JP2001123232A - Method for refining gallium - Google Patents

Method for refining gallium

Info

Publication number
JP2001123232A
JP2001123232A JP30417799A JP30417799A JP2001123232A JP 2001123232 A JP2001123232 A JP 2001123232A JP 30417799 A JP30417799 A JP 30417799A JP 30417799 A JP30417799 A JP 30417799A JP 2001123232 A JP2001123232 A JP 2001123232A
Authority
JP
Japan
Prior art keywords
gallium
zinc
impurities
heating
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30417799A
Other languages
Japanese (ja)
Other versions
JP4190678B2 (en
Inventor
Seiji Kobayashi
誠司 小林
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP30417799A priority Critical patent/JP4190678B2/en
Publication of JP2001123232A publication Critical patent/JP2001123232A/en
Application granted granted Critical
Publication of JP4190678B2 publication Critical patent/JP4190678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method of refining of a gallium, by which the impurities like lead etc. difficult to remove, can be removed without using the recrystalliz ing method and the gallium having >=99.9999% purity and usable as a semi-con ductor raw material is obtained at a low cost and with high productivity. SOLUTION: After adding zinc to the gallium, the impurities like lead etc. is made to an azeotropic mixture with zinc by heating and holding to 420-910 deg.C under argon or nitrogen atmosphere while stirring and mixing. Successively, the impurity and zinc are vaporized and removed by heating to 800-1,000 deg.C while sucking gas to the vacuum and lastly, the zinc crystal grain and oxide, and film left in the gallium are filtrated and separated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空加熱を利用し
たガリウムの精製方法、特にガリウムを半導体原料とし
て使用可能な99.9999%以上の純度に精製するガ
リウムの精製方法に関するものである。
The present invention relates to a method for purifying gallium using vacuum heating, and more particularly to a method for purifying gallium to purify gallium to a purity of 99.9999% or more, which can be used as a semiconductor raw material.

【0002】[0002]

【従来の技術】ガリウムは、GaAsやGaPなどの化
合物半導体結晶あるいはGaPやGaAsなどの液相エ
ピタキシャル成長の用途で、99.9999%以上の純
度が要求されている。ガリウムは、ボーキサイトからア
ルミナを製造する際のバイヤー液か、または閃亜鉛鉱の
亜鉛蒸留のレトルト残渣もしくは亜鉛ばい焼鉱の硫酸浸
出残渣から酸化ガリウムを副生成物として回収し、この
回収された酸化ガリウムを苛性ソーダ液に溶解した後、
電解採取によって98〜99%の低純度ガリウムとして
生産される。この低純度ガリウムは、さらに真空加熱精
製、酸洗浄、再結晶の工程を組み合わせて精製し、9
9.9999%以上に高純度化されている。
2. Description of the Related Art Gallium is required to have a purity of 99.9999% or more for use in compound semiconductor crystals such as GaAs or GaP or liquid phase epitaxial growth such as GaP or GaAs. Gallium is recovered as a by-product from the buyer's solution for the production of alumina from bauxite or from the retort residue of zinc distillation of zinc blende or the sulfuric acid leaching residue of zinc roasting ore, and the recovered oxide After dissolving gallium in caustic soda solution,
Produced as 98-99% low purity gallium by electrowinning. This low-purity gallium is further purified by a combination of vacuum heating purification, acid washing, and recrystallization.
It is highly purified to 9.9999% or more.

【0003】一方、ガリウムを含有するスクラップとし
て、GaAsあるいはGaP単結晶の端面カット部分、
破損ウエハー、切断屑、ラッピング屑、気相エピタキシ
ャル成長工程での排出ガス、液相エピタキシャル成長工
程での使用済ガリウム、さらに回路形成後のウエハーの
破損物などがある。これらのガリウムスクラップは真空
加熱精製、電解精製、酸洗浄、さらには再結晶の精製工
程を単独あるいは組み合わせて高純度化され、再び化合
物半導体結晶や液相エピタキシャル成長用原料に使用さ
れる。
On the other hand, as a scrap containing gallium, an end face cut portion of GaAs or GaP single crystal,
There are broken wafers, cutting waste, lapping waste, exhaust gas in the vapor phase epitaxial growth process, used gallium in the liquid phase epitaxial growth process, and damaged wafers after circuit formation. These gallium scraps are highly purified by vacuum purification, electrolytic purification, acid cleaning, and recrystallization purification steps alone or in combination, and used again as a compound semiconductor crystal or a raw material for liquid phase epitaxial growth.

【0004】電解採取もしくは電解精製は、酸化ガリウ
ムもしくは水酸化ガリウムを苛性ソーダ水溶液に溶解し
た液を電解液とし、白金、カーボンまたはステンレスを
電極とする電解により陰極にガリウムを析出させ回収す
る方法である。電解液中のガリウム濃度は30%以下、
水酸化ナトリウム濃度は30〜50%で、最大2000
A/m2 の電流密度で電解する。
Electrowinning or electrolytic refining is a method in which gallium oxide or gallium hydroxide is dissolved in an aqueous solution of caustic soda as an electrolytic solution, and gallium is deposited and collected on a cathode by electrolysis using platinum, carbon or stainless steel as an electrode. . The gallium concentration in the electrolyte is 30% or less,
Sodium hydroxide concentration is 30-50%, maximum 2000
Electrolyze at a current density of A / m 2 .

【0005】電解採取は、原料である酸化ガリウムまた
は水酸化ガリウムからガリウムを電析するのが主目的
で、その純度は99%が限界である。電解精製は、より
高い純度の99.99%を得る目的で行われる。電解採
取または電解精製でHg、Al、Zn、Pbなどの低減
が可能であるが、電解液の付着や巻き込み、さらに電解
条件の精密制御が困難なため大きな純度向上を期待する
ことはできず、得られるガリウムの純度は99.99%
が上限とされている。
The main purpose of electrowinning is to deposit gallium from gallium oxide or gallium hydroxide as a raw material, and its purity is limited to 99%. Electrorefining is performed with the aim of obtaining a higher purity of 99.99%. Hg, Al, Zn, Pb, etc. can be reduced by electrowinning or electrorefining, but it is difficult to precisely control the adhesion and entrainment of the electrolytic solution and the electrolysis conditions. The purity of the gallium obtained is 99.99%
Is the upper limit.

【0006】真空加熱精製は、蒸気圧の差を利用してガ
リウムよりも蒸気圧の高い不純物を蒸発除去する方法で
ある。金属ガリウムを1.3×10-3Pa以下の真空度
で1000℃以上の温度に加熱し、蒸気圧の高い不純物
であるHg、Znなどは1ppm以下まで低減させるこ
とが可能である。しかし、ガリウムと蒸気圧差の小さい
不純物の場合には、さらに高温まで加熱するため容器か
ら不純物が混入し易く、あるいはガリウムの蒸発による
損失を招来する。さらに不純物が金属間化合物を形成し
ている場合には、数ppmより低い値にすることは難し
い。
[0006] Vacuum heating purification is a method of evaporating and removing impurities having a higher vapor pressure than gallium by utilizing a difference in vapor pressure. It is possible to heat metallic gallium to a temperature of 1000 ° C. or higher at a degree of vacuum of 1.3 × 10 −3 Pa or lower, and reduce impurities such as Hg and Zn having a high vapor pressure to 1 ppm or lower. However, in the case of impurities having a small vapor pressure difference from gallium, the impurities are easily mixed from the container because they are heated to a higher temperature, or loss due to evaporation of gallium is caused. Further, when the impurities form an intermetallic compound, it is difficult to make the value lower than several ppm.

【0007】酸洗浄は、溶融状態のガリウムを塩酸、硝
酸、あるいはこれらの混酸に接触させることによりイオ
ン化傾向の大きな不純物を酸に溶出させ、純度を高くす
る方法である。0.001〜0.1mol/dm3 に希
釈した酸とガリウムとを攪拌などで接触させて含有され
る不純物の溶出を促進する。攪拌は、強力なほど接触が
増加するため短時間で精製効果が得られる。この方法で
はCa、Zn、Cdなどの低減が可能である。
[0007] Acid cleaning is a method in which gallium in a molten state is brought into contact with hydrochloric acid, nitric acid, or a mixed acid thereof to elute impurities having a high ionization tendency into acid, thereby increasing the purity. The acid diluted to 0.001 to 0.1 mol / dm 3 is brought into contact with gallium by stirring or the like to promote the elution of contained impurities. The stronger the stirring, the more the contact increases, so that the purification effect can be obtained in a short time. With this method, it is possible to reduce Ca, Zn, Cd, and the like.

【0008】しかし、強力な攪拌を続けると、酸溶液は
黒色の懸濁液となる。懸濁液中の黒色物質はガリウム微
粒子とその表面に生成したガリウム酸化物もしくは水酸
化物皮膜からなり、酸溶性である。ガリウム微粒子の表
面上のガリウム酸化物あるいは水酸化物皮膜に不純物が
濃縮されており、純度の高いガリウムを得るためには、
このガリウム微粒子を完全に分離する必要がある。ま
た、収率向上のためには分離したガリウム微粒子の回収
を行う必要があり、生産性を上げるうえで欠点となって
いる。
However, with continued vigorous stirring, the acid solution becomes a black suspension. The black substance in the suspension is composed of gallium fine particles and a gallium oxide or hydroxide film formed on the surface thereof and is acid-soluble. Impurities are concentrated in the gallium oxide or hydroxide film on the surface of the gallium fine particles, and in order to obtain high-purity gallium,
The gallium particles need to be completely separated. Further, it is necessary to collect the separated gallium fine particles in order to improve the yield, which is a disadvantage in increasing the productivity.

【0009】再結晶は、ガリウム融液から結晶を晶出さ
せる際に偏析係数の差を利用して融液中に不純物を濃縮
し、固化部分の純度を高くする方法である。再結晶の手
法には、一方向凝固、ゾーンメルティング、単結晶成長
がある。一方向凝固は、ボート等の容器に入れた溶融ガ
リウムを一端からゆっくり冷却、固化してゆき、融液中
に不純物を濃縮する方法である。不純物の偏析には、冷
却速度が影響し、冷却速度が遅いほど精製効率が上昇す
る。しかし、冷却速度を遅くすると生産性が低下するた
めコスト上昇を引き起こす。
[0009] Recrystallization is a method of concentrating impurities in a melt by utilizing the difference in segregation coefficient when crystallizing a crystal from a gallium melt to increase the purity of a solidified portion. Recrystallization techniques include directional solidification, zone melting, and single crystal growth. Unidirectional solidification is a method in which molten gallium contained in a vessel such as a boat is slowly cooled and solidified from one end to concentrate impurities in the melt. The cooling rate affects the segregation of impurities, and the lower the cooling rate, the higher the purification efficiency. However, if the cooling rate is reduced, the productivity is reduced and the cost is increased.

【0010】ゾーンメルティングは、多数回の一方向凝
固を一回の操作で連続的に行う方法であるため一方向凝
固の生産性の低さを改善できるが、一方向凝固と同様に
処理量が多くなると制御が難しく、生産性の大幅な改善
には至っていない。そのため再結晶は、最終の精製工程
として真空加熱精製、電解精製、酸洗浄で除去され難い
不純物の低減に使われるが生産性が悪い欠点がある。再
結晶で精製対象になる主な元素としては、鉛、インジウ
ムなどが挙げられる。
[0010] Zone melting is a method in which a large number of directional solidifications are continuously performed by a single operation, so that the low productivity of the directional solidification can be improved. When the number increases, the control becomes difficult, and the productivity has not been significantly improved. For this reason, recrystallization is used as a final purification step to reduce impurities that are difficult to remove by vacuum heating purification, electrolytic purification, and acid washing, but has a disadvantage of poor productivity. Principal elements to be purified by recrystallization include lead, indium and the like.

【0011】99.99%程度の低純度ガリウムや液晶
エピタキシャル成長からのスクラップに対しては、一般
に真空加熱精製、酸洗浄、および再結晶により純度アッ
プすることで最終的に純度99.9999%以上のガリ
ウムが得られている。
[0011] For low purity gallium of about 99.99% and scrap from liquid crystal epitaxial growth, the purity is generally increased to 99.9999% or more by vacuum heating purification, acid cleaning, and recrystallization to increase the purity. Gallium has been obtained.

【0012】[0012]

【発明が解決しようとする課題】従来のガリウムの精製
方法では、ガリウムに含有される不純物の種類と量に応
じ、上記各種の方法を組み合わせることでガリウムの高
純度化が行われてきた。このように不純物の性状に最適
な精製工程を多数組み合わせるという手法が用いられて
いたので、従来のガリウム精製方法は工程が多く、極め
て煩雑であった。特に、鉛などの不純物は真空加熱や酸
洗浄では除去され難く、一般に再結晶法により除去が行
われてきたが、生産性が低いためコストが高くなってい
た。
In the conventional method of purifying gallium, gallium has been highly purified by combining the above various methods according to the kind and amount of impurities contained in gallium. As described above, since a method of combining a number of purification steps optimal for the properties of impurities has been used, the conventional gallium purification method has many steps and is extremely complicated. In particular, impurities such as lead are difficult to remove by vacuum heating or acid cleaning, and generally have been removed by a recrystallization method, but the cost is high due to low productivity.

【0013】本発明は、鉛などの不純物を再結晶法を用
いずに除去することができ、生産性が高く、半導体原料
として使用可能な純度99.9999%以上のガリウム
を低コストで得ることのできるガリウムの精製方法を提
供することを目的とする。
According to the present invention, gallium having a purity of at least 99.9999%, which can remove impurities such as lead without using a recrystallization method, has high productivity, and can be used as a semiconductor raw material, can be obtained at low cost. It is an object of the present invention to provide a method for purifying gallium that can be performed.

【0014】[0014]

【課題を解決するための手段】本発明のガリウムの精製
方法では、ガリウムに亜鉛を添加してアルゴンまたは窒
素雰囲気中で420〜910℃に加熱保持し、次に真空
に引きながら800〜1000℃で加熱した後、ろ過す
ることにより上記課題を解決している。亜鉛はガリウム
中の不純物と共沸混合物を形成すると考えられ、鉛のよ
うな高沸点金属を本来の沸点より低温で蒸発除去するこ
とが可能となる。
In the method of purifying gallium according to the present invention, zinc is added to gallium, heated and maintained at 420 to 910 ° C. in an argon or nitrogen atmosphere, and then 800 to 1000 ° C. while being evacuated. The above-mentioned subject is solved by heating after heating and filtering. Zinc is thought to form an azeotrope with the impurities in gallium, making it possible to evaporate and remove high-boiling metals such as lead at lower temperatures than their original boiling point.

【0015】ガリウムは石英容器に入れ、そこに亜鉛を
添加する。亜鉛は粒状が扱い易く、粒径は10μm〜5
mmが適当である。亜鉛添加量は、ガリウム仕込み量と
不純物濃度に依存するが、一般的には全不純物量の50
〜200倍が良い。この範囲より少な過ぎると除去効率
が低下し、除去のために長時間を要するかあるいは攪拌
強度を上げる必要がある。また、この範囲より多いと亜
鉛の除去に長時間を要することになる。
[0015] Gallium is put in a quartz container, and zinc is added thereto. Zinc is easy to handle in granular form, and the particle size is 10 μm to 5
mm is appropriate. The amount of zinc added depends on the amount of gallium charged and the impurity concentration, but is generally 50% of the total impurity amount.
~ 200 times better. If the amount is less than this range, the removal efficiency will be reduced, and it will be necessary to take a long time for removal or to increase the stirring intensity. On the other hand, if it exceeds this range, it takes a long time to remove zinc.

【0016】次に、石英容器を電気炉に設置し、炉内を
アルゴンまたは窒素で置換した後、目標の420〜91
0℃に加熱保持する。ガリウムと亜鉛は溶融するので、
不純物と亜鉛の接触を効率的に起こさせるために混合攪
拌を行う。炉内をアルゴンまたは窒素で置換するのは、
亜鉛、ガリウムの酸化を防止するためである。一般的
に、酸化は雰囲気中の水分に依存するため、炉本体およ
びヒーターの耐酸化性が十分であるならば脱湿した空気
でもよい。アルゴンまたは窒素は、昇温過程から加熱保
持の間、500〜1000ml/minで導入するのが
適当であるが、炉の大きさやガリウムの充填量を勘案し
て調節、制御する。
Next, the quartz container is set in an electric furnace, and the inside of the furnace is replaced with argon or nitrogen.
Heat to 0 ° C. and hold. Gallium and zinc melt, so
Mixing and stirring are carried out in order to efficiently bring the impurities into contact with zinc. Replacing the furnace with argon or nitrogen is
This is to prevent oxidation of zinc and gallium. In general, oxidation depends on the moisture in the atmosphere, so that dehumidified air may be used if the oxidation resistance of the furnace body and the heater is sufficient. It is appropriate to introduce argon or nitrogen at a rate of 500 to 1000 ml / min from the heating process to the heating and holding, but it is adjusted and controlled in consideration of the size of the furnace and the filling amount of gallium.

【0017】加熱保持温度は420〜910℃に設定す
るが、加熱保持温度が420℃より低い場合、亜鉛は固
体であるため不純物との拡散反応速度が遅く、また91
0℃より高い場合、亜鉛の蒸発速度が速いためガリウム
から排出されてしまい、いずれの場合においても精製効
果は期待できない。また、加熱保持時間は通常1〜5時
間とするが、不純物の含有量およびガリウムの仕込み量
に合わせてコントロールする必要がある。
The heat holding temperature is set at 420 to 910 ° C. When the heat holding temperature is lower than 420 ° C., since zinc is a solid, the rate of diffusion reaction with impurities is low,
When the temperature is higher than 0 ° C., zinc is evaporated from gallium due to a high evaporation rate, and in any case, a purification effect cannot be expected. The heating and holding time is usually 1 to 5 hours, but it is necessary to control it according to the content of impurities and the charged amount of gallium.

【0018】攪拌方法は、ガス吹き込み攪拌、インペラ
攪拌などが適当であるが、攪拌によってガリウム飛沫が
発生するような激しいものであってはならない。攪拌時
間は、炉の昇温過程から真空加熱終了まで連続して行う
ことが好ましい。攪拌時間が短い場合は、亜鉛が不純物
と接触する確率が少なくなり、次工程の真空加熱では亜
鉛や不純物の蒸発を遅延するため十分な精製効果が期待
できない。
As the stirring method, gas blowing stirring, impeller stirring and the like are appropriate, but the stirring method must not be so vigorous that gallium droplets are generated. The stirring time is preferably performed continuously from the heating process of the furnace to the end of the vacuum heating. If the stirring time is short, the probability of contact of the zinc with the impurities is reduced, and evaporation of zinc and the impurities is delayed by vacuum heating in the next step, so that a sufficient purification effect cannot be expected.

【0019】亜鉛は、炉の昇温とともにガリウム中に徐
々に溶解し、攪拌によって均一な溶融物になり、ガリウ
ム中の鉛と共沸混合物になると予想される。亜鉛を添加
したガリウムを420〜910℃に加熱保持した後、ア
ルゴンまたは窒素の導入を止め、炉を真空に引きながら
800〜1000℃で1〜5時間加熱すると亜鉛と同時
に鉛が蒸発する。真空度は0.13Paが適当である
が、これに限られるものではない。真空度を上げれば不
純物は蒸発分離され易いが、ガリウムの蒸発損失も多く
なる。真空度が低ければ不純物の除去が不十分である。
It is expected that zinc gradually dissolves in gallium as the temperature of the furnace rises, becomes a homogeneous melt by stirring, and becomes an azeotrope with lead in gallium. After the gallium to which zinc is added is heated and maintained at 420 to 910 ° C., the introduction of argon or nitrogen is stopped, and heating is performed at 800 to 1000 ° C. for 1 to 5 hours while the furnace is evacuated, so that lead evaporates simultaneously with zinc. The degree of vacuum is suitably 0.13 Pa, but is not limited thereto. When the degree of vacuum is increased, impurities are easily separated by evaporation, but the evaporation loss of gallium also increases. If the degree of vacuum is low, the removal of impurities is insufficient.

【0020】ガリウムの沸点が2403℃であるのに対
し、鉛の沸点は1750℃、亜鉛の沸点は907℃であ
る。鉛を通常の真空加熱で蒸発除去する場合には、ガリ
ウムの蒸発損失が多くなるが、亜鉛を添加することで鉛
と亜鉛の共沸混合物が形成され、ほぼ亜鉛の沸点で蒸発
が進行すると考えられる。過剰な亜鉛は真空加熱で蒸発
除去できガリウムから容易に分離可能である。
Gallium has a boiling point of 2403 ° C., whereas lead has a boiling point of 1750 ° C. and zinc has a boiling point of 907 ° C. When lead is evaporated and removed by ordinary vacuum heating, the loss of gallium evaporation increases.However, it is thought that an azeotropic mixture of lead and zinc is formed by adding zinc, and the evaporation proceeds almost at the boiling point of zinc. Can be Excess zinc can be removed by evaporation by vacuum heating and easily separated from gallium.

【0021】ガリウムは炉内で30〜80℃まで冷却
後、ろ布で吸引ろ過し、残留亜鉛の結晶粒およびガリウ
ム表面に浮遊する酸化物皮膜を除去する。ろ布はポリエ
ステルもしくはポリプロピレン製の不織布を使用し、ろ
過速度を調節しつつろ過するのが適当である。吸引ろ過
する場合の真空ポンプは,汚染を防ぐためダイヤフラム
式ポンプを利用することが好ましい。ただし、ろ過器材
はガリウム中の微粒子を捕捉分離できればこれらに限ら
ない。
After the gallium is cooled to 30 to 80 ° C. in a furnace, it is suction-filtered with a filter cloth to remove residual zinc crystal grains and an oxide film floating on the gallium surface. As the filter cloth, a polyester or polypropylene non-woven cloth is used, and it is appropriate to perform filtration while controlling the filtration speed. As a vacuum pump for suction filtration, it is preferable to use a diaphragm pump to prevent contamination. However, the filter device is not limited to these as long as it can capture and separate the fine particles in gallium.

【0022】以上の操作で通常、再結晶法を利用してき
た鉛などの不純物除去を真空加熱精製法で行えるため生
産性の向上が実現できる。
By the above-described operation, impurities such as lead, which have been usually utilized by the recrystallization method, can be removed by the vacuum heating purification method, so that an improvement in productivity can be realized.

【0023】[0023]

【発明の実施の形態】ガリウム(Ga99.999%以
上、Pb10ppm未満)は、電気ヒーターもしくは赤
外線ランプを使用し、30℃以上の温度に加熱し溶融す
る。ガリウムを石英容器に入れ、さらにガリウム1kg
に対し0.4gの亜鉛(平均粒径0.1mm)を添加す
る。石英容器を外部加熱式の真空加熱炉内に設置した
後、石英製インペラーをガリウムに挿入する。石英製イ
ンペラーは真空用軸受けを介して炉本体の外部に設置し
た電動モーターによって回転させる。回転速度は6〜1
0rpmが適当であるが、これに限定されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Gallium (Ga 99.999% or more, Pb less than 10 ppm) is melted by heating to a temperature of 30 ° C. or more using an electric heater or an infrared lamp. Put gallium in a quartz container and add 1 kg of gallium
Of zinc (average particle size 0.1 mm). After the quartz container is placed in an externally heated vacuum heating furnace, a quartz impeller is inserted into gallium. The quartz impeller is rotated by an electric motor installed outside the furnace body via a vacuum bearing. The rotation speed is 6-1
0 rpm is suitable, but not limited thereto.

【0024】真空加熱炉を油回転真空ポンプによりゆっ
くり0.13Paまで減圧した後、1000ml/mi
n程度で窒素を導入し、ガス置換を行う。真空加熱炉内
が大気圧になった時リーク弁を開き、引続き窒素をフロ
ーする。次に、真空加熱炉を420〜910℃まで10
℃/minで昇温し、2h加熱保持する。昇温速度と加
熱保持時間と不純物量とガリウム仕込み量に合わせて任
意に変更しなければならない。その後リーク弁を閉じ、
真空加熱炉内を0.13Paまで油回転真空ポンプで減
圧しながら10℃/minで800〜1000℃に加熱
温度を調節し、2h加熱保持する。亜鉛及び鉛は蒸気と
なり、真空加熱炉内に設置した水冷冷却板に凝集する。
The pressure in the vacuum heating furnace was gradually reduced to 0.13 Pa by an oil rotary vacuum pump, and then 1000 ml / mi.
Nitrogen is introduced at about n, and gas replacement is performed. When the inside of the vacuum heating furnace becomes atmospheric pressure, the leak valve is opened and nitrogen is continuously flowed. Next, the vacuum heating furnace is heated to 420 to 910 ° C. for 10 minutes.
The temperature is raised at a rate of ° C./min, and the temperature is maintained for 2 hours. It must be arbitrarily changed in accordance with the temperature rising rate, the heating holding time, the impurity amount, and the gallium charged amount. Then close the leak valve,
The heating temperature is adjusted to 800 to 1000 ° C. at a rate of 10 ° C./min while the pressure inside the vacuum heating furnace is reduced to 0.13 Pa by an oil rotary vacuum pump, and heating is maintained for 2 hours. Zinc and lead become vapor and aggregate on the water-cooled cooling plate installed in the vacuum heating furnace.

【0025】加熱終了後、炉冷し、ガリウム融液温度が
50℃になったのを確認して、真空加熱炉を開扉し、石
英容器を取り出し、ろ布としてポリプロピレン製の不織
布を接着固定したブフナーロートを使用し、吸引ろ過す
る。
After the heating is completed, the furnace is cooled, and after confirming that the gallium melt temperature has reached 50 ° C., the vacuum heating furnace is opened, the quartz container is taken out, and a polypropylene nonwoven fabric is adhered and fixed as a filter cloth. Using the prepared Buchner funnel, perform suction filtration.

【0026】[0026]

【実施例】〔実施例1〕ガリウム(Ga99.999%
以上、Pb5.7ppm)は、赤外線ランプを使用し、
加熱し溶融する。ガリウム5kgを石英容器に入れ、さ
らに亜鉛(平均粒径0.1mm)2gを添加する。石英
容器を外部加熱式の真空加熱炉内に設置した後、石英製
インペラーをガリウムに挿入する。石英製インペラーの
回転速度は6rpmとする。
EXAMPLES [Example 1] Gallium (Ga 99.999%
As described above, Pb 5.7 ppm) uses an infrared lamp,
Heat and melt. 5 kg of gallium is put in a quartz container, and 2 g of zinc (average particle size: 0.1 mm) is further added. After the quartz container is placed in an externally heated vacuum heating furnace, a quartz impeller is inserted into gallium. The rotation speed of the quartz impeller is 6 rpm.

【0027】真空加熱炉を油回転真空ポンプで緩速に
0.13Paまで減圧した後、1000ml/minで
窒素を導入し、ガス置換を行う。真空加熱炉内が大気圧
になった時リーク弁を開き、引続き窒素をフローする。
次に、真空加熱炉を800℃まで10℃/minで昇温
し、2h加熱保持する。
After the pressure in the vacuum heating furnace is slowly reduced to 0.13 Pa by an oil rotary vacuum pump, nitrogen is introduced at 1000 ml / min to perform gas replacement. When the inside of the vacuum heating furnace becomes atmospheric pressure, the leak valve is opened and nitrogen is continuously flowed.
Next, the temperature of the vacuum heating furnace is increased to 800 ° C. at a rate of 10 ° C./min, and heated and held for 2 hours.

【0028】その後リーク弁を閉じ、真空加熱炉内を
0.13Paまで油回転真空ポンプで減圧しながら10
℃/minで1000℃に加熱し、その温度を2h保持
する。亜鉛及び鉛は蒸気となり、真空加熱炉内に設置し
た水冷冷却板に凝集する。加熱終了後、炉冷し、ガリウ
ム融液温度が50℃になったのを確認して、真空加熱炉
を開扉し、石英容器を取り出し、ろ布としてポリプロピ
レン製の不織布を接着固定したブフナーロートを使用
し、吸引ろ過した。
Thereafter, the leak valve is closed, and the pressure in the vacuum heating furnace is reduced to 0.13 Pa by an oil rotary vacuum pump while reducing the pressure to 10 Pa.
Heat to 1000 ° C at a rate of ° C / min and maintain that temperature for 2 hours. Zinc and lead become vapor and aggregate on the water-cooled cooling plate installed in the vacuum heating furnace. After the heating was completed, the furnace was cooled, and after confirming that the gallium melt temperature reached 50 ° C., the vacuum heating furnace was opened, the quartz container was taken out, and a Buchner funnel with a polypropylene non-woven fabric bonded and fixed as a filter cloth was used. , And suction filtration was performed.

【0029】ろ過回収した精製ガリウム中のPb濃度を
グロー放電質量分析計で測定したところ0.01ppm
であった。ガリウムの回収率は99.5%であった。
〔実施例2〕真空加熱に入る前の窒素雰囲気下での加熱
を450℃とする以外、実施例1と同様に操作した。
The concentration of Pb in the purified gallium collected by filtration was measured with a glow discharge mass spectrometer to find that it was 0.01 ppm.
Met. The gallium recovery was 99.5%.
Example 2 The operation was performed in the same manner as in Example 1 except that the heating in a nitrogen atmosphere before starting the vacuum heating was 450 ° C.

【0030】ろ過回収した精製ガリウム中のPb濃度を
グロー放電質量分析計で測定したところ0.03ppm
であった。ガリウムの回収率は99.6%であった。
〔実施例3〕真空加熱時の温度を800℃とする以外、
実施例2と同様に操作した。ろ過回収した精製ガリウム
中のPb濃度をグロー放電質量分析計で測定したところ
0.02ppmであった。ガリウムの回収率は99.8
%であった。
The concentration of Pb in the purified gallium collected by filtration was measured with a glow discharge mass spectrometer to find that it was 0.03 ppm.
Met. The gallium recovery was 99.6%.
Example 3 Except that the temperature during vacuum heating was set to 800 ° C.
The same operation was performed as in Example 2. The Pb concentration in the purified gallium collected by filtration was 0.02 ppm as measured by a glow discharge mass spectrometer. Gallium recovery is 99.8
%Met.

【0031】[0031]

【発明の効果】本発明のガリウムの精製方法よれば、一
般的に再結晶法によって除去されていた鉛などの不純物
を真空加熱精製法で除去することができ、半導体原料と
して使用可能な純度99.9999%以上のガリウムの
生産性が向上し、コスト低減が可能となる。
According to the method for purifying gallium of the present invention, impurities such as lead, which have been generally removed by a recrystallization method, can be removed by a vacuum heating purification method. The productivity of gallium of 0.9999% or more is improved, and the cost can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガリウムに亜鉛を添加してアルゴンまた
は窒素雰囲気中で420〜910℃に加熱保持し、次に
真空に引きながら800〜1000℃で加熱した後、ろ
過することを特徴とするガリウムの精製方法。
1. Gallium which is characterized in that zinc is added to gallium, heated and maintained at 420 to 910 ° C. in an argon or nitrogen atmosphere, heated at 800 to 1000 ° C. while being evacuated, and then filtered. Purification method.
JP30417799A 1999-10-26 1999-10-26 Purification method of gallium Expired - Lifetime JP4190678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30417799A JP4190678B2 (en) 1999-10-26 1999-10-26 Purification method of gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30417799A JP4190678B2 (en) 1999-10-26 1999-10-26 Purification method of gallium

Publications (2)

Publication Number Publication Date
JP2001123232A true JP2001123232A (en) 2001-05-08
JP4190678B2 JP4190678B2 (en) 2008-12-03

Family

ID=17929974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30417799A Expired - Lifetime JP4190678B2 (en) 1999-10-26 1999-10-26 Purification method of gallium

Country Status (1)

Country Link
JP (1) JP4190678B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162072A (en) * 2005-12-14 2007-06-28 Dowa Holdings Co Ltd Method for refining gallium-containing solution
JP2008179898A (en) * 2008-02-14 2008-08-07 Dowa Holdings Co Ltd Gallium raw material for forming compound semiconductor
KR101579770B1 (en) * 2014-09-03 2015-12-23 한국기초과학지원연구원 Apparatus for controlling trace elements by using multi heat source in low melting metals
KR101580495B1 (en) * 2014-09-03 2015-12-28 한국기초과학지원연구원 Apparatus for controlling trace elements in low melting metals
WO2016036030A1 (en) * 2014-09-03 2016-03-10 한국기초과학지원연구원 Method and apparatus for controlling trace elements of low-melting point metal
KR101745308B1 (en) * 2015-06-17 2017-06-12 한국기초과학지원연구원 Method for controlling trace elements in low melting metals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162072A (en) * 2005-12-14 2007-06-28 Dowa Holdings Co Ltd Method for refining gallium-containing solution
JP2008179898A (en) * 2008-02-14 2008-08-07 Dowa Holdings Co Ltd Gallium raw material for forming compound semiconductor
KR101579770B1 (en) * 2014-09-03 2015-12-23 한국기초과학지원연구원 Apparatus for controlling trace elements by using multi heat source in low melting metals
KR101580495B1 (en) * 2014-09-03 2015-12-28 한국기초과학지원연구원 Apparatus for controlling trace elements in low melting metals
WO2016036030A1 (en) * 2014-09-03 2016-03-10 한국기초과학지원연구원 Method and apparatus for controlling trace elements of low-melting point metal
KR101745308B1 (en) * 2015-06-17 2017-06-12 한국기초과학지원연구원 Method for controlling trace elements in low melting metals

Also Published As

Publication number Publication date
JP4190678B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US4198231A (en) Recovery and separation of gadolinium and gallium
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
JP4723106B2 (en) Method for recovering metallic indium
US3097068A (en) Crystallization of pure silicon platelets
JP4190678B2 (en) Purification method of gallium
JP5996771B2 (en) High purity In and its manufacturing method
JPH10121163A (en) Method and device for producing high-purity indium
JPH10158754A (en) Production of high-purity bismuth and apparatus for production
JP5217480B2 (en) Recovery method of crude indium
JPH10158753A (en) Production of high-purity magnesium and apparatus for production
JP2002293528A (en) Production method of silicon for solar cell
JP4485083B2 (en) Method for recovering gallium and indium
JP5133547B2 (en) Purification method of gallium
JP7403118B2 (en) Metal recovery method and gallium nitride production method
JPH07277722A (en) Method for purifying silicon
Fedorov et al. Preparation of high-purity gallium from semiconductor fabrication waste
JP3885913B2 (en) Method for purifying recovered gallium
JPH11269569A (en) Gallium refining
JP2015147956A (en) Method for recovering gallium
JP3386163B2 (en) Purification method of metallic silicon
JPH0132165B2 (en)
JPS60165329A (en) Purification of lithium
JPS62292613A (en) Method for purifying high purity silicon
JPH10324930A (en) Process for producing high-purity cadmium and apparatus for production
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4190678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

EXPY Cancellation because of completion of term