80%)を得た。 化合物(104)の合成 アルゴン気流下、冷却管付き200ミリリットル三口フ
ラスコ中に、9,10−ジブロモアントラセン 2.4
g(10mmol)、中間体T 7.4g(30mmo
l)、トリス(ジベンジリデシアセトン) ジバラジウム
0.14g(1.5mol%)、トリ−o−トルイル
ホスフィン 0.91g(3mol%)、t−ブトキシ
ナトリウム 2.9g(30mmol)、乾燥トルエン
50ミリリットルを加えた後、100℃にて一晩加熱
攪拌した。反応終了後、析出した結晶を濾取し、メタノ
ール 100ミリリットルにて洗浄し、黄色粉末 4.
5gを得た。この粉末は、NMR、IR及びFD−MS
の測定により、化合物(104)と同定された(収率7
0%)。
Synthesis Example 17 (Compound (104)) Synthesis of Intermediate T Under a stream of argon, 23 g of 4-bromobiphenyl (0.1 m
ol), 9.8 g of aminostilbene (50 mmo
l), Tris (dibenzylidesiacetone) 0.69 g (1.5 mol%) of divalazim, 0.46 g (3 mol%) of tri-o-toluylphosphine, 7.2 g (75 mmol) of sodium t-butoxy, dry toluene 100 After adding milliliter, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and the obtained crude crystals were recrystallized with 50 ml of ethyl acetate to obtain 13.9 g of the desired intermediate T (80% yield). ) Got. Synthesis of Compound (104) 9,10-Dibromoanthracene 2.4 in a 200 ml three-necked flask equipped with a condenser under a stream of argon.
g (10 mmol), 7.4 g of intermediate T (30 mmol)
l), 0.14 g (1.5 mol%) of tris (dibenzylidesiacetone) divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, dry toluene 50 After adding milliliter, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and yellow powdered.
5 g were obtained. This powder was obtained by NMR, IR and FD-MS
Was identified as compound (104) (yield 7
0%).

【0152】上記中間体の構造式及び化合物(104)
の反応経路を以下に示す。
The structural formula of the above intermediate and compound (104)
Is shown below.

【化84】 Embedded image

【0153】合成例18(化合物(121)) 中間体Uの合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、トリフェニルアミン 25g(0.1mo
l)、N−ブロモスクシンイミド 18g(0.1mo
l)、2,2’−アゾビスイソブチロニトリル 0.8
2g(5mol%)、DMF 200ミリリットルを加
え、110℃で4時間加熱撹枠した。反応終了後、不純
物をろ別し、ろ液をロータリーエバポレーターで減圧濃
縮した。得られた粗結晶を、カラムクロマトグラフ(シ
リカゲル、塩化メチレン)で精製し、目的とする中間体
U19g(収率60%)を得た。 中間体Vの合成 アルゴン気流下、冷却管付き1リットル三口フラスコ中
に、マグネシウム 1.6g(66mmol)、ヨウ素
の小片、THF 100ミリリットルを入れ、室温で3
0分間攪拌後、中間体U 19g(60mol)/TH
F 300ミリリットル溶液を滴下した。滴下終了後、
60℃で1時間加熱攪拌しGrignard試薬を調製
した。アルゴン気流下、冷却管付き1リットル三口フラ
スコ中に、1,3ジブロモベンゼン 42g(0.18
mmol)、ジクロロビス(トリフェニルホスフィン)
パラジウム 2.1(5mol%)、ジイソブチルアル
ミニウムヒドリド/トルエン溶液 6ミリリットル(1
M,6mmol)、THF 200ミリリットルを加え
た。ここに上記Grignard試薬を室温で滴下した
後、昇温して一晩加熱攪拌した。反応終了後、反応液を
氷水冷却して析出晶を濾取し、アセトンで洗浄し目的と
する中間体V 14g(収率60%)を得た。
Synthesis Example 18 (Compound (121)) Synthesis of Intermediate U Under a stream of argon, 25 g (0.1 mol) of triphenylamine was placed in a 500 ml three-necked flask equipped with a condenser.
l), N-bromosuccinimide 18 g (0.1 mol
l), 2,2'-azobisisobutyronitrile 0.8
2 g (5 mol%) and 200 ml of DMF were added, and the mixture was heated and stirred at 110 ° C. for 4 hours. After completion of the reaction, impurities were filtered off, and the filtrate was concentrated under reduced pressure using a rotary evaporator. The obtained crude crystals were purified by column chromatography (silica gel, methylene chloride) to obtain 19 g of the desired intermediate U (yield: 60%). Synthesis of Intermediate V 1.6 g (66 mmol) of magnesium, a small piece of iodine, and 100 ml of THF were placed in a 1-liter three-necked flask equipped with a condenser under a stream of argon, and the mixture was heated at room temperature for 3 hours.
After stirring for 0 minutes, Intermediate U 19 g (60 mol) / TH
F 300 ml solution was added dropwise. After dropping,
The mixture was heated and stirred at 60 ° C. for 1 hour to prepare a Grignard reagent. Under a stream of argon, 42 g of 1,3 dibromobenzene (0.18
mmol), dichlorobis (triphenylphosphine)
Palladium 2.1 (5 mol%), diisobutylaluminum hydride / toluene solution 6 ml (1
M, 6 mmol) and 200 ml of THF. The Grignard reagent was added dropwise at room temperature, and the temperature was raised and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with acetone to obtain 14 g of the desired intermediate V (yield: 60%).

【0154】化合物(121)の合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、マグネシウム 0.8g(33mmo
l)、ヨウ素の小片、THF 50ミリリットルを入
れ、室温で30分間攪拌後、中間体V 12g(30m
mol)/THF 100ミリリットル溶液を滴下し
た。滴下終了後、60℃で1時間攪拌しGrignar
d試薬を調製した。アルゴン気流下、冷却管付き500
ミリリットル三口フラスコ中に、9,10−ジブロモア
ントラセン 3.4g(10mmol)、ジクロロビス
(トリフェニルホスフィン)パラジウム 0.4g(5
mol%)、ジイソブチルアルミニウムヒドリド/トル
エン溶液 1ミリリットル(1M,1mmol)、TH
F100ミリリットルを加えた。ここに上記Grign
ard試薬を室温で滴下した後、昇温して一晩加熱攪拌
した。反応終了後、反応液を氷水冷却して析出晶を濾取
し、メタノール 50ミリリットル、アセトン 50ミ
リリットルの順で洗浄し、黄色粉末 4.1gを得た。
この粉末は、NMR、IR及びFD−MSの測定によ
り、化合物(121)と同定された(収率50%)。
Synthesis of Compound (121) 0.8 g (33 mmol) of magnesium was placed in a 500 ml three-necked flask equipped with a condenser under a stream of argon.
l), a small piece of iodine and 50 ml of THF were added, and the mixture was stirred at room temperature for 30 minutes.
mol) / THF 100 ml solution was added dropwise. After dropping, the mixture was stirred at 60 ° C. for 1 hour and
d reagent was prepared. Under a stream of argon, with cooling tube 500
In a milliliter three-necked flask, 3.4 g (10 mmol) of 9,10-dibromoanthracene and 0.4 g (5 mmol) of dichlorobis (triphenylphosphine) palladium were added.
mol%), diisobutylaluminum hydride / toluene solution 1 ml (1 M, 1 mmol), TH
100 ml of F was added. Here the above-mentioned Grign
After dropping the ard reagent at room temperature, the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 4.1 g of a yellow powder.
This powder was identified as compound (121) by NMR, IR and FD-MS measurements (yield 50%).

【0155】上記中間体の構造式及び化合物(121)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (121)
Is shown below.

【化85】 Embedded image

【0156】合成例19(化合物(122)) 中間体Wの合成 アルゴン気流下、冷却管付き300リットル三口フラス
コ中に、1,3−ジブロモベンゼン 19g(80mm
ol)、ジフェニルアミン 6.5g(20mmo
l)、トリス(ジベンジリデシアセトン) ジバラジウム
0.27g(1.5mol%)、トリ−o−トルイル
ホスフィン 0.18g(3mol%)、t−ブトキシ
ナトリウム 2.9g(30mmol)、乾燥トルエン
100ミリリットルを加えた後、100℃にて一晩加
熱攪拌した。反応終了後、析出した結晶を濾取し、メタ
ノール 100ミリリットルにて洗浄し、得られた粗結
晶を酢酸エチル 50ミリリットルにて再結晶し、目的
とする中間体W 4.9g(収率75%)を得た。 化合物(122)の合成 アルゴン気流下、冷却管付き300ミリリットル三口フ
ラスコ中に、マグネシウム 0.5g(20mmo
l)、ヨウ素の小片、THF 50ミリリットルを入
れ、室温で30分間攪拌後、中間体W 4.9g(15
mmol)/THF100ミリリットル溶液を滴下し
た。滴下終了後、60℃で1時間攪拌しGrignar
d試薬を調製した。アルゴン気流下、冷却管付き500
ミリリットル三口フラスコ中に、9−10ジブロモアン
トラセン 1.7g(5mmol)、ジクロロビス(ト
リフェニルホスフィン)パラジウム 0.2g(5mo
l%)、ジイソブチルアルミニウムヒドリド/トルエン
溶液 0.5ミリリットル(1M,0.5mmol)、
THF 100ミリリットルを加えた。ここに上記Gr
ignard試薬を室温で滴下した後、昇温して一晩加
熱攪拌した。反応終了後、反応液を氷水冷却して析出晶
を濾取し、メタノール 50ミリリットル、アセトン
50ミリリットルの順で洗浄し、黄色粉末 1.7gを
得た。この粉末は、NMR、IR及びFD−MSの測定
により、化合物(122)と同定された(収率50
%)。
Synthesis Example 19 (Compound (122)) Synthesis of Intermediate W In a 300-liter three-necked flask equipped with a condenser under a stream of argon, 19 g of 1,3-dibromobenzene (80 mm
ol), 6.5 g (20 mmol) of diphenylamine
l), 0.27 g (1.5 mol%) of tris (dibenzylidesiacetone) divaladium, 0.18 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, 100 parts of dry toluene After adding milliliter, the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and the obtained crude crystals were recrystallized with 50 ml of ethyl acetate to obtain 4.9 g of the desired intermediate W (yield 75%). ) Got. Synthesis of Compound (122) 0.5 g (20 mmol) of magnesium was placed in a 300 ml three-necked flask equipped with a condenser under a stream of argon.
l), a small piece of iodine and 50 ml of THF were added thereto, and the mixture was stirred at room temperature for 30 minutes.
(mmol) / 100 ml of THF was added dropwise. After dropping, the mixture was stirred at 60 ° C. for 1 hour and
d reagent was prepared. Under a stream of argon, with cooling tube 500
In a milliliter three-necked flask, 1.7 g (5 mmol) of 9-10 dibromoanthracene and 0.2 g (5 mo) of dichlorobis (triphenylphosphine) palladium
1%), 0.5 ml of diisobutylaluminum hydride / toluene solution (1 M, 0.5 mmol),
100 ml of THF was added. Here, the Gr
After the dropwise addition of an Igard reagent at room temperature, the temperature was raised and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration.
Washing was performed in the order of 50 ml to obtain 1.7 g of a yellow powder. This powder was identified as compound (122) by NMR, IR and FD-MS measurements (yield 50
%).

【0157】上記中間体の構造式及び化合物(122)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (122)
Is shown below.

【化86】 Embedded image

【0158】合成例20(化合物(123)) 中間体Xの合成 アルゴン気流下、冷却管付き300リットル三口フラス
コ中に、ブロモベンゼン 16g(0.1mol)、ア
ミノスチルベン 9.8g(50mmol)、トリス
(ジベンジリデシアセトン) ジバラジウム 0.69g
(1.5mol%)、トリ−o−トルイルホスフィン
0.46g(3mol%)、t−ブトキシナトリウム
7.2g(75mmol)、乾燥トルエン 100ミリ
リットルを加えた後、100℃にて一晩加熱攪拌した。
反応終了後、析出した結晶を濾取し、メタノール 10
0ミリリットルにて洗浄し、得られた粗結晶を酢酸エチ
ル50ミリリットルにて再結晶し、目的とする中間体X
11g(収率80%)を得た。 中間体Yの合成 アルゴン気流下、冷却管付き500リットル三口フラス
コ中に、ブロモベンゼン 38g(0.16mol)、
中間体X 11g(40mmol)、トリス(ジベンジ
リデシアセトン) ジバラジウム 0.55g(1.5m
ol%)、トリ−o−トルイルホスフィン 0.37g
(3mol%)、t−ブトキシナトリウム 5.8g
(60mmol)、乾燥トルエン 300ミリリットル
を加えた後、120℃にて一晩加熱攪拌した。反応終了
後、析出した結晶を濾取し、メタノール 100ミリリ
ットルにて洗浄し、得られた粗結晶を酢酸エチル 50
ミリリットルにて再結晶し、目的とする中間体Y 13
g(収率75%)を得た。
Synthesis Example 20 (Compound (123)) Synthesis of Intermediate X 16 g (0.1 mol) of bromobenzene, 9.8 g (50 mmol) of aminostilbene, tris (Dibenzylidesiacetone) 0.69 g of divalazium
(1.5 mol%), tri-o-toluylphosphine
0.46 g (3 mol%), sodium t-butoxide
After adding 7.2 g (75 mmol) and 100 ml of dry toluene, the mixture was heated and stirred at 100 ° C. overnight.
After completion of the reaction, the precipitated crystals were collected by filtration, and methanol 10
After washing with 0 ml, the resulting crude crystals were recrystallized with 50 ml of ethyl acetate to obtain the desired intermediate X
11 g (80% yield) were obtained. Synthesis of Intermediate Y 38 g (0.16 mol) of bromobenzene was placed in a 500-liter three-necked flask equipped with a condenser under an argon stream.
Intermediate X 11 g (40 mmol), tris (dibenzylidesiacetone) divaladium 0.55 g (1.5 m
ol%), 0.37 g of tri-o-toluylphosphine
(3 mol%), t-butoxy sodium 5.8 g
(60 mmol) and 300 ml of dry toluene were added, and the mixture was heated and stirred at 120 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol, and the obtained crude crystals were washed with 50 ml of ethyl acetate.
Recrystallize in milliliters to obtain the desired intermediate Y13
g (75% yield).

【0159】化合物(123)の合成 アルゴン気流下、冷却管付き300ミリリットル三口フ
ラスコ中に、マグネシウム 0.97g(40mmo
l)、ヨウ素の小片、THF 50ミリリットルを入
れ、室温で30分間攪拌後、中間体Y 12g(30m
mol)/THF100ミリリットル溶液を滴下した。
滴下終了後、60℃で1時間攪拌しGrignard試
薬を調製した。アルゴン気流下、冷却管付き500ミリ
リットル三口フラスコ中に、9,10−ジブロモアント
ラセン 3.4g(10mmol)、ジクロロビス(ト
リフェニルホスフィン)パラジウム 0.4g(5mo
l%)、ジイソブチルアルミニウムヒドリド/トルエン
溶液 1ミリリットル(1M,1mmol)、THF1
00ミリリットルを加えた。ここに上記Grignar
d試薬を室温で滴下した後、昇温して一晩加熱攪拌し
た。反応終了後、反応液を氷水冷却して析出晶を濾取
し、メタノール 50ミリリットル、アセトン 50ミ
リリットルの順で洗浄し、黄色粉末 5.4gを得た。
この粉末は、NMR、IR及びFD−MSの測定によ
り、化合物(122)と同定された(収率50%)。
Synthesis of Compound (123) 0.97 g (40 mmol) of magnesium was placed in a 300 ml three-necked flask equipped with a condenser under a stream of argon.
l), a small piece of iodine and 50 ml of THF were added, and the mixture was stirred at room temperature for 30 minutes.
mol) / 100 ml of THF was added dropwise.
After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 1 hour to prepare a Grignard reagent. Under a stream of argon, 3.4 g (10 mmol) of 9,10-dibromoanthracene and 0.4 g of dichlorobis (triphenylphosphine) palladium were placed in a 500 ml three-necked flask equipped with a condenser.
1%), diisobutylaluminum hydride / toluene solution 1 ml (1 M, 1 mmol), THF1
00 ml was added. Here the above Grinar
After the reagent d was added dropwise at room temperature, the temperature was raised and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 5.4 g of a yellow powder.
This powder was identified as compound (122) by the measurement of NMR, IR and FD-MS (yield: 50%).

【0160】上記中間体の構造式及び化合物(123)
の反応経路を以下に示す。
Structural formula of the above intermediate and compound (123)
Is shown below.

【化87】 Embedded image

【0161】合成例21(化合物(124)) 化合物(124)の合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、10,10’−ジブロモ−9,9’−ビア
ンスリル 2.5g(5mmol)、ジクロロビス(ト
リフェニルホスフィン)パラジウム 0.2g(5mo
l%)、ジイソブチルアルミニウムヒドリド/トルエン
溶液 0.5ミリリットル(1M,0.5mmol)、
THF 100ミリリットルを加えた。ここに合成例
(19)で調製したGrignard試薬を室温で滴下
した後、昇温して一晩加熱攪拌した。反応終了後、反応
液を氷水冷却して析出晶を濾取し、メタノール 50ミ
リリットル、アセトン 50ミリリットルの順で洗浄
し、黄色粉末 2.0gを得た。この粉末は、NMR、
IR及びFD−MSの測定により、化合物(124)と
同定された(収率60%)。
Synthesis Example 21 (Compound (124)) Synthesis of Compound (124) 2.5 g (5 mmol) of 10,10′-dibromo-9,9′-bianthril in a 500 ml three-necked flask equipped with a condenser under a stream of argon. ), Dichlorobis (triphenylphosphine) palladium 0.2 g (5 mo
1%), 0.5 ml of diisobutylaluminum hydride / toluene solution (1 M, 0.5 mmol),
100 ml of THF was added. The Grignard reagent prepared in Synthesis Example (19) was added dropwise at room temperature, and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 2.0 g of a yellow powder. This powder is NMR,
The powder was identified as Compound (124) by the measurement of IR and FD-MS (yield: 60%).

【0162】上記化合物(124)の反応経路を以下に
示す。
The reaction route of the above compound (124) is shown below.

【化88】 Embedded image

【0163】合成例22(化合物(125)) 化合物(125)の合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、6,12ジブロモクリセン 1.9g(5
mmol)、ジクロロビス(トリフェニルホスフィン)
パラジウム 0.2g(5mol%)、ジイソブチルア
ルミニウムヒドリド/トルエン溶液 0.5ミリリット
ル(1M,0.5mmol)、THF100ミリリット
ルを加えた。ここに合成例(19)で調製したGrig
nard試薬を室温で滴下した後、昇温して一晩加熱攪
拌した。反応終了後、反応液を氷水冷却して析出晶を濾
取し、メタノール 50ミリリットル、アセトン 50
ミリリットルの順で洗浄し、黄色粉末 2.1gを得
た。この粉末は、NMR、IR及びFD−MSの測定に
より、化合物(125)と同定された(収率60%)。
Synthesis Example 22 (Compound (125)) Synthesis of Compound (125) 1.9 g (5,12) of dibromochrysene was placed in a 500 ml three-necked flask equipped with a condenser under a stream of argon.
mmol), dichlorobis (triphenylphosphine)
0.2 g (5 mol%) of palladium, 0.5 ml (1 M, 0.5 mmol) of a diisobutylaluminum hydride / toluene solution, and 100 ml of THF were added. Here, Grig prepared in Synthesis Example (19)
After the nard reagent was added dropwise at room temperature, the temperature was raised and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration.
Washing in the order of milliliters gave 2.1 g of a yellow powder. This powder was identified as Compound (125) by NMR, IR and FD-MS measurements (60% yield).

【0164】上記化合物(125)の反応経路を以下に
示す。
The reaction route of the above compound (125) is shown below.

【化89】 Embedded image

【0165】合成例23(化合物(126)) 化合物(126)の合成 アルゴン気流下、冷却管付き500ミリリットル三口フ
ラスコ中に、5,12−ジブロモナフタセン 1.9g
(5mmol)、ジクロロビス(トリフェニルホスフィ
ン)パラジウム 0.2g(5mol%)、ジイソブチ
ルアルミニウムヒドリド/トルエン溶液 0.5ミリリ
ットル(1M,0.5mmol)、THF 100ミリ
リットルを加えた。ここに合成例(19)で調製したG
rignard試薬を室温で滴下した後、昇温して一晩
加熱攪拌した。反応終了後、反応液を氷水冷却して析出
晶を濾取し、メタノール 50ミリリットル、アセトン
50ミリリットルの順で洗浄し、黄色粉末 2.1gを
得た。この粉末は、NMR、IR及びFD−MSの測定
により、化合物(126)と同定された(収率60
%)。
Synthesis Example 23 (Compound (126)) Synthesis of Compound (126) 1.9 g of 5,12-dibromonaphthacene was placed in a 500 ml three-necked flask equipped with a condenser under a stream of argon.
(5 mmol), 0.2 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, 0.5 ml (1 M, 0.5 mmol) of a diisobutylaluminum hydride / toluene solution, and 100 ml of THF were added. Here, G prepared in Synthesis Example (19)
After the dropwise addition of the reagent, the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration, washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 2.1 g of a yellow powder. This powder was identified as compound (126) by NMR, IR and FD-MS measurements (yield 60
%).

【0166】上記化合物(126)の反応経路を以下に
示す。
The reaction route of the above compound (126) is shown below.

【化90】 Embedded image

【0167】[0167]

【発明の効果】本発明の上記一般式〔1〕、〔3〕〜
〔6〕及び
The above general formulas [1] and [3] of the present invention
[6] and

〔9〕〜〔10〕で表される有機EL素子材
料を発光材料、正孔注入材料、正孔輸送材料又はドーピ
ング材料として使用した有機EL素子は、低い印加電圧
で実用上充分な発光輝度が得られ、発光効率が高く、長
時間使用しても性能が劣化しずらく寿命が長く、耐熱性
にも優れ高温の環境下でも性能が低下することが無い。
また、上記一般式〔7〕及び〔8〕で表される有機EL
素子材料を発光材料、正孔注入材料、正孔輸送材料又は
ドーピング材料として使用した有機EL素子は、黄色、
橙色〜赤色の領域において、低い印加電圧で実用上充分
な発光輝度が得られ、発光効率が高く、長時間使用して
も性能が劣化しずらく寿命が長い。
An organic EL device using the organic EL device material represented by [9] to [10] as a light emitting material, a hole injection material, a hole transport material, or a doping material has practically sufficient light emission luminance at a low applied voltage. The luminous efficiency is high, the performance is not easily deteriorated even when used for a long time, the life is long, the heat resistance is excellent, and the performance does not deteriorate even in a high temperature environment.
Further, the organic EL represented by the general formulas [7] and [8]
An organic EL device using a device material as a light emitting material, a hole injecting material, a hole transporting material or a doping material is yellow,
In the orange to red region, practically sufficient emission luminance can be obtained at a low applied voltage, the luminous efficiency is high, and the performance is hardly deteriorated even when used for a long time, and the life is long.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 英俊 千葉県袖ケ浦市上泉1280番地 (72)発明者 池田 秀嗣 千葉県袖ケ浦市上泉1280番地 Fターム(参考) 3K007 AB00 AB02 AB03 AB06 AB14 CA01 CB01 DA00 DB03 EB00 FA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidetoshi Koga 1280 Kamiizumi, Sodegaura-shi, Chiba Prefecture (72) Inventor Hidetsugu Ikeda 1280, Kamiizumi, Sodegaura-shi, Chiba F term (reference) 3K007 AB00 AB02 AB03 AB06 AB14 CA01 CB01 DA00 DB03 EB00 FA01

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式〔1〕で示される有機エレク
トロルミネッセンス素子用材料。 一般式〔1〕 【化1】 〔式中、Aは置換もしくは未置換の炭素原子数22〜6
0のアリーレン基を表す。X1 〜X4 は、それぞれ独立
に、置換もしくは未置換の炭素原子数6〜30のアリー
レン基を表し、X1 とX2 、X3 とX4 は互いに連結し
ていてもよい。Y 1 〜Y4 は、それぞれ独立に、下記一
般式〔2〕で示される有機基を表す。a〜dは0〜2の
整数を表す。ただし、Aの炭素原子数26以下の場合に
はa+b+c+d>0であり、A中に2以上のアントラ
セン核は含まない。 一般式〔2〕 【化2】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
An organic electro-chemical compound represented by the following general formula [1]:
Materials for troll luminescence elements. General formula [1][In the formula, A is a substituted or unsubstituted carbon atom having 22 to 6 carbon atoms.
Represents an arylene group of 0. X1~ XFourAre independent
Is a substituted or unsubstituted aryl having 6 to 30 carbon atoms.
X represents a len group1And XTwo, XThreeAnd XFourAre connected to each other
May be. Y 1~ YFourIs, independently of each other,
Represents an organic group represented by the general formula [2]. ad is 0-2
Represents an integer. However, when A has 26 or less carbon atoms,
Is a + b + c + d> 0, and two or more anthra
Does not include Sen nuclei. General formula [2](Where R1~ RFourAre each independently a hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
Substituted or unsubstituted aryl having 6 to 20 carbon atoms
Group, a cyano group, or R1And RTwoOr RThreeAnd RFourBut
Represents a bound triple bond. Z is a substituted or unsubstituted charcoal
Represents an aryl group having 6 to 20 elementary atoms. n is 0 or
Represents 1. )]
【請求項2】 下記一般式〔3〕で示される有機エレク
トロルミネッセンス素子用材料。 一般式〔3〕 【化3】 〔式中、Bは置換もしくは未置換の炭素原子数6〜60
のアリーレン基を表す。X1 〜X4 は、それぞれ独立
に、置換もしくは未置換の炭素原子数6〜30のアリー
レン基を表し、X1 とX2 、X3 とX4 は互いに連結し
ていてもよい。Y1〜Y4 は、それぞれ独立に、下記一
般式〔2〕で示される有機基を表す。a〜dは0〜2の
整数を表す。ただし、B、X1 、X2 、X3 及びX4
中の少なくとも1つはクリセン核を含有する。 一般式〔2〕 【化4】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
2. A material for an organic electroluminescence device represented by the following general formula [3]. General formula [3] [Wherein B is a substituted or unsubstituted carbon atom having 6 to 60 carbon atoms.
Represents an arylene group. X 1 to X 4 each independently represent a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and X 1 and X 2 , and X 3 and X 4 may be connected to each other. Y 1 to Y 4 each independently represent an organic group represented by the following general formula [2]. a to d represent an integer of 0 to 2. However, at least one of B, X 1 , X 2 , X 3 and X 4 contains a chrysene nucleus. General formula [2] (Wherein, R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
It represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a cyano group, or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded. Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. n represents 0 or 1. )]
【請求項3】 一般式〔3〕が下記一般式〔4〕で示さ
れる請求項2記載の有機エレクトロルミネッセンス素子
用材料。 一般式〔4〕 【化5】 〔式中、X1 〜X4 、Y1 〜Y4 及びa〜dは前記と同
一である。〕
3. The material for an organic electroluminescent device according to claim 2, wherein the general formula [3] is represented by the following general formula [4]. General formula [4] [Wherein, X 1 to X 4 , Y 1 to Y 4 and a to d are the same as described above. ]
【請求項4】 一般式〔3〕が下記一般式〔5〕で示さ
れる請求項2記載の有機エレクトロルミネッセンス素子
用材料。 一般式〔5〕 【化6】 〔式中、B、X1 〜X2 、Y1 〜Y2 及びa〜bは前記
と同一である。〕
4. The material for an organic electroluminescence device according to claim 2, wherein the general formula [3] is represented by the following general formula [5]. General formula [5] [Wherein, B, X 1 -X 2 , Y 1 -Y 2 and a-b are the same as above. ]
【請求項5】 一般式〔3〕が下記一般式〔6〕で示さ
れる請求項2記載の有機エレクトロルミネッセンス素子
用材料。 一般式〔6〕 【化7】 〔式中、B、X1 〜X2 、Y1 〜Y2 及びa〜bは前記
と同一である。〕
5. The material for an organic electroluminescence device according to claim 2, wherein the general formula [3] is represented by the following general formula [6]. General formula [6] [Wherein, B, X 1 -X 2 , Y 1 -Y 2 and a-b are the same as above. ]
【請求項6】 下記一般式〔7〕で示される有機エレク
トロルミネッセンス素子用材料。 一般式〔7〕 【化8】 〔式中、Dはテトラセン核もしくはペンタセン核を含有
する2価の基を表す。X 1 〜X4 は、それぞれ独立に、
置換もしくは未置換の炭素原子数6〜30のアリーレン
基を表し、X1 とX2 、X4 とX3 は互いに連結してい
ても良い。Y1 〜Y4 は、それぞれ独立に、下記一般式
〔2〕で示される有機基を表す。a〜dは0〜2の整数
を表す。 一般式〔2〕 【化9】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
6. An organic element represented by the following general formula [7]:
Materials for troll luminescence elements. General formula [7][Wherein D contains a tetracene nucleus or a pentacene nucleus
Represents a divalent group. X 1~ XFourAre, independently of each other,
Substituted or unsubstituted arylene having 6 to 30 carbon atoms
X represents a group1And XTwo, XFourAnd XThreeAre connected to each other
May be. Y1~ YFourIs, independently of each other,
Represents an organic group represented by [2]. ad is an integer of 0 to 2
Represents General formula [2](Where R1~ RFourAre each independently a hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
Substituted or unsubstituted aryl having 6 to 20 carbon atoms
Group, a cyano group, or R1And RTwoOr RThreeAnd RFourBut
Represents a bound triple bond. Z is a substituted or unsubstituted charcoal
Represents an aryl group having 6 to 20 elementary atoms. n is 0 or
Represents 1. )]
【請求項7】 一般式〔7〕が下記一般式〔8〕で示さ
れる請求項6記載の有機エレクトロルミネッセンス素子
用材料。 一般式〔8〕 【化10】 〔式中、X1 〜X4 、Y1 〜Y4 及びa〜dは、それぞ
れ独立に、前記と同一である。R51〜R60は、それぞれ
独立に、水素原子、置換もしくは未置換の炭素原子数1
〜20のアルキル基、置換もしくは未置換の炭素原子数
1〜20のアルコキシ基、置換もしくは未置換の炭素原
子数6〜20のアリール基、シアノ基を表す。隣接する
51〜R60は、互いに連結して飽和もしくは不飽和で置
換もしくは未置換の炭素環を形成していても良い。〕
7. The material for an organic electroluminescence device according to claim 6, wherein the general formula [7] is represented by the following general formula [8]. General formula [8] Wherein X 1 to X 4 , Y 1 to Y 4 and a to d are each independently the same as described above. R 51 to R 60 each independently represent a hydrogen atom, a substituted or unsubstituted carbon atom
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and a cyano group. Adjacent R 51 to R 60 may be linked to each other to form a saturated or unsaturated, substituted or unsubstituted carbon ring. ]
【請求項8】 下記一般式〔9〕で示される有機エレク
トロルミネッセンス素子用材料。 一般式〔9〕 【化11】 〔式中、Eはアリール基置換もしくは未置換のアントラ
セン核からなる2価の基を表す。X5 〜X8 は、それぞ
れ独立に、置換もしくは未置換の炭素原子数6〜20の
アリーレン基を表し、X5 とX6 、X7 とX8 は互いに
連結していても良い。Y1 〜Y4 は、それぞれ独立に、
下記一般式〔2〕で示される有機基を表す。a〜dは0
〜2の整数を表す。ただし、Eが未置換の 【化12】 である時は、X5 〜X8 の少なくとも2つは置換もしく
は未置換の 【化13】 を含む。 一般式〔2〕 【化14】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
8. A material for an organic electroluminescence device represented by the following general formula [9]. General formula [9] [In the formula, E represents a divalent group comprising an aryl group-substituted or unsubstituted anthracene nucleus. X 5 to X 8 each independently represent a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , and X 7 and X 8 may be connected to each other. Y 1 to Y 4 are each independently:
It represents an organic group represented by the following general formula [2]. ad is 0
Represents an integer of 22. Provided that E is unsubstituted. When at least two of X 5 to X 8 are substituted or unsubstituted including. General formula [2] (Wherein, R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
It represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a cyano group, or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded. Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. n represents 0 or 1. )]
【請求項9】 下記一般式〔10〕で示される有機エレ
クトロルミネッセンス素子用材料。 一般式〔10〕 【化15】 〔式中、Ar1 とAr3 は、それぞれ独立に、置換もし
くは未置換のフェニレン、置換もしくは未置換の1,3
ナフタレン、置換もしくは未置換の1,8ナフタレン、
置換もしくは未置換のフルオレン又は置換もしくは未置
換のビフェニルからなる2価の基を表し、Ar2 は、置
換もしくは未置換のアントラセン核、置換もしくは未置
換のピレン核、置換もしくは未置換のフェナントレン
核、置換もしくは未置換のクリセン核、置換もしくは未
置換のペンタセン核、置換もしくは未置換のナフタセン
核又は置換もしくは未置換のフルオレン核からなる2価
の基を表す。X5 〜X8 は、それぞれ独立に、置換もし
くは未置換の炭素原子数6〜20のアリーレン基を表
し、X5 とX6 、X7 とX8 は互いに連結していても良
い。Y1 〜Y4 は、それぞれ独立に、下記一般式〔2〕
で示される有機基を表す。a〜dは0〜2の整数を表
し、a+b+c+d≦2である。eは0もしくは1、f
は1もしくは2を表す。ただし、Ar2 がアントラセン
核の場合は、a=b=c=dで、かつAr1 とAr3
共にp−フェニレン基の場合を除く。 一般式〔2〕 【化16】 (式中、R1 〜R4 は、それぞれ独立に、水素原子、置
換もしくは未置換の炭素原子数1〜20のアルキル基、
置換もしくは未置換の炭素原子数6〜20のアリール
基、シアノ基を表すか、R1 とR2 またはR3 とR4
結合した三重結合を表す。Zは置換もしくは未置換の炭
素原子数6〜20のアリール基を表す。nは0もしくは
1を表す。)〕
9. A material for an organic electroluminescence device represented by the following general formula [10]. General formula [10] [Wherein, Ar 1 and Ar 3 each independently represent a substituted or unsubstituted phenylene, a substituted or unsubstituted 1,3
Naphthalene, substituted or unsubstituted 1,8 naphthalene,
Represents a divalent group consisting of a substituted or unsubstituted fluorene or a substituted or unsubstituted biphenyl, and Ar 2 represents a substituted or unsubstituted anthracene nucleus, a substituted or unsubstituted pyrene nucleus, a substituted or unsubstituted phenanthrene nucleus, A divalent group consisting of a substituted or unsubstituted chrysene nucleus, a substituted or unsubstituted pentacene nucleus, a substituted or unsubstituted naphthacene nucleus or a substituted or unsubstituted fluorene nucleus. X 5 to X 8 each independently represent a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , and X 7 and X 8 may be connected to each other. Y 1 to Y 4 are each independently represented by the following general formula [2]
Represents an organic group represented by a to d represent integers of 0 to 2, and a + b + c + d ≦ 2. e is 0 or 1, f
Represents 1 or 2. However, when Ar 2 is an anthracene nucleus, a = b = c = d and the case where both Ar 1 and Ar 3 are p-phenylene groups is excluded. General formula [2] (Wherein, R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
It represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a cyano group, or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded. Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. n represents 0 or 1. )]
【請求項10】 有機エレクトロルミネッセンス素子用
発光材料であることを特徴とする請求項1〜9のいずれ
かに記載の有機エレクトロルミネッセンス素子用材料。
10. The material for an organic electroluminescence device according to claim 1, which is a light emitting material for an organic electroluminescence device.
【請求項11】 一対の電極間に発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、該有機化合物薄膜の
少なくとも一層が請求項1〜9のいずれかに記載の有機
エレクトロルミネッセンス素子用材料を含有する層であ
ることを特徴とする有機エレクトロルミネッセンス素
子。
11. An organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer formed between a pair of electrodes, wherein at least one of the organic compound thin films is any one of claims 1 to 9. 3. An organic electroluminescent device, comprising a layer containing the material for an organic electroluminescent device according to item 1.
【請求項12】 一対の電極間に発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、請求項1〜9のいず
れかに記載の有機エレクトロルミネッセンス素子用材料
を正孔注入材料、正孔輸送材料及びドーピング材料の中
から選ばれる少なくとも一種類の材料として含有する層
を、該電極間に形成してなることを特徴とする有機エレ
クトロルミネッセンス素子。
12. An organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer formed between a pair of electrodes, wherein the organic electroluminescent device according to claim 1 is used. An organic electroluminescence device comprising a layer containing at least one material selected from a hole injection material, a hole transport material, and a doping material, between the electrodes.
【請求項13】 一対の電極間に発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、該発光層が請求項1
〜9のいずれかに記載の有機エレクトロルミネッセンス
素子用材料を0.1〜20重量%含有することを特徴と
する有機エレクトロルミネッセンス素子。
13. An organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including the light emitting layer is formed between a pair of electrodes, wherein the light emitting layer is formed.
An organic electroluminescent device comprising 0.1 to 20% by weight of the material for an organic electroluminescent device according to any one of items 1 to 9.
【請求項14】 一対の電極間に発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、正孔注入材料、正孔
輸送材料又はドーピング材料の中から選ばれる少なくと
も一種類の材料に、請求項1〜9のいずれかに記載の有
機エレクトロルミネッセンス素子用材料を、それぞれ独
立に0.1〜20重量%含有することを特徴とする有機
エレクトロルミネッセンス素子。
14. An organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, selected from a hole injection material, a hole transport material, and a doping material. An organic electroluminescent device, characterized in that the organic electroluminescent device material according to any one of claims 1 to 9 is independently contained in the at least one type of material in an amount of 0.1 to 20% by weight.
【請求項15】 一対の電極間に発光層または発光層を
含む複数層の有機化合物薄膜を形成してなる有機エレク
トロルミネッセンス素子において、該発光層がスチルベ
ン誘導体及び請求項1〜9のいずれかに記載の素子用材
料を含有する層であることを特徴とする有機エレクトロ
ルミネッセンス素子。
15. An organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including the light emitting layer is formed between a pair of electrodes, wherein the light emitting layer is a stilbene derivative and any one of claims 1 to 9. An organic electroluminescence device, which is a layer containing the device material described in the above.
【請求項16】 芳香族三級アミン誘導体および/また
はフタロシアニン誘導体を含有する層を、発光層と陽極
との間に形成してなることを特徴とする請求項11〜1
5のいずれかに記載の有機エレクトロルミネッセンス素
子。
16. The method according to claim 11, wherein a layer containing an aromatic tertiary amine derivative and / or a phthalocyanine derivative is formed between the light emitting layer and the anode.
5. The organic electroluminescent device according to any one of 5.
JP34784899A 1998-12-28 1999-12-07 Material for organic electroluminescence device and organic electroluminescence device using the same Expired - Fee Related JP4117093B2 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
JP34784899A JP4117093B2 (en) 1998-12-28 1999-12-07 Material for organic electroluminescence device and organic electroluminescence device using the same
KR1020007009371A KR100688694B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020057012448A KR20050084516A (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020087015376A KR100869615B1 (en) 1998-12-28 1999-12-28 A material for organic electroluminescent element and an organic electroluminescent element comprising same
KR1020067007392A KR100688695B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
CNB998034193A CN1219747C (en) 1998-12-28 1999-12-28 Organic electroluminescent device
PCT/JP1999/007390 WO2000039247A1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020077025201A KR100869622B1 (en) 1998-12-28 1999-12-28 A material for organic electroluminescent element and an organic electroluminescent element comprising same
EP06110875A EP1666561A1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020057012450A KR20050084517A (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020077013672A KR100835021B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
KR1020067018289A KR100743337B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
US09/623,057 US6743948B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent device
KR1020067007393A KR100688696B1 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
EP07100259.6A EP1775335B9 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
EP99961465A EP1061112A4 (en) 1998-12-28 1999-12-28 Organic electroluminescent element
US10/179,179 US6951693B2 (en) 1998-12-28 2002-06-26 Organic electroluminescence device
US10/814,121 US20050038296A1 (en) 1998-12-28 2004-04-01 Organic electrolumescence device
US11/344,604 US20060189828A1 (en) 1998-12-28 2006-02-01 Organic electrolumescence device
US11/624,255 US20070142671A1 (en) 1998-12-28 2007-01-18 Organic electrolumescence device
US12/637,468 US20100160687A1 (en) 1998-12-28 2009-12-14 Organic electrolumescence device
US13/079,225 US20110175521A1 (en) 1998-12-28 2011-04-04 Organic electrolumescence device
US13/362,533 US20120153815A1 (en) 1998-12-28 2012-01-31 Organic electroluminescence device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP37392198 1998-12-28
JP14010399 1999-05-20
JP11-140103 1999-08-20
JP23465299 1999-08-20
JP10-373921 1999-08-20
JP11-234652 1999-08-20
JP34784899A JP4117093B2 (en) 1998-12-28 1999-12-07 Material for organic electroluminescence device and organic electroluminescence device using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008064474A Division JP4373477B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2008064481A Division JP4355352B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2001131541A true JP2001131541A (en) 2001-05-15
JP4117093B2 JP4117093B2 (en) 2008-07-09

Family

ID=27472283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34784899A Expired - Fee Related JP4117093B2 (en) 1998-12-28 1999-12-07 Material for organic electroluminescence device and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP4117093B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803126B2 (en) 2002-03-15 2004-10-12 Fujitsu Limited Organic EL element and organic EL display
US6821644B2 (en) 1999-12-15 2004-11-23 Samsung Sdi Co., Ltd. Organic electroluminescent device
WO2006070897A1 (en) * 2004-12-28 2006-07-06 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
WO2006082705A1 (en) * 2005-02-07 2006-08-10 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2006098080A1 (en) * 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device utilizing the same
JP2006298793A (en) * 2005-04-18 2006-11-02 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescence element using the same
WO2007058503A1 (en) 2005-11-18 2007-05-24 Lg Chem. Ltd. Emitting material and organic light emitting diode using the same
WO2007100096A1 (en) * 2006-03-03 2007-09-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2007105917A1 (en) * 2006-03-15 2007-09-20 Lg Chem, Ltd. Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
JP2008537948A (en) * 2005-04-14 2008-10-02 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
JP2008545630A (en) * 2005-05-20 2008-12-18 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
JP2009504730A (en) 2005-08-16 2009-02-05 グレイセル ディスプレイ インク. Green light emitting compound and light emitting device employing the same as light emitting material
WO2009057430A1 (en) * 2007-10-31 2009-05-07 Idemitsu Kosan Co., Ltd. Photoelectric converter material composed of acenaphthofluoranthene and photoelectric converter using the same
US7541099B2 (en) 2004-05-21 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
EP2067767A1 (en) 2007-12-04 2009-06-10 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2096108A1 (en) 2008-02-29 2009-09-02 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminscent device using the same
EP2103666A2 (en) 2008-03-20 2009-09-23 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2108690A1 (en) 2008-04-02 2009-10-14 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2009130991A1 (en) * 2008-04-23 2009-10-29 出光興産株式会社 Material for organic thin film solar cell, and organic thin film solar cell comprising the material
EP2141214A2 (en) 2008-06-25 2010-01-06 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
US7651786B2 (en) 2002-07-19 2010-01-26 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
JP2010529027A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene for blue light emitting applications
JP2010529034A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene for deep blue light emitting applications
US7838128B2 (en) 2005-07-14 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
US7879464B2 (en) 2005-07-27 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic appliance
KR101031719B1 (en) * 2002-11-12 2011-04-29 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent device and organic electroluminescent device using same
JP4832304B2 (en) * 2004-08-31 2011-12-07 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP2012509317A (en) * 2008-11-18 2012-04-19 エルジー・ケム・リミテッド Novel chrysene derivative and organic electronic device using the same
JP2012509346A (en) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene compounds for blue or green luminescence applications
US20120326602A1 (en) * 2010-03-09 2012-12-27 Merck Patent Gmbh Materials for electronic devices
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
US8815410B2 (en) 2004-12-28 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
WO2016013184A1 (en) * 2014-07-25 2016-01-28 保土谷化学工業株式会社 Organic electroluminescent element
WO2016079944A1 (en) * 2014-11-18 2016-05-26 保土谷化学工業株式会社 Organic electroluminescent element
US9368728B2 (en) 2010-04-23 2016-06-14 Udc Ireland Limited Material for organic electroluminescence device, and organic electroluminescence device

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821644B2 (en) 1999-12-15 2004-11-23 Samsung Sdi Co., Ltd. Organic electroluminescent device
US6803126B2 (en) 2002-03-15 2004-10-12 Fujitsu Limited Organic EL element and organic EL display
US10243145B2 (en) 2002-07-19 2019-03-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US7651786B2 (en) 2002-07-19 2010-01-26 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9343682B2 (en) 2002-07-19 2016-05-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9728727B2 (en) 2002-07-19 2017-08-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9960358B2 (en) 2002-07-19 2018-05-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US8178218B2 (en) 2002-11-12 2012-05-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
KR101031719B1 (en) * 2002-11-12 2011-04-29 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent device and organic electroluminescent device using same
US7541099B2 (en) 2004-05-21 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
US7914911B2 (en) 2004-05-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
JP4832304B2 (en) * 2004-08-31 2011-12-07 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
KR101213387B1 (en) * 2004-08-31 2012-12-17 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using same
US11296280B2 (en) 2004-12-28 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
US7732064B2 (en) 2004-12-28 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
WO2006070897A1 (en) * 2004-12-28 2006-07-06 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US8815410B2 (en) 2004-12-28 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
KR101367616B1 (en) 2004-12-28 2014-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Anthracene derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US10326078B2 (en) 2004-12-28 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light-emitting element using the same, and light-emitting device using the same
US9478751B2 (en) 2004-12-28 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
WO2006082705A1 (en) * 2005-02-07 2006-08-10 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
US7737628B2 (en) 2005-02-07 2010-06-15 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
KR101267124B1 (en) * 2005-02-07 2013-05-23 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using same
US8058478B2 (en) 2005-03-15 2011-11-15 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US7816017B2 (en) 2005-03-15 2010-10-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
KR101269817B1 (en) * 2005-03-15 2013-05-30 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescence device utilizing the same
WO2006098080A1 (en) * 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device utilizing the same
US8334058B2 (en) 2005-04-14 2012-12-18 Merck Patent Gmbh Compounds for organic electronic devices
JP2008537948A (en) * 2005-04-14 2008-10-02 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
JP2006298793A (en) * 2005-04-18 2006-11-02 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescence element using the same
US8852756B2 (en) 2005-05-20 2014-10-07 Merck Patent Gmbh Materials for organic electroluminescent devices
US9461249B2 (en) 2005-05-20 2016-10-04 Merck Patent Gmbh Compounds for organic electronic devices
JP2008545630A (en) * 2005-05-20 2008-12-18 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
US7838128B2 (en) 2005-07-14 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
US7879464B2 (en) 2005-07-27 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic appliance
JP2009504730A (en) 2005-08-16 2009-02-05 グレイセル ディスプレイ インク. Green light emitting compound and light emitting device employing the same as light emitting material
JP2011190454A (en) * 2005-08-16 2011-09-29 Gracel Display Inc Green electroluminescent compound and electroluminescent element using the same
EP1948755A1 (en) * 2005-11-18 2008-07-30 LG Chem, Ltd. Emitting material and organic light emitting diode using the same
WO2007058503A1 (en) 2005-11-18 2007-05-24 Lg Chem. Ltd. Emitting material and organic light emitting diode using the same
EP1948755A4 (en) * 2005-11-18 2010-03-10 Lg Chemical Ltd Emitting material and organic light emitting diode using the same
EP2305769A3 (en) * 2005-11-18 2011-04-27 LG Chem, Ltd. Emitting material and organic light emitting diode using the same
US8197951B2 (en) 2005-11-18 2012-06-12 Lg Chem, Ltd. Emitting material and organic light emitting diode using the same
WO2007100096A1 (en) * 2006-03-03 2007-09-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
US7642380B2 (en) 2006-03-03 2010-01-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
JP2007230960A (en) * 2006-03-03 2007-09-13 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent device using the same
US8137823B2 (en) 2006-03-15 2012-03-20 Lg Chem, Ltd. Anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
WO2007105917A1 (en) * 2006-03-15 2007-09-20 Lg Chem, Ltd. Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
KR100852328B1 (en) * 2006-03-15 2008-08-14 주식회사 엘지화학 Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
JP4842319B2 (en) * 2006-03-15 2011-12-21 エルジー・ケム・リミテッド Novel anthracene derivative, method for producing the same, and organic electroluminescent device using the same
JP2009502778A (en) * 2006-03-15 2009-01-29 エルジー・ケム・リミテッド Novel anthracene derivative, method for producing the same, and organic electroluminescent device using the same
JP2010529027A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene for blue light emitting applications
JP2010529034A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene for deep blue light emitting applications
WO2009057430A1 (en) * 2007-10-31 2009-05-07 Idemitsu Kosan Co., Ltd. Photoelectric converter material composed of acenaphthofluoranthene and photoelectric converter using the same
JP2009185024A (en) * 2007-12-04 2009-08-20 Gracel Display Inc New organic electroluminescent compound and organic electroluminescent device produced by using the same
EP2067767A1 (en) 2007-12-04 2009-06-10 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2096108A1 (en) 2008-02-29 2009-09-02 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminscent device using the same
EP2103666A2 (en) 2008-03-20 2009-09-23 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2108690A1 (en) 2008-04-02 2009-10-14 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2009249385A (en) * 2008-04-02 2009-10-29 Gracel Display Inc New organic electroluminescent compound, and organic electroluminescent element using the same
JP2009266955A (en) * 2008-04-23 2009-11-12 Idemitsu Kosan Co Ltd Material for organic thin film solar cell, and organic thin film solar cell comprising the same
WO2009130991A1 (en) * 2008-04-23 2009-10-29 出光興産株式会社 Material for organic thin film solar cell, and organic thin film solar cell comprising the material
EP2256176A1 (en) 2008-06-25 2010-12-01 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2141214A2 (en) 2008-06-25 2010-01-06 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2012509317A (en) * 2008-11-18 2012-04-19 エルジー・ケム・リミテッド Novel chrysene derivative and organic electronic device using the same
JP2012509346A (en) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Chrysene compounds for blue or green luminescence applications
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
US20120326602A1 (en) * 2010-03-09 2012-12-27 Merck Patent Gmbh Materials for electronic devices
US10273404B2 (en) * 2010-03-09 2019-04-30 Merck Patent Gmbh Materials for electronic devices
US9368728B2 (en) 2010-04-23 2016-06-14 Udc Ireland Limited Material for organic electroluminescence device, and organic electroluminescence device
JP5875742B1 (en) * 2014-07-25 2016-03-02 保土谷化学工業株式会社 Organic electroluminescence device
WO2016013184A1 (en) * 2014-07-25 2016-01-28 保土谷化学工業株式会社 Organic electroluminescent element
WO2016079944A1 (en) * 2014-11-18 2016-05-26 保土谷化学工業株式会社 Organic electroluminescent element

Also Published As

Publication number Publication date
JP4117093B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4117093B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4464070B2 (en) Arylamine compound and organic electroluminescence device using the same
JP3503403B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP4205059B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4838969B2 (en) Novel styryl compound and organic electroluminescence device
JP3998903B2 (en) Novel arylamine compound and organic electroluminescence device
JP3498533B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP3666086B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP4002040B2 (en) Organic electroluminescence device
JPWO2002038524A1 (en) Organic electroluminescence device
JPWO2004092111A1 (en) Aromatic amine derivative and organic electroluminescence device using the same
WO2010106806A1 (en) Aromatic amine derivative and organic electroluminescent element using same
JP2001102172A (en) Organic electroluminescent device
JP2005082701A (en) Material for organic electroluminescence element and organic electroluminescence element using the same
JP3924943B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2001335516A (en) Organic electroluminescence element
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2005082702A (en) Material for organic electroluminescent device and organic electroluminescent device using the same
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP3945032B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP4211191B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4682503B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4630378B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2000328052A (en) Material for organic electroluminescent material and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070809

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees