JP4211191B2 - Material for organic electroluminescence device and organic electroluminescence device using the same - Google Patents

Material for organic electroluminescence device and organic electroluminescence device using the same Download PDF

Info

Publication number
JP4211191B2
JP4211191B2 JP2000100384A JP2000100384A JP4211191B2 JP 4211191 B2 JP4211191 B2 JP 4211191B2 JP 2000100384 A JP2000100384 A JP 2000100384A JP 2000100384 A JP2000100384 A JP 2000100384A JP 4211191 B2 JP4211191 B2 JP 4211191B2
Authority
JP
Japan
Prior art keywords
aromatic
group
light emitting
organic
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000100384A
Other languages
Japanese (ja)
Other versions
JP2001288462A (en
Inventor
美智子 玉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2000100384A priority Critical patent/JP4211191B2/en
Publication of JP2001288462A publication Critical patent/JP2001288462A/en
Application granted granted Critical
Publication of JP4211191B2 publication Critical patent/JP4211191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は平面光源や表示に使用される有機エレクトロルミネッセンス(EL)素子用材料および高輝度の発光素子に関するものである。
【0002】
【従来の技術】
有機物質を使用したEL素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にEL素子は、発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入され、この電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。
【0003】
従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。
【0004】
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機EL素子が報告され、関心を集めている(アプライド・フィジクス・レターズ、51巻、913ページ、1987年参照)。
【0005】
この方法は、金属キレート錯体を発光層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜10Vの直流電圧で輝度は数1000(cd/m2)、最大発光効率は1.5(lm/W)を達成して、実用領域に近 い性能を持っている。
【0006】
【発明が解決しようとする課題】
しかしながら、現在までの青色有機EL素子は、構成の改善により発光強度は改良されているが、未だ充分な発光輝度は有していない。また、繰り返し使用時の安定性に劣るという大きな問題を持っている。
【0007】
本発明は、青色の発光色を持ち、発光輝度が高く、高い融点を有するために長い発光寿命を持つ有機EL素子用材料およびそれを用いた有機EL素子の提供にある。
【0008】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、一般式[1]で示される有機EL素子用材料を発光層に使用した有機EL素子は、青色発光を示し、発光輝度および発光効率が高く、発光寿命も優れていることを見いだした。また、一般式[1]で示される有機EL素子用発光材料は、アミノ基を1個のみ含有する為、イオン化ポテンシャルが、アミノ基を2個含有する化合物に比較して高くなる。この事は、正孔注入層からのバンドギャップが少なくなり、より高い発光効率を有する有用な発光素子となることを見出した。
【0009】
本発明は、下記一般式[1]で示され、かつ、極大発光波長が、400nm〜480nmの範囲内にある化合物からなる有機エレクトロルミネッセンス素子用材料に関する。
一般式[1]
【0010】
【化6】

Figure 0004211191
【0011】
[式中、Ar1は、下記一般式[2]〜[5]で表される部分構造式の少なくとも1つを含む官能基であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。Ar4およびAr5は、それぞれ独立に、アルキル基で置換されても良い1価の、1つの環のみからなる芳香族環残基もしくは2つの環のみからなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基またはそれらの結合体であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。Ar2およびAr3は、それぞれ独立に、2価の、1つの環のみからなる芳香族環残基もしくは2つの環のみからなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基またはそれらの結合体であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。XおよびYは、それぞれ独立に、直接結合、−O−、−S−、>C=O、>SO2、−Si(R1)R2、−PR1−、−P(=O)R1−、置換もしくは未置換のアルキレン基、−(CH2)n−O−(CH2)m−、または、置換もしくは未置換の脂肪族環残基を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表し、nおよびmは、それぞれ0〜20の整数を表すが、n+m=0となることはない。]
一般式[2]
【0012】
【化7】
Figure 0004211191
【0013】
一般式[3]
【0014】
【化8】
Figure 0004211191
【0015】
[式中、Aは、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、Bは、窒素原子、もしくは、−C(R1)=を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
一般式[4]
【0016】
【化9】
Figure 0004211191
【0017】
[式中、Aは、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、Bは、窒素原子、もしくは、−C(R1)=を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
一般式[5]
【0018】
【化10】
Figure 0004211191
【0019】
[式中、CおよびDは、それぞれ独立に、直接結合、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、いずれかの層が、上記有機エレクトロルミネッセンス素子用材料を単独もしくは混合物として含有することを特徴とする有機エレクトロルミネッセンス素子に関する。
【0020】
また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が上記有機エレクトロルミネッセンス素子用材料を単独もしくは混合物として含有することを特徴とする有機エレクトロルミネッセンス素子に関する。
【0021】
また、本発明は、さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする上記有機エレクトロルミネッセンス素子に関する。
【0022】
また、本発明は、正孔注入層が、アリールアミン誘導体、フタロシアニン化合物、およびトリフェニレン誘導体からなる群から選ばれる少なくとも1種を含有する層であることを特徴とする上記有機エレクトロルミネッセンス素子に関する。
【0023】
また、本発明は、さらに、陰極と発光層との間に電子注入層を形成することを特徴とする上記有機エレクトロルミネッセンス素子に関する。
【0024】
また、本発明は、電子注入層が、金属錯体化合物または含窒素芳香環化合物を含有する層であることを特徴とする上記有機エレクトロルミネッセンス素子に関する。
【0025】
【発明の実施の形態】
本発明で用いられる一般式[1]で示される化合物は、青色発光するために、400nm〜480nmの範囲内に極大発光波長を有することが必要である。このため、Ar1は、一般式[2]〜[5]で表される部分構造式の少なくとも1つを含む官能基であり、Ar2〜Ar5は、いずれも、置換されても良い、1つの環のみからなる芳香族残基もしくは2つの環のみからなる芳香族縮合環残基またはそれらの結合体である必要がある。
【0026】
本発明でいう芳香族環残基とは、芳香族性を示す環を骨格とする官能基であり、アリール基または複素環基であり、単環基と多環基とに区分される。
【0027】
また、本発明で言う芳香族縮合環残基とは、構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している環残基をいう。
【0028】
1つの環のみからなる芳香族残基としては、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基、3,5−ジクロロフェニル基などのアリール基と、
フラニル基、チオフェニル基、ピロール基、ピラニル基、チオピラニル基、ピリジニル基、チアゾリル基、イミダゾール基、ピリミジニル基、ピリジニル基、トリアジニル基などの複素環基とが挙げられる。
【0029】
2つの環のみからなる芳香族縮合環残基としては、ナフチル基、5−メチルナフチル基などのアリール基と、
インドリニル基、キノリル基、プリニル基などの複素環基とが挙げられる。
【0030】
さらに、ビフェニル基、あるいは一般式[4]で示す官能基のような1つの環のみからなる芳香族残基同士が、ペリ縮合やカタ縮合などの縮合環を形成しないで結合体をつくってもよい。
【0031】
また、2つの環のみからなる芳香族残基同士が、または1つの環のみからなる芳香族残基と2つの環のみからなる芳香族縮合環残基とが、ペリ縮合やカタ縮合などの縮合環を形成しないで結合体をつくってもよい。
【0032】
ただし、Ar1〜Ar5の少なくとも1つが、3つ以上の環からなる芳香族縮合環残基を含む場合、一般式[1]で示される化合物の極大発光波長は、480nmより大となり、もはや青色発光とは言えなくなる。
【0033】
本発明で、3つ以上の環からなる芳香族縮合環残基とは、アントラセン、フェナントレン、ペリレンなどであり、例えば、フェニルナフタレンは、フェニル基がペリ縮合もカタ縮合もしていないので、本発明で言う3つ以上の環からなる芳香族縮合環残基ではない。
【0034】
また、Ar1〜Ar5は、極大発光波長に影響しない範囲で、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アルキルチオ基、芳香族環基、シクロアルキル基で置換されていてもよい。
【0035】
また、Ar1〜Ar5のすべてが、ベンゼン環のみからなる場合は、極大発光波長は、400nmより小となり、もはや青色発光しなくなる。
【0036】
一般式[1]で示される化合物が、400〜480nmの範囲内に極大発光波長を持たせるためには、Ar1〜Ar5の少なくとも1つが、一般式[2]〜[5]で示される環骨格の少なくとも1つを有することが好ましい。特に、Ar1が、一般式[2]〜[5]で示される環骨格の少なくとも1つを有することが好ましい。
【0037】
一般式[1]のXおよびYは、それぞれ独立に、直接結合、−O−、−S−、>C=O、>SO2、−Si(R1)R2、−PR1−、−P(=O)R1−、置換もしくは未置換のアルキレン基、−(CH2)n−O−(CH2)m−、または、置換もしくは未置換の脂肪族環残基を表す。
【0038】
本発明におけるR1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。また、nおよびmは、それぞれ0〜20の整数を表すが、n+m=0となることはない。
【0039】
置換もしくは未置換のアルキレン基としては、メチレン基、エチレン基、プロピレン基など炭素数1〜20のアルキレン基のほか、
2−フェニルイソプロピレン基、ジクロロメチレン基、ジフルオロメチレン基、ベンジレン基、α−フェノキシベンジレン基、α, α−ジメチルベンジレン基、α, α−メチルフェニルベンジレン基、ジフェニルメチレン基、α−ベンジルオキシベンジレン基などの置換アルキレン基が挙げられる。
【0040】
置換もしくは未置換の脂肪族環残基としては、シクロペンチル環、シクロヘキシル環、4−メチルシクロヘキシル環、シクロヘオプチル環等の炭素数5〜7の脂肪族環の二価の残基が上げられる。
【0041】
置換もしくは未置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基等の炭素数1〜20の未置換直鎖状または分枝状アルキル基の他、
2−フェニルイソプロピル基、トリクロロメチル基、トリフロロメチル基、ベンジル基、α−フェノキシベンジル基、α、α−ジメチルベンジル基、α、α−メチルフェニルベンジル基、α、α−ジトリフルオロメチルベンジル基、トリフェニルメチル基、α−ベンジルオキシベンジル基等の炭素数1〜20のアルキル基の置換体がある。
【0042】
これらは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアリールオキシ基、または置換もしくは未置換のアリールチオ基などで置換されても良い。
【0043】
置換されてもよい置換基の具体例として、ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素がある。
【0044】
置換もしくは未置換のアルキル基としては、上記アルキル基と同じものが例示できる。
【0045】
置換もしくは未置換のアルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、t−ブトキシ基、n−オクチルオキシ基、t−オクチルオキシ基、1,1,1−テトラフルオロエトキシ基、フェノキシ基、ベンジルオキシ基、オクチルフェノキシ基等の炭素数1〜20のアルコキシル基がある。
【0046】
置換もしくは未置換のアリール基としては、上記アリール基と同じものが例示できる。
【0047】
置換もしくは未置換のアリールオキシ基としては、フェノキシ基、4−ニトロフェノキシ基、tert−ブチルフェノキシ基、3−フルオロフェノキシ基、ペンタフルオロフェニル基、トリフルオロメチルフェノキシ基等がある。
【0048】
置換または未置換のアリールチオ基としては、フェニルチオ基、4−メチルフェニルチオ基、tert−ブチルフェニルチオ基、3−フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3−トリフルオロメチルフェニルチオ基等がある。
【0049】
一般式[1]で示される化合物は、次の方法で合成することが出来る。不活性溶媒中で1個の水素原子が、ハロゲン化された一般式[2]〜一般式[5]で示される化合物と、芳香族ジアミン化合物を、銅等の触媒と共に200℃で長時間反応させて、一般式[1]で示される芳香族アミン化合物を合成する。もう一つの合成法としては、モノアミノ化された一般式[2]〜一般式[5]で示される化合物と、ハロゲン化アリール誘導体を、不活性溶媒中で反応させる方法がある。触媒としては、銅粉、塩化第一銅、錫、塩化第一錫等がある。溶媒は、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ニトロベンゼン等がある。
【0050】
一般式[1]で示される化合物を、有機EL素子の発光材料に使用した場合、それぞれの素子は青色の発光領域で高い発光効率を示した。さらには、本発明の材料は、200℃以上の融点を有するものが多く、最大発光輝度が高く、長寿命の素子を作製する際にも極めて有利である。
【0051】
一般式[1]で示される化合物の代表例を具体的に表1に例示するが、これらに限定されるものではない。
【0052】
【表1】
Figure 0004211191
【0053】
Figure 0004211191
【0054】
Figure 0004211191
【0055】
Figure 0004211191
【0056】
Figure 0004211191
【0057】
Figure 0004211191
【0058】
Figure 0004211191
【0059】
Figure 0004211191
【0060】
Figure 0004211191
【0061】
Figure 0004211191
【0062】
Figure 0004211191
【0063】
Figure 0004211191
【0064】
本発明の化合物は、固体状態において強い蛍光を持つ化合物であり電場発光性にも優れている。また、金属電極からの優れた電子注入性および電子輸送性を併せて持ち合わせているので、発光材料として有効に使用することができ、更には、他の正孔輸送性材料、電子輸送性材料もしくはドーピング材料を使用してもさしつかえない。
【0065】
有機EL素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、もしくは陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料もしくは電子注入材料を含有しても良い。しかしながら、本発明の発光材料は、極めて高い発光量子効率、高い正孔輸送能力および電子輸送能力を併せ持ち、均一な薄膜を形成することができるので、本発明の発光材料のみで発光層を形成することも可能である。多層型は、(陽極/正孔注入帯域/発光層/陰極)、(陽極/発光層/電子注入帯域/陰極)、(陽極/正孔注入帯域/発光層/電子注入帯域/陰極)の多層構成で積層した有機EL素子がある。本発明の化合物は、高い発光特性を持ち、正孔注入性、正孔輸送特性および電子注入性、電子輸送特性をもっているので、発光材料として発光層に使用できる。
【0066】
発光層には、必要があれば、本発明の化合物に加えて、さらなる公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもできる。有機EL素子は、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することが出来る。また、ドーピング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。また、正孔注入帯域、発光層、電子注入帯域は、それぞれ二層以上の層構成により形成されても良い。その際には、正孔注入帯域の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入帯域の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層もしくは金属電極との密着性等の各要因により選択されて使用される。
【0067】
本発明の化合物と共に発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレンおよび色素レーザー用や増白用の蛍光色素等があるが、これらに限定されるものではない。
【0068】
本発明の化合物および共に発光層に使用できる上記の化合物の発光層中での存在比率はどれが主成分であってもよい。つまり、上記の化合物および本発明における化合物のそれぞれの組み合わせにより、本発明における化合物は発光層を形成する主材料にも他の主材料中へのドーピンク材料にも成り得る。
【0069】
正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層または発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入帯域または電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等があるが、これらに限定されるものではない。
【0070】
本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、アリールアミン誘導体、フタロシアニン化合物ないしはトリフェニレン誘導体である。アリールアミン誘導体の具体例としては、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’−ジフェニル−N,N’−ジ−m−トリル−4,4’−ビフェニルジアミン、N,N,N’,N’−テトラ(p−トリル)−p−フェニレンジアミン、N,N,N’,N’−テトラ−p−トリル−4,4’−ビフェニルジアミン、N,N’−ジフェニル−N,N’−ジ(1−ナフチル)−4,4’−ビフェニルジアミン、N,N’−ジ(4−n−ブチルフェニル)−N,N’−ジ−p−トリル−9,10−フェナントレンジアミン、4,4’,4”−トリス(N−フェニル−N−m−トリルアミノ)トリフェニルアミン、1,1−ビス[4−(ジ−p−トリルアミノ)フェニル]シクロヘキサン等、もしくはこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマー等があるが、これらに限定されるものではない。
【0071】
フタロシアニン(Pc)化合物の具体例としては、H2Pc、CuPc、C oPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)A lPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc−O−GaPc等のフタロシアニン誘導体およびナフタロシアニン誘導体等があるが、これらに限定されるものではない。
【0072】
トリフェニレン誘導体の具体例としては、ヘキサメトキシトリフェニレン、ヘキサエトキシトリフェニレン、ヘキサヘキシルオキシトリフェニレン、ヘキサベンジルオキシトリフェニレン、トリメチレンジオキシトリフェニレン、トリエチレンジオキシトリフェニレンなどのヘキサアルコキシトリフェニレン類、ヘキサフェノキシトリフェニレン、ヘキサナフチルオキシトリフェニレン、ヘキサビフェニリルオキシトリフェニレン、トリフェニレンジオキシトリフェニレンなどのヘキサアリールオキシトリフェニレン類、ヘキサアセトキシトリフェニレン、ヘキサベンゾイルオキシトリフェニレンなどのヘキサアシロキシトリフェニレン類等があるが、これらに限定されるものではない。
【0073】
電子注入材料としては、電子を輸送する能力を持ち、陰極からの正孔注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入帯域への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体があるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。
【0074】
本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化合物もしくは含窒素五員環誘導体である。具体的には、金属錯体化合物としては、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−ヒドロキシキノリナート)クロロガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)フェノラートガリウム、ビス(o−(2−ベンゾオキサゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾチアゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾトリアゾリル)フェノラート)亜鉛等があるが、これらに限定されるものではない。
また、含窒素五員誘導体としては、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、ジメチルPOPOP、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5−フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−チアジアゾール、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等があるが、これらに限定されるものではない。
【0075】
本有機EL素子においては、発光層中に、本発明の化合物の他に、発光材料、ドーピング材料、正孔注入材料および電子注入材料の少なくとも1種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。
【0076】
有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
【0077】
陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム等およびそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。
【0078】
有機EL素子では、効率良く発光させるために、少なくとも一方は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン板、ポリエチレンテレフテレート板、ポリエーテルサルフォン板、ポリプロピレン板等の透明樹脂があげられる。
【0079】
本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が適しているが、10nmから0.2μmの範囲がさらに好ましい。
【0080】
湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂およびそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げることができる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げることができる。
【0081】
以上のように、有機EL素子の発光層に本発明の化合物を用いることにより、発光効率、最大発光輝度等の有機EL素子特性を改良することができた。また、この素子は熱や電流に対して非常に安定であり、さらには低い駆動電圧で実用的に使用可能の発光輝度が得られるため、従来まで大きな問題であった劣化も大幅に低下させることができた。
【0082】
本発明の有機EL素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。
【0083】
本発明の材料は、有機EL素子、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。
【0084】
【実施例】
以下、本発明を実施例に基づきさらに詳細に説明する。
化合物(1)の合成方法
1,3−ジメチル−2−イミダゾリジノン50ml中に、2−ブロモ−ベンゾチアゾール2.14g、1,4−ジビフェニルアミン3.70g、および炭酸カリウム6g、銅粉0.2gを入れ、200℃で50時間加熱撹拌した。その後、500mlの水で希釈し、酢酸エチルで抽出、濃縮して、シリカゲルを用いたカラムクロマトグラフィーにより精製を行ない青色の蛍光を有する粉末3gを得た。FD−MSよる分子量分析、NMRスペクトル等の分析により、化合物(1)であることを確認した。
化合物(8)の合成方法
ニトロベンゼン50ml中に、2−ブロモ−ナフタレン2.07g、1,4−ジビフェニルアミン4.00g、および炭酸カリウム6g、銅粉末0.2gを入れ、200℃にて30時間加熱撹拌した。その後、500部の水で希釈し、クロロホルムを用いて、抽出をおこなった。このクロロホルム層を濃縮し、シリカゲルを用いたカラムクロマトグラフィーにより精製を行い、n−ヘキサンで再沈殿をして青色の蛍光を有する粉末3.5gを得た。FD−MSよる分子量分析、NMRスペクトル等の分析により、化合物(8)であることを確認した。
この化合物の赤外吸収スペクトル(KBr錠剤法)を、図1に示す。また、蛍光スペクトル(クロロホルム溶液)を、図2に示す。
【0085】
以下に本発明の化合物を用いた実施例を示す。本例では、電極面積2mm×2mmの有機EL素子の特性を測定した。
【0086】
実施例1
洗浄したITO電極付きガラス板上に、発光材料として表1の化合物(1)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、ポリカーボネート樹脂(帝人化成:パンライトK−1300)を1:2:10の重量比でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して有機EL素子を得た。この素子の発光特性は、直流電圧5Vでの発光輝度20(cd/m2)、最大発光輝度450(cd/m2)、発光効率0.10(lm/W)の青色発光が得られた。
【0087】
実施例2
洗浄したITO電極付きガラス板上に、N,N’―(3―メチルフェニル)―N,N’―ジフェニル―1,1’―ビフェニル-4,4’―ジアミン(TPD) を真空蒸着して膜厚20nmの正孔注入層を得た。次いで、化合物(2)を蒸着し膜厚40nmの発光層を作成し、次いでトリス(8−ヒドロキシキノリナート)アルミニウム錯体(Alq3)を蒸着して膜厚30nmの電子注入層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は直流電圧5Vでの発光輝度60(cd/m2)、最大発光輝度5000(cd/m2)、発光効率0.5(lm/W)の青色発光が得られた。
【0088】
実施例3
洗浄したITO電極付きガラス板上に、化合物(7)を塩化メチレンに溶解させ、スピンコーティング法により膜厚50nmの正孔注入型発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)ガリウム錯体を真空蒸着して膜厚40nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層および電子注入層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vでの発光輝度100(cd/m2) 、最大発光輝度5500(cd/m2)、発光効率0.60(lm/W)の青色発光が得られた。
【0089】
実施例4
洗浄したITO電極付きガラス板上に、化合物(11)を真空蒸着して膜厚50nmの正孔注入型発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム錯体を真空蒸着して膜厚30nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層および電子注入層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vでの発光輝度150(cd/m2)、最大発光輝度10000(cd/m2)、発光効率1.1(lm/W)の青色発光が得られた。
【0090】
実施例5〜14
洗浄したITO電極付きガラス板上に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)を真空蒸着して膜厚30nmの正孔注入層を形成した。次いで、発光材料として表1の化合物を真空蒸着して膜厚30nmの発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム錯体を真空蒸着して膜厚30nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性を表2に示す。ここでの発光輝度は、直流電圧5V印加時の輝度である。本実施例の有機EL素子は、全て最高輝度5000(cd/m2)以上の高輝度特性を有し、 また、青色までの発光色を得ることができた。
【0091】
【表2】
Figure 0004211191
【0092】
実施例15
洗浄したITO電極付きガラス板上に、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンを真空蒸着して、膜厚40nmの正孔注入層を得た。次いで、α−NPDを真空蒸着して、膜厚10nmの第二正孔注入層を得た。さらに、化合物(8)を真空蒸着して、膜厚30nmの発光層を作成し、さらにビス(2−メチル−8−ヒドロキシキノリナート)(1−フェノラート)ガリウム錯体を真空蒸着して膜厚30nmの電子注入層を作成し、その上に、アルミニウムとリチウムを25:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vでの発光輝度210(cd/m2)、最大発光輝度9000(cd/m2)、発光効率1.2(lm/W)の青色発光が得られた。
【0093】
実施例16
ITO電極と化合物(18)との間に、銅フタロシアニンの膜厚5nmの正孔注入層を設ける以外は、実施例3と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vで発光輝度60(cd/m2)、最大発光輝度12000(cd/m2)、発光効率1.1(lm/W)の青色発光が得られた。
【0094】
実施例17
4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンの代わりに無金属フタロシアニンの膜厚20nmの正孔注入層を設ける以外は、実施例15と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vでの発光輝度50(cd/m2)、最大発光輝度110 00(cd/m2)、発光効率1.1(lm/W)の青色発光が得られた。
【0095】
実施例18
発光層として、化合物(2):α−NPDを1:100の割合で蒸着した膜厚30nmの薄膜を設ける以外は、実施例5と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vでの発光輝度150(cd/m2)最大発光輝度 12000(cd/m2)、発光効率1.1(lm/W)の青色発光が得られた 。
【0096】
実施例19
発光層として、化合物(19):ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム錯体を1:100の割合で蒸着した膜厚30nmの薄膜を設ける以外は、実施例5と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vでの発光輝度290(cd/m2)、最大発光輝度12000(c d/m2)、発光効率1.1(lm/W)の青色発光が得られた。
【0097】
実施例20
発光層として、化合物(24):ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム錯体を1:100の割合で蒸着した膜厚30nmの薄膜を設ける以外は、実施例5と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vでの発光輝度150(cd/m2)、最大発光輝度15000(c d/m2)、発光効率1.4(lm/W)の青色発光が得られた。
【0098】
比較例1
洗浄したITO電極付きガラス板上に、4,4'−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)を真空蒸着して膜厚30nmの正孔注入層を形成した。次いで、発光材料として化合物(3)を真空蒸着して膜厚30nmの発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム錯体を真空蒸着して膜厚30nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vでの発光輝度100(cd/m2)、最大発光輝度4200(cd/m2)、発光効率0.4(lm/W)の青色発光が得られが、その発光面は斑が見られ、発光寿命は数時間であった。
化合物[3
【0099】
【化11】
Figure 0004211191
【0100】
本実施例で示された有機EL素子は、二層型以上の素子構成において、最大発光輝度5000(cd/m2)以上の発光が得られ、全て高い発光効率を得る ことができた。本実施例で示された有機EL素子について、3(mA/cm2) で連続発光させたところ、1000時間以上安定な発光を観測することができた。
【0101】
本発明の有機EL素子は発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光材料、ドーピング材料、正孔注入材料、電子注入材料、増感剤、樹脂、電極材料等および素子作製方法を限定するものではない。
【0102】
【発明の効果】
本発明の有機EL素子材料を発光材料として使用した有機EL素子は、青色発光し、従来に比べて高い発光効率で高輝度であり、高いガラス転移点または融点有するために長い発光寿命を持つ有機EL素子を得ることができた。
【図面の簡単な説明】
【図1】化合物(8)の赤外線吸収スペクトル図
【図2】化合物(8)の蛍光スペクトル図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material for an organic electroluminescence (EL) element used for a flat light source and a display, and a high-luminance light-emitting element.
[0002]
[Prior art]
An EL element using an organic substance is considered to be promising for use as an inexpensive large-area full-color display element of a solid light emitting type, and many developments have been made. In general, an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, holes are injected from the anode side, these electrons recombine with holes in the light emitting layer, and the energy level is in the conduction band. This is a phenomenon in which energy is released as light when returning from the valence band to the.
[0003]
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic EL elements. Further, the characteristic deterioration has been remarkably not put into practical use.
[0004]
In recent years, organic EL devices in which thin films containing organic compounds with high fluorescence quantum efficiency that emit light at a low voltage of 10 V or less have been reported and attracted attention (Applied Physics Letters, Vol. 51, page 913). 1987).
[0005]
This method uses a metal chelate complex as a light-emitting layer and an amine compound as a hole-injection layer to obtain high-luminance green light emission. The luminance is several thousand (cd / m) at a DC voltage of 6 to 10 V.2) The maximum luminous efficiency is 1.5 (lm / W), and the performance is close to the practical range.
[0006]
[Problems to be solved by the invention]
However, the blue organic EL elements up to now have improved light emission intensity due to the improvement of the structure, but do not yet have sufficient light emission luminance. Moreover, it has a big problem that it is inferior in stability during repeated use.
[0007]
The present invention provides a material for an organic EL element having a blue emission color, a high emission luminance, and a high melting point, and a long emission lifetime, and an organic EL element using the same.
[0008]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, an organic EL element using the organic EL element material represented by the general formula [1] for the light emitting layer exhibits blue light emission, high light emission luminance and light emission efficiency, and a light emission lifetime. I found it superior. Moreover, since the light emitting material for organic EL elements represented by the general formula [1] contains only one amino group, the ionization potential is higher than that of a compound containing two amino groups. This has been found that the band gap from the hole injection layer is reduced, and a useful light emitting device having higher luminous efficiency is obtained.
[0009]
The present invention relates to a material for an organic electroluminescence device comprising a compound represented by the following general formula [1] and having a maximum emission wavelength in the range of 400 nm to 480 nm.
General formula [1]
[0010]
[Chemical 6]
Figure 0004211191
[0011]
[Wherein Ar1Is a functional group containing at least one of the partial structural formulas represented by the following general formulas [2] to [5], and is composed of three or more rings.All aromatic rings are peri-fused or cata-fused with any other aromatic ringDoes not contain aromatic fused ring residues. ArFourAnd ArFiveAre independent of each otherSubstituted with an alkyl groupMonovalent aromatic ring residue consisting of only one ring or consisting of only two ringsAll aromatic rings are peri-fused or cata-fused with any other aromatic ringAn aromatic fused ring residue or a combination thereof, and comprising three or more ringsAll aromatic rings are peri-fused or cata-fused with any other aromatic ringDoes not contain aromatic fused ring residues. Ar2And ArThreeEach independently2A valent aromatic ring residue consisting of only one ring or consisting of only two ringsAll aromatic rings are peri-fused or cata-fused with any other aromatic ringAn aromatic fused ring residue or a combination thereof, and comprising three or more ringsAll aromatic rings are peri-fused or cata-fused with any other aromatic ringDoes not contain aromatic fused ring residues. X and Y are each independently a direct bond, -O-, -S-,> C = O,> SO2, -Si (R1) R2,-PR1-, -P (= O) R1-, Substituted or unsubstituted alkylene group,-(CH2) N-O- (CH2) M- or a substituted or unsubstituted aliphatic ring residue, R1And R2Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue, and n and m each represent an integer of 0 to 20, but n + m = 0 does not occur. ]
General formula [2]
[0012]
[Chemical 7]
Figure 0004211191
[0013]
General formula [3]
[0014]
[Chemical 8]
Figure 0004211191
[0015]
[Wherein, A represents an oxygen atom, a sulfur atom, -C (R1) (R2)-Or -N (R1)-, And B is a nitrogen atom or -C (R1) = And R1And R2Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
General formula [4]
[0016]
[Chemical 9]
Figure 0004211191
[0017]
[Wherein, A represents an oxygen atom, a sulfur atom, -C (R1) (R2)-Or -N (R1)-, And B is a nitrogen atom or -C (R1) = And R1And R2Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
General formula [5]
[0018]
[Chemical Formula 10]
Figure 0004211191
[0019]
[Wherein, C and D are each independently a direct bond, an oxygen atom, a sulfur atom, -C (R1) (R2)-Or -N (R1)-, R1And R2Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
In addition, the present invention provides an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, and any one of the layers is a single material for the organic electroluminescent device. Or it relates to the organic electroluminescent element characterized by containing as a mixture.
[0020]
In addition, the present invention provides an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, and the light emitting layer includes the above organic electroluminescent device material alone or as a mixture. It is related with the organic electroluminescent element characterized by containing.
[0021]
The present invention further relates to the organic electroluminescence element, wherein a hole injection layer is formed between the anode and the light emitting layer.
[0022]
In addition, the present invention relates to the organic electroluminescence device, wherein the hole injection layer is a layer containing at least one selected from the group consisting of an arylamine derivative, a phthalocyanine compound, and a triphenylene derivative.
[0023]
The present invention further relates to the organic electroluminescence element, wherein an electron injection layer is formed between the cathode and the light emitting layer.
[0024]
In addition, the present invention relates to the organic electroluminescence device, wherein the electron injection layer is a layer containing a metal complex compound or a nitrogen-containing aromatic ring compound.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The compound represented by the general formula [1] used in the present invention needs to have a maximum emission wavelength within a range of 400 nm to 480 nm in order to emit blue light. For this reason, Ar1Is a functional group containing at least one of the partial structural formulas represented by the general formulas [2] to [5], and Ar2~ ArFiveMust be an aromatic residue consisting of only one ring or an aromatic condensed ring residue consisting of only two rings, or a combination thereof, which may be substituted.
[0026]
The aromatic ring residue referred to in the present invention is a functional group having an aromatic ring as a skeleton, and is an aryl group or a heterocyclic group, and is classified into a monocyclic group and a polycyclic group.
[0027]
In addition, the aromatic fused ring residue referred to in the present invention refers to a ring residue in which all the aromatic rings are peri-condensed or cata-condensed with any other aromatic ring.
[0028]
Aromatic residues consisting of only one ring include aryl groups such as phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-ethylphenyl group, and 3,5-dichlorophenyl group. When,
Examples thereof include heterocyclic groups such as a furanyl group, a thiophenyl group, a pyrrole group, a pyranyl group, a thiopyranyl group, a pyridinyl group, a thiazolyl group, an imidazole group, a pyrimidinyl group, a pyridinyl group, and a triazinyl group.
[0029]
As an aromatic condensed ring residue consisting of only two rings, an aryl group such as a naphthyl group and a 5-methylnaphthyl group,
And heterocyclic groups such as indolinyl group, quinolyl group, and purinyl group.
[0030]
Furthermore, even if an aromatic residue consisting of only one ring such as a biphenyl group or a functional group represented by the general formula [4] forms a conjugate without forming a condensed ring such as peri-condensation or cata-condensation. Good.
[0031]
Aromatic residues consisting of only two rings, or an aromatic residue consisting of only one ring and an aromatic condensed ring residue consisting of only two rings are condensed such as peri-condensation and cata-condensation. A conjugate may be formed without forming a ring.
[0032]
However, Ar1~ ArFiveWhen at least one of the above includes an aromatic fused ring residue composed of three or more rings, the maximum emission wavelength of the compound represented by the general formula [1] becomes longer than 480 nm, and it can no longer be said to emit blue light.
[0033]
In the present invention, an aromatic condensed ring residue composed of three or more rings is anthracene, phenanthrene, perylene, etc. For example, phenylnaphthalene is not peri-condensed or cata-condensed in the phenyl group. It is not an aromatic condensed ring residue composed of three or more rings.
[0034]
Ar1~ ArFiveMay be substituted with a halogen atom, a cyano group, an alkyl group, an alkoxy group, an alkylthio group, an aromatic ring group, or a cycloalkyl group as long as they do not affect the maximum emission wavelength.
[0035]
Ar1~ ArFiveWhen all of these consist only of a benzene ring, the maximum emission wavelength is smaller than 400 nm and no longer emits blue light.
[0036]
In order for the compound represented by the general formula [1] to have a maximum emission wavelength in the range of 400 to 480 nm, Ar1~ ArFiveIt is preferable that at least one of has at least one of the ring skeletons represented by the general formulas [2] to [5]. In particular, Ar1Preferably has at least one of the ring skeletons represented by the general formulas [2] to [5].
[0037]
X and Y in the general formula [1] are each independently a direct bond, -O-, -S-,> C = O,> SO2, -Si (R1) R2,-PR1-, -P (= O) R1-, Substituted or unsubstituted alkylene group,-(CH2) N-O- (CH2) M- or a substituted or unsubstituted aliphatic ring residue.
[0038]
R in the present invention1And R2Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. N and m each represent an integer of 0 to 20, but n + m = 0 does not occur.
[0039]
Examples of the substituted or unsubstituted alkylene group include alkylene groups having 1 to 20 carbon atoms such as a methylene group, an ethylene group, and a propylene group,
2-phenylisopropylene group, dichloromethylene group, difluoromethylene group, benzylene group, α-phenoxybenzylene group, α, α-dimethylbenzylene group, α, α-methylphenylbenzylene group, diphenylmethylene group, α- A substituted alkylene group such as a benzyloxybenzylene group can be mentioned.
[0040]
Examples of the substituted or unsubstituted aliphatic ring residue include divalent residues of an aliphatic ring having 5 to 7 carbon atoms such as a cyclopentyl ring, a cyclohexyl ring, a 4-methylcyclohexyl ring, and a cycloheoptyl ring.
[0041]
Examples of the substituted or unsubstituted alkyl group include carbon number such as methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, and stearyl group. In addition to 1-20 unsubstituted linear or branched alkyl groups,
2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α, α-ditrifluoromethylbenzyl group , Triphenylmethyl groups, α-benzyloxybenzyl groups and the like, which are substituted with alkyl groups having 1 to 20 carbon atoms.
[0042]
These are each independently a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, or It may be substituted with a substituted or unsubstituted arylthio group.
[0043]
Specific examples of the substituent which may be substituted include fluorine, chlorine, bromine and iodine as the halogen atom.
[0044]
Examples of the substituted or unsubstituted alkyl group are the same as the above alkyl groups.
[0045]
Examples of the substituted or unsubstituted alkoxyl group include methoxy group, ethoxy group, propoxy group, n-butoxy group, t-butoxy group, n-octyloxy group, t-octyloxy group, 1,1,1-tetrafluoroethoxy Group, a phenoxy group, a benzyloxy group, an octylphenoxy group and the like, and an alkoxyl group having 1 to 20 carbon atoms.
[0046]
Examples of the substituted or unsubstituted aryl group are the same as the above aryl groups.
[0047]
Examples of the substituted or unsubstituted aryloxy group include a phenoxy group, a 4-nitrophenoxy group, a tert-butylphenoxy group, a 3-fluorophenoxy group, a pentafluorophenyl group, and a trifluoromethylphenoxy group.
[0048]
Examples of the substituted or unsubstituted arylthio group include phenylthio group, 4-methylphenylthio group, tert-butylphenylthio group, 3-fluorophenylthio group, pentafluorophenylthio group, and 3-trifluoromethylphenylthio group. is there.
[0049]
The compound represented by the general formula [1] can be synthesized by the following method. In an inert solvent, a compound represented by the general formulas [2] to [5] in which one hydrogen atom is halogenated and an aromatic diamine compound are reacted together with a catalyst such as copper at 200 ° C. for a long time. Thus, an aromatic amine compound represented by the general formula [1] is synthesized. As another synthesis method, there is a method in which a monoaminated compound represented by the general formula [2] to the general formula [5] is reacted with a halogenated aryl derivative in an inert solvent. Examples of the catalyst include copper powder, cuprous chloride, tin, and stannous chloride. Examples of the solvent include N, N-dimethylformamide, dimethyl sulfoxide, and nitrobenzene.
[0050]
When the compound represented by the general formula [1] was used as a light emitting material of an organic EL device, each device showed high luminous efficiency in a blue light emitting region. Furthermore, many of the materials of the present invention have a melting point of 200 ° C. or higher, which is extremely advantageous when a device having a high maximum light emission luminance and a long lifetime is produced.
[0051]
Although the typical example of a compound shown by General formula [1] is specifically illustrated in Table 1, it is not limited to these.
[0052]
[Table 1]
Figure 0004211191
[0053]
Figure 0004211191
[0054]
Figure 0004211191
[0055]
Figure 0004211191
[0056]
Figure 0004211191
[0057]
Figure 0004211191
[0058]
Figure 0004211191
[0059]
Figure 0004211191
[0060]
Figure 0004211191
[0061]
Figure 0004211191
[0062]
Figure 0004211191
[0063]
Figure 0004211191
[0064]
The compound of the present invention is a compound having strong fluorescence in the solid state and excellent in electroluminescence. In addition, since it has excellent electron injecting property and electron transporting property from the metal electrode, it can be used effectively as a light emitting material, and further, other hole transporting material, electron transporting material or Doping materials can be used.
[0065]
An organic EL element is an element in which a single-layer or multilayer organic thin film is formed between an anode and a cathode. In the case of the single layer type, a light emitting layer is provided between the anode and the cathode. The light-emitting layer contains a light-emitting material, and may further contain a hole-injecting material or an electron-injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light-emitting material. However, since the light emitting material of the present invention has extremely high emission quantum efficiency, high hole transport ability and electron transport ability and can form a uniform thin film, the light emitting layer is formed only by the light emitting material of the present invention. It is also possible. The multi-layer type includes (anode / hole injection band / light emitting layer / cathode), (anode / light emitting layer / electron injection band / cathode), and (anode / hole injection band / light emitting layer / electron injection band / cathode). There are organic EL elements stacked in a configuration. Since the compound of the present invention has high light emission characteristics and has hole injection properties, hole transport properties, electron injection properties, and electron transport properties, it can be used as a light emitting material in a light emitting layer.
[0066]
If necessary, in addition to the compound of the present invention, further known light-emitting materials, doping materials, hole injection materials, and electron injection materials can be used for the light-emitting layer. By making the organic EL element have a multi-layer structure, it is possible to prevent a decrease in luminance and lifetime due to quenching. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, the luminance and luminous efficiency can be improved, and red and blue light emission can be obtained. Moreover, the hole injection zone, the light emitting layer, and the electron injection zone may each be formed with a layer configuration of two or more layers. In that case, in the case of the hole injection zone, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call. Similarly, in the case of an electron injection zone, a layer for injecting electrons from an electrode is referred to as an electron injection layer, and a layer for receiving electrons from the electron injection layer and transporting electrons to a light emitting layer is referred to as an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
[0067]
Examples of the light emitting material or doping material that can be used in the light emitting layer together with the compound of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetra Phenylbutadiene, coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, Thiopyran, polymethine, merocyanine, imidazole chelating oxinoid compounds, quinacridone, rubrene and There are fluorescent dyes for dye laser for and brightening, but not limited thereto.
[0068]
Any ratio of the compound of the present invention and the above compound that can be used in the light emitting layer in the light emitting layer may be the main component. That is, by the combination of the above-described compound and the compound in the present invention, the compound in the present invention can be a main material for forming a light emitting layer or a dopink material in another main material.
[0069]
As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and excitons generated in the light emitting layer. Examples thereof include compounds that prevent movement to an electron injection zone or an electron injection material and have an excellent thin film forming ability. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, etc., and their derivatives, and polymer materials such as polyvinyl carbazole, polysilane, conductive polymer, etc. However, it is not limited to these.
[0070]
Among the hole injection materials that can be used in the organic EL device of the present invention, more effective hole injection materials are arylamine derivatives, phthalocyanine compounds, or triphenylene derivatives. Specific examples of the arylamine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-di-m-tolyl-4,4′-biphenyldiamine, N, N, N ', N'-tetra (p-tolyl) -p-phenylenediamine, N, N, N', N'-tetra-p-tolyl-4,4'-biphenyldiamine, N, N'-diphenyl-N, N′-di (1-naphthyl) -4,4′-biphenyldiamine, N, N′-di (4-n-butylphenyl) -N, N′-di-p-tolyl-9,10-phenanthrenediamine 4,4 ′, 4 ″ -tris (N-phenyl-Nm-tolylamino) triphenylamine, 1,1-bis [4- (di-p-tolylamino) phenyl] cyclohexane, or the like There are oligomers or polymers having tertiary amine skeletons, though not particularly limited thereto.
[0071]
Specific examples of the phthalocyanine (Pc) compound include H2Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2Examples include, but are not limited to, phthalocyanine derivatives such as SiPc, (HO) AlPc, (HO) GaPc, VOPc, TiOPc, MoOPc, and GaPc-O-GaPc, and naphthalocyanine derivatives.
[0072]
Specific examples of triphenylene derivatives include hexaalkoxytriphenylenes such as hexamethoxytriphenylene, hexaethoxytriphenylene, hexahexyloxytriphenylene, hexabenzyloxytriphenylene, trimethylenedioxytriphenylene, triethylenedioxytriphenylene, hexaphenoxytriphenylene, hexanaphthyl. Examples include, but are not limited to, hexaaryloxytriphenylenes such as oxytriphenylene, hexabiphenylyloxytriphenylene, and triphenylenedioxytriphenylene, and hexaacyloxytriphenylenes such as hexaacetoxytriphenylene and hexabenzoyloxytriphenylene.
[0073]
As an electron injection material, it has the ability to transport electrons, has a hole injection effect from the cathode, and an excellent electron injection effect for the light-emitting layer or light-emitting material, and hole injection of excitons generated in the light-emitting layer Examples thereof include compounds that prevent migration to the zone and have an excellent thin film forming ability. For example, there are fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, and their derivatives. However, it is not limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
[0074]
In the organic EL device of the present invention, a more effective electron injection material is a metal complex compound or a nitrogen-containing five-membered ring derivative. Specifically, as the metal complex compound, 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) zinc, bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese , Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium Bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-hydroxyquinolinato) chlorogallium, bis (2-methyl-8-hydroxyquinolinato) (o-cresolate) gallium, Bis (2-methyl-8-hydroxyquinolinate) (1-naphthlar ) Aluminum, bis (2-methyl-8-hydroxyquinolinato) (2-naphtholato) gallium, bis (2-methyl-8-hydroxyquinolinato) phenolate gallium, bis (o- (2-benzoxazolyl) (L) phenolate) zinc, bis (o- (2-benzothiazolyl) phenolate) zinc, bis (o- (2-benzotriazolyl) phenolate) zinc, and the like, but are not limited thereto.
Further, as the nitrogen-containing five-membered derivative, an oxazole, thiazole, oxadiazole, thiadiazole or triazole derivative is preferable. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, dimethyl POPOP, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5- Bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-oxadiazole, 2, 5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyl) Oxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1- Naphthyl) -1,3,4-thiadiazole, 1,4-bis [2- (5 Phenylthiadiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1, Examples include, but are not limited to, 3,4-triazole and 1,4-bis [2- (5-phenyltriazolyl)] benzene.
[0075]
In the organic EL device, in the light emitting layer, in addition to the compound of the present invention, at least one of a light emitting material, a doping material, a hole injection material, and an electron injection material may be contained in the same layer. In order to improve the stability of the organic EL device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
[0076]
As a conductive material used for an anode of an organic EL element, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, etc. Further, metal oxides such as tin oxide and indium oxide used for alloys thereof, ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
[0077]
As the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, and alloys thereof are used. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
[0078]
In the organic EL element, in order to efficiently emit light, it is desirable that at least one of the elements be sufficiently transparent in the light emission wavelength region of the element. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency. For example, a glass substrate, a polyethylene plate, a polyethylene terephthalate plate, a polyethersulfone plate, Examples thereof include a transparent resin such as a polypropylene plate.
[0079]
For the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
[0080]
In the case of the wet film forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
[0081]
As described above, by using the compound of the present invention in the light emitting layer of the organic EL device, the organic EL device characteristics such as the light emission efficiency and the maximum light emission luminance can be improved. In addition, this element is extremely stable against heat and current, and can be used for light emission brightness that can be used practically at a low driving voltage, so that the degradation that has been a major problem until now is greatly reduced. I was able to.
[0082]
The organic EL device of the present invention can be applied to flat panel displays such as wall-mounted TVs, flat light emitters, light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. The industrial value is very large.
[0083]
The material of the present invention can also be used in the fields of organic EL devices, electrophotographic photoreceptors, photoelectric conversion devices, solar cells, image sensors and the like.
[0084]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
Method for synthesizing compound (1)
In 50 ml of 1,3-dimethyl-2-imidazolidinone, 2.14 g of 2-bromo-benzothiazole, 3.70 g of 1,4-diphenylphenylamine, 6 g of potassium carbonate, and 0.2 g of copper powder were added. The mixture was stirred at 50 ° C. for 50 hours. Thereafter, the mixture was diluted with 500 ml of water, extracted with ethyl acetate, concentrated, and purified by column chromatography using silica gel to obtain 3 g of a powder having blue fluorescence. It was confirmed to be the compound (1) by analysis of molecular weight analysis, NMR spectrum, etc. by FD-MS.
Method for synthesizing compound (8)
In 50 ml of nitrobenzene, 2.07 g of 2-bromo-naphthalene, 4.00 g of 1,4-diphenylphenylamine, 6 g of potassium carbonate, and 0.2 g of copper powder were added and stirred with heating at 200 ° C. for 30 hours. Then, it diluted with 500 parts of water and extracted using chloroform. The chloroform layer was concentrated, purified by column chromatography using silica gel, and reprecipitated with n-hexane to obtain 3.5 g of a powder having blue fluorescence. It was confirmed to be the compound (8) by analysis such as molecular weight analysis by FD-MS and NMR spectrum.
The infrared absorption spectrum (KBr tablet method) of this compound is shown in FIG. Further, the fluorescence spectrum (chloroform solution) is shown in FIG.
[0085]
Examples using the compounds of the present invention are shown below. In this example, the characteristics of an organic EL element having an electrode area of 2 mm × 2 mm were measured.
[0086]
Example 1
On the washed glass plate with an ITO electrode, the compound (1) in Table 1 as a luminescent material, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, polycarbonate resin (Teijin Chemicals: Panlite) K-1300) was dissolved in tetrahydrofuran at a weight ratio of 1: 2: 10, and a light emitting layer having a thickness of 100 nm was obtained by a spin coating method. On top of that, an electrode having a thickness of 150 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic EL element. The light emission characteristics of this element are as follows: light emission luminance at a DC voltage of 5 V (cd / m 2)2), Maximum emission brightness 450 (cd / m)2), Blue light emission with a luminous efficiency of 0.10 (lm / W) was obtained.
[0087]
Example 2
N, N '-(3-methylphenyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (TPD) was vacuum-deposited on the cleaned glass plate with an ITO electrode. A hole injection layer having a thickness of 20 nm was obtained. Subsequently, the compound (2) was vapor-deposited to prepare a light-emitting layer having a thickness of 40 nm, and then tris (8-hydroxyquinolinato) aluminum complex (Alq3) was vapor-deposited to obtain an electron injection layer having a thickness of 30 nm. On top of that, an electrode having a thickness of 100 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic EL element. The hole injection layer and the light emitting layer are 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has a light emission luminance of 60 (cd / m) at a DC voltage of 5V.2), Maximum emission brightness 5000 (cd / m)2), Blue light emission with a luminous efficiency of 0.5 (lm / W) was obtained.
[0088]
Example 3
Compound (7) was dissolved in methylene chloride on the washed glass plate with the ITO electrode, and a 50 nm-thick hole injection type light emitting layer was obtained by spin coating. Next, a bis (2-methyl-8-hydroxyquinolinate) (1-naphtholate) gallium complex is vacuum-deposited to form an electron injection layer having a thickness of 40 nm, and magnesium and silver are added at a ratio of 10: 1. An electrode having a thickness of 100 nm was formed from the mixed alloy to obtain an organic EL device. The light emitting layer and the electron injection layer are 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has an emission luminance of 100 (cd / m at a DC voltage of 5 V).2), Maximum luminance of 5500 (cd / m)2), Blue light emission with a luminous efficiency of 0.60 (lm / W) was obtained.
[0089]
Example 4
On the washed glass plate with an ITO electrode, the compound (11) was vacuum-deposited to obtain a hole injection type light emitting layer having a thickness of 50 nm. Subsequently, a bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium complex was vacuum-deposited to form an electron injection layer having a thickness of 30 nm, and magnesium and silver were mixed at a ratio of 10: 1. An electrode having a film thickness of 100 nm was formed from an alloy to obtain an organic EL device. The light emitting layer and the electron injection layer are 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has an emission luminance of 150 (cd / m at a DC voltage of 5 V).2), Maximum emission luminance of 10,000 (cd / m)2), Blue light emission with a luminous efficiency of 1.1 (lm / W) was obtained.
[0090]
Examples 5-14
On a cleaned glass plate with an ITO electrode, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was vacuum-deposited to form a hole injection layer having a thickness of 30 nm. Formed. Subsequently, the compound of Table 1 was vacuum-deposited as a luminescent material, and the light emitting layer with a film thickness of 30 nm was obtained. Subsequently, a bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium complex was vacuum-deposited to form an electron injection layer having a thickness of 30 nm, and magnesium and silver were mixed at a ratio of 10: 1. An electrode having a film thickness of 100 nm was formed from an alloy to obtain an organic EL device. The hole injection layer and the light emitting layer are 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. The light emission characteristics of this element are shown in Table 2. The emission luminance here is the luminance when a DC voltage of 5 V is applied. The organic EL elements of this example all have a maximum brightness of 5000 (cd / m2) High luminance characteristics as described above, and emission colors up to blue could be obtained.
[0091]
[Table 2]
Figure 0004211191
[0092]
Example 15
4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine is vacuum-deposited on a cleaned glass plate with an ITO electrode to inject holes with a thickness of 40 nm. Next, α-NPD was vacuum-deposited to obtain a second hole injection layer having a thickness of 10 nm, and compound (8) was further vacuum-deposited to produce a light-emitting layer having a thickness of 30 nm. Further, a bis (2-methyl-8-hydroxyquinolinate) (1-phenolate) gallium complex is vacuum-deposited to form an electron injection layer having a film thickness of 30 nm, on which aluminum and lithium are added at a ratio of 25: 1. An electrode having a film thickness of 150 nm was formed from the alloy mixed in the above to obtain an organic EL device having a hole injection layer and a light emitting layer of 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has an emission luminance of 210 (cd / m) at a DC voltage of 5V.2), Maximum emission brightness 9000 (cd / m)2), Blue light emission with a luminous efficiency of 1.2 (lm / W) was obtained.
[0093]
Example 16
An organic EL device was produced in the same manner as in Example 3 except that a 5 nm thick hole injection layer of copper phthalocyanine was provided between the ITO electrode and the compound (18). This device has a luminance of 60 (cd / m) at a DC voltage of 5V.2), Maximum emission brightness 12000 (cd / m)2), Blue light emission with a luminous efficiency of 1.1 (lm / W) was obtained.
[0094]
Example 17
Example 15 except that a 20 nm thick hole injection layer of metal-free phthalocyanine was provided in place of 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine An organic EL device was produced in the same manner as described above, and this device had an emission luminance of 50 (cd / m at a DC voltage of 5 V).2), Maximum light emission luminance of 1100 (cd / m)2), Blue light emission with a luminous efficiency of 1.1 (lm / W) was obtained.
[0095]
Example 18
An organic EL device was produced in the same manner as in Example 5 except that a thin film having a thickness of 30 nm was deposited as the light emitting layer by depositing compound (2): α-NPD at a ratio of 1: 100. This element has an emission luminance of 150 (cd / m at a DC voltage of 5 V).2) Maximum emission brightness 12000 (cd / m)2), Blue light emission with a luminous efficiency of 1.1 (lm / W) was obtained.
[0096]
Example 19
Example 5 is the same as Example 5 except that a thin film having a thickness of 30 nm is deposited as the light-emitting layer by depositing a compound (19): bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium complex in a ratio of 1: 100. An organic EL element was produced in the same manner. This element has an emission luminance of 290 (cd / m) at a DC voltage of 5V.2), Maximum emission brightness 12000 (cd / m)2), Blue light emission with a luminous efficiency of 1.1 (lm / W) was obtained.
[0097]
Example 20
Example 5 is the same as Example 5 except that a thin film having a thickness of 30 nm is deposited as a light emitting layer by depositing a compound (24): bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium complex in a ratio of 1: 100. An organic EL element was produced in the same manner. This element has an emission luminance of 150 (cd / m at a DC voltage of 5 V).2), Maximum light emission luminance of 15000 (cd / m)2), Blue light emission with a luminous efficiency of 1.4 (lm / W) was obtained.
[0098]
Comparative Example 1
4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) is vacuum-deposited on the cleaned glass plate with an ITO electrode to form a 30 nm-thick hole injection layer. Formed. Subsequently, the compound (37) Was vacuum deposited to obtain a light emitting layer with a thickness of 30 nm. Subsequently, a bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium complex was vacuum-deposited to form an electron injection layer having a thickness of 30 nm, and magnesium and silver were mixed at a ratio of 10: 1. An electrode having a film thickness of 100 nm was formed from an alloy to obtain an organic EL device. The hole injection layer and the light emitting layer are 10-6Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has an emission luminance of 100 (cd / m at a DC voltage of 5 V).2), Maximum luminance 4200 (cd / m)2), Blue light emission with a luminous efficiency of 0.4 (lm / W) was obtained, but the light emitting surface was spotted and the light emission lifetime was several hours.
Compound [37]
[0099]
Embedded image
Figure 0004211191
[0100]
The organic EL element shown in this example has a maximum emission luminance of 5000 (cd / m) in an element configuration of two or more layers.2) The above luminescence was obtained, and all were able to obtain high luminous efficiency. For the organic EL element shown in this example, 3 (mA / cm2), Stable emission was observed for 1000 hours or more.
[0101]
The organic EL device of the present invention achieves improvement in light emission efficiency, light emission luminance and long life, and is used together with light emitting materials, doping materials, hole injection materials, electron injection materials, sensitizers, resins. The electrode material and the element manufacturing method are not limited.
[0102]
【The invention's effect】
An organic EL device using the organic EL device material of the present invention as a light emitting material emits blue light, has high luminance efficiency and high luminance as compared with the conventional, and has a high glass transition point or melting point, and thus has a long emission lifetime. An EL element could be obtained.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum of compound (8).
FIG. 2 is a fluorescence spectrum diagram of compound (8).

Claims (7)

下記一般式[1]で示され、かつ、極大発光波長が、400nm〜480nmの範囲内にある化合物からなる有機エレクトロルミネッセンス素子用材料。
一般式[1]
Figure 0004211191
[式中、Ar1は、下記一般式[2]〜[5]で表される部分構造式の少なくとも1つを含む官能基であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。Ar4およびAr5は、それぞれ独立に、アルキル基で置換されても良い1価の、1つの環のみからなる芳香族環残基もしくは2つの環のみからなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基またはそれらの結合体であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。Ar2およびAr3は、それぞれ独立に、2価の、1つの環のみからなる芳香族環残基もしくは2つの環のみからなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基またはそれらの結合体であり、かつ、3つ以上の環からなり構成するすべての芳香族環が他のいずれかの芳香族環とペリ縮合またはカタ縮合している芳香族縮合環残基を含まない。XおよびYは、それぞれ独立に、直接結合、−O−、−S−、>C=O、>SO2、−Si(R1)R2、−PR1−、−P(=O)R1−、置換もしくは未置換のアルキレン基、−(CH2)n−O−(CH2)m−、または、置換もしくは未置換の脂肪族環残基を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表し、nおよびmは、それぞれ0〜20の整数を表すが、n+m=0となることはない。]
一般式[2]
Figure 0004211191
一般式[3]
Figure 0004211191
[式中、Aは、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、Bは、窒素原子、もしくは、−C(R1)=を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
一般式[4]
Figure 0004211191
[式中、Aは、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、Bは、窒素原子、もしくは、−C(R1)=を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
一般式[5]
Figure 0004211191
[式中、CおよびDは、それぞれ独立に、直接結合、酸素原子、硫黄原子、−C(R1)(R2)−、もしくは−N(R1)−を表し、R1およびR2は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、芳香族環残基を表す。]
A material for an organic electroluminescence device comprising a compound represented by the following general formula [1] and having a maximum emission wavelength in the range of 400 nm to 480 nm.
General formula [1]
Figure 0004211191
Wherein, Ar 1 is a functional group containing at least one of the partial structural formula represented by the following general formula [2] to [5], and all constituting Ri Do three or more rings The aromatic ring does not include an aromatic fused ring residue that is peri-fused or cata-fused with any other aromatic ring . Ar 4 and Ar 5 each independently monovalent that may be substituted with an alkyl group, all the aromatic rings constituting Ri Do from only one aromatic ring residue or two rings consisting only of ring an aromatic fused ring residue or conjugates thereof in engagement any other aromatic ring and peri-fused or Kata condensation, and all the aromatic rings other constituting Ri Do three or more rings The aromatic fused ring residue which is peri-fused or cata-fused with any of the aromatic rings is not included. Ar 2 and Ar 3 each independently divalent, one of all the aromatic rings only constituting Ri Do because only aromatic ring residue or two rings consisting of rings of any of the other aromatic ring and an aromatic fused ring residue or conjugates thereof in engagement pericondensed or Kata condensation, and three or more of all the aromatic rings constituting Ri Do a ring of one of the other aromatic ring It does not contain aromatic fused ring residues that are peri- or cata-fused . X and Y are each independently a direct bond, -O -, - S -, > C = O,> SO 2, -Si (R 1) R 2 -, - PR 1 -, - P (= O) R 1 — represents a substituted or unsubstituted alkylene group, — (CH 2 ) n —O— (CH 2 ) m —, or a substituted or unsubstituted aliphatic ring residue, R 1 and R 2 are Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue, and n and m each represent an integer of 0 to 20, but n + m = 0 is not reached. ]
General formula [2]
Figure 0004211191
General formula [3]
Figure 0004211191
[In the formula, A represents an oxygen atom, a sulfur atom, -C (R 1 ) (R 2 )-, or -N (R 1 )-, and B represents a nitrogen atom or -C (R 1 ). And R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
General formula [4]
Figure 0004211191
[In the formula, A represents an oxygen atom, a sulfur atom, -C (R 1 ) (R 2 )-, or -N (R 1 )-, and B represents a nitrogen atom or -C (R 1 ). And R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
General formula [5]
Figure 0004211191
[Wherein, C and D each independently represent a direct bond, an oxygen atom, a sulfur atom, —C (R 1 ) (R 2 ) —, or —N (R 1 ) —, and R 1 and R 2 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an aromatic ring residue. ]
一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、いずれかの層が、請求項1記載の有機エレクトロルミネッセンス素子用材料を単独もしくは混合物として含有することを特徴とする有機エレクトロルミネッセンス素子。 The organic electroluminescent element formed by forming a light emitting layer or a plurality of layers of organic compound thin films including a light emitting layer between a pair of electrodes, wherein any one of the organic electroluminescent element materials according to claim 1 is used alone or as a mixture. An organic electroluminescence device comprising: 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が請求項1記載の有機エレクトロルミネッセンス素子用材料を単独もしくは混合物として含有することを特徴とする有機エレクトロルミネッセンス素子。 In the organic electroluminescent element formed by forming a light emitting layer or a plurality of organic compound thin films including the light emitting layer between a pair of electrodes, the light emitting layer contains the material for an organic electroluminescent element according to claim 1 alone or as a mixture. An organic electroluminescence device characterized by that. さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする請求項2または3記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to claim 2, further comprising a hole injection layer formed between the anode and the light emitting layer. 正孔注入層が、アリールアミン誘導体、フタロシアニン化合物、およびトリフェニレン誘導体からなる群から選ばれる少なくとも1種を含有する層であることを特徴とする請求項4記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescence device according to claim 4, wherein the hole injection layer is a layer containing at least one selected from the group consisting of arylamine derivatives, phthalocyanine compounds, and triphenylene derivatives. さらに、陰極と発光層との間に電子注入層を形成することを特徴とする請求項2ないし5いずれか記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 2, further comprising an electron injection layer formed between the cathode and the light emitting layer. 電子注入層が、金属錯体化合物または含窒素芳香環化合物を含有する層であることを特徴とする請求項記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 6 , wherein the electron injection layer is a layer containing a metal complex compound or a nitrogen-containing aromatic ring compound.
JP2000100384A 2000-04-03 2000-04-03 Material for organic electroluminescence device and organic electroluminescence device using the same Expired - Fee Related JP4211191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100384A JP4211191B2 (en) 2000-04-03 2000-04-03 Material for organic electroluminescence device and organic electroluminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100384A JP4211191B2 (en) 2000-04-03 2000-04-03 Material for organic electroluminescence device and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2001288462A JP2001288462A (en) 2001-10-16
JP4211191B2 true JP4211191B2 (en) 2009-01-21

Family

ID=18614602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100384A Expired - Fee Related JP4211191B2 (en) 2000-04-03 2000-04-03 Material for organic electroluminescence device and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP4211191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7863524B2 (en) 2006-09-26 2011-01-04 Fujitsu Limited Interposer and method for manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489155A4 (en) 2002-03-22 2006-02-01 Idemitsu Kosan Co Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP4500018B2 (en) * 2003-07-11 2010-07-14 株式会社林原生物化学研究所 Amine compounds
KR101551591B1 (en) 2006-04-26 2015-09-08 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative, and organic electroluminescence element using the same
US8623522B2 (en) 2006-04-26 2014-01-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
WO2009145016A1 (en) 2008-05-29 2009-12-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescent device using the same
EP2891648B1 (en) 2012-08-31 2022-02-16 Idemitsu Kosan Co., Ltd Aromatic amine derivative, and organic electroluminescent element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7863524B2 (en) 2006-09-26 2011-01-04 Fujitsu Limited Interposer and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001288462A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3503403B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP4464070B2 (en) Arylamine compound and organic electroluminescence device using the same
JP3511825B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP3797310B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4838969B2 (en) Novel styryl compound and organic electroluminescence device
JP3498533B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP3666086B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP4002040B2 (en) Organic electroluminescence device
JP3873707B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3606025B2 (en) Organic electroluminescence device material and organic electroluminescence device using the same
JPWO2004044088A1 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JPH09268284A (en) Luminescent material for organic electroluminescence element and organic electroluminescent element using the same
JP3924943B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2006045398A (en) Material for use in organic electroluminescent device, and organic electroluminescent device using the material
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JPH11273860A (en) Luminous material for organic electroluminescence and organic electroluminescent element using the same
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2924809B2 (en) Light-emitting materials for organic electroluminescence devices
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP3945032B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JPH1072581A (en) Luminescent material for organic electroluminescent element and organic electroluminescent element produced by using the same
JP4211191B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2001207167A (en) Light-emission material for organic electro-luminescent element and organic electro-luminescent element using the same
JPH1072580A (en) Organic electroluminescent element
JP2001011031A (en) Compound for organic electroluminescence element and luminescent material for organic electroluminescence element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees