JPH10158754A - Production of high-purity bismuth and apparatus for production - Google Patents

Production of high-purity bismuth and apparatus for production

Info

Publication number
JPH10158754A
JPH10158754A JP8330367A JP33036796A JPH10158754A JP H10158754 A JPH10158754 A JP H10158754A JP 8330367 A JP8330367 A JP 8330367A JP 33036796 A JP33036796 A JP 33036796A JP H10158754 A JPH10158754 A JP H10158754A
Authority
JP
Japan
Prior art keywords
bismuth
purity
raw material
crucible
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8330367A
Other languages
Japanese (ja)
Other versions
JP3838716B2 (en
Inventor
Kishio Tayama
喜志雄 田山
Arata Watanabe
新 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP33036796A priority Critical patent/JP3838716B2/en
Publication of JPH10158754A publication Critical patent/JPH10158754A/en
Application granted granted Critical
Publication of JP3838716B2 publication Critical patent/JP3838716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for production capable of producing high-purity bismuth of >=99.9999wt.% from commercially marketed metal bismuth, etc., of about 99.99% in purity by a refining means capable of separating aluminum, sulfur, nickel, silver, lead, etc., which are heretofore difficult to be completely separated from the bismuth with the prior art and an apparatus for production thereof. SOLUTION: The commercially marketed metal bismuth of 99.99% in purity is put into a raw material crucible 5, is fixed onto an absorption table 9 installed in the central part of a rotary casting mold 6 and is charged into an electric furnace 1. The raw material crucible 5 and the recovering casting mold 6 are sealed double by a quartz outside cylinder 3 and an inside cylinder 4. A vacuum degree of 1×10<-2> Torr is maintained in the inside cylinder 4 by an evacuation system 2 and the furnace temp. is kept constant at 650 deg.C. The bismuth is refined for one hour. The bismuth comes into contact with the surface of the inside cylinder 4 and gradually condenses. The condensed bismuth falls in the form of grains into the recovering casting mold installed below the crucible 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、純度99.99%
程度の市販金属ビスマス等から真空蒸留精製により、純
度99.9999%以上の高純度ビスマスを製造する方
法とその装置に関する。
TECHNICAL FIELD The present invention relates to a 99.99% purity.
The present invention relates to a method and apparatus for producing high-purity bismuth having a purity of 99.9999% or more by vacuum distillation purification from a commercially available metal bismuth or the like.

【0002】[0002]

【従来の技術】一般に金属ビスマスは、自然ソウエンや
キソウエン等の鉱石を比重選鉱により濃縮して、反射炉
内で炭素、鉄、融剤を添加して粗ビスマスを得、次いで
この粗ビスマスを精製して金属ビスマスとする方法が知
られている。
2. Description of the Related Art Generally, metallic bismuth is obtained by concentrating natural ore or xenium ore by specific gravity separation, adding carbon, iron and a flux in a reverberatory furnace to obtain crude bismuth, and then purifying the crude bismuth. Is known to produce metallic bismuth.

【0003】その他の方法としては、鉛電解におけるア
ノードスライムから回収する方法も知られているが、こ
の方法は、上記アノードスライムを反射炉で溶融してス
ラグと金属分とに分離し、得られた金属分中のビスマス
をさらに反射炉中で酸化処理してスラグと金銀地金とに
分離する。さらにこのスラグを反射炉内で還元して粗ビ
スマスを得る方法である。
As another method, a method of recovering from anode slime in lead electrolysis is also known. In this method, the anode slime is melted in a reverberatory furnace, separated into slag and metal, and obtained. The bismuth in the metal content is further oxidized in a reverberatory furnace to separate it into slag and gold and silver bullion. Further, this is a method in which this slag is reduced in a reverberatory furnace to obtain crude bismuth.

【0004】こららの方法によって得られた粗ビスマス
を原料として、帯溶融法や電解精製法によって純度を上
げ、現在では99.99−99.999%の純度を有す
る金属ビスマスが市販されている。
Using the crude bismuth obtained by these methods as a raw material, the purity is increased by a zone melting method or an electrolytic refining method. At present, metal bismuth having a purity of 99.99-99.999% is commercially available. .

【0005】[0005]

【発明が解決しようとする課題】上記の帯溶融法や電解
精製法によって得られる金属ビスマスの純度は99.9
9〜99.999%程度であり、電解法によるビスマス
中の不純物として硫黄、銀はいずれも20ppm 以上含ま
れていた。
The purity of the metal bismuth obtained by the above-mentioned band melting method and electrolytic refining method is 99.9.
It was about 9-99.999%, and both sulfur and silver were contained as impurities in bismuth by electrolysis at 20 ppm or more.

【0006】上記の金属をさらにゾーン精製法によって
精製する手段もあるが、精製後の切断加工の必要性と汚
染の危険があることから、精製時の処理量の制約や精製
ビスマスをインゴットにする場合には鋳造時の不純物の
混入による汚染の問題があった。
There is also a means for purifying the above metals by a zone refining method. However, because of the necessity of cutting after the refining and the danger of contamination, there is a restriction on a processing amount at the time of refining and a refined bismuth is made into an ingot. In such a case, there is a problem of contamination due to contamination of impurities during casting.

【0007】したがって本発明の目的は、従来の電解溶
融法ではビスマスとの完全分離が困難であったアルミニ
ウム、硫黄、ニッケル、銀、鉛等を分離できる新規な精
製手段を開発することによって純度99.9999%以
上の高純度ビスマスを直接インゴット状で製造できる製
造方法と製造装置を提供することにある。
[0007] Accordingly, an object of the present invention is to develop a new purification means capable of separating aluminum, sulfur, nickel, silver, lead, etc., which has been difficult to completely separate from bismuth by the conventional electrolytic melting method. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of directly manufacturing high-purity bismuth of 0.9999% or more in an ingot shape.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究の結果、外筒と内筒からなる二重の
石英筒で封体した内部に原料ビスマスが装入される原料
るつぼとこれに連接して設けられる回収鋳型を配置して
真空蒸留を行い、蒸発したビスマスを石英筒面に凝縮さ
せ、これを回収鋳型に回収するようにすれば、従来より
も簡易な構造でしかも精製から鋳造までを一回の連続工
程で処理できる上、汚染が少ないので、含有する不純物
が1ppm 未満の純度99.9999%以上の高純度ビス
マスが得られることを見いだし本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a raw material bismuth has been charged inside a double quartz tube comprising an outer tube and an inner tube. If a raw material crucible and a recovery mold connected to the crucible are arranged and vacuum distillation is performed, the evaporated bismuth is condensed on the quartz cylinder surface and collected in the recovery mold, a simpler structure than before In addition, since the process from purification to casting can be performed in one continuous process and contamination is small, it has been found that high purity bismuth having a purity of 99.9999% or more containing less than 1 ppm of impurities can be obtained, and the present invention has been achieved. .

【0009】すなわち本発明の第1は、ビスマス原料を
真空溶解して高純度ビスマスを製造する方法において、
原料るつぼに装入された原料ビスマスを温度650℃以
上、真空度1×10-3Torr以下で真空蒸留すること
により、蒸発させたビスマスを原料るつぼに連接する回
収鋳型に回収してインゴットとし、不純物として硫黄、
カルシウム、鉛の含有量がそれぞれ0.05ppm 以下
で、かつガス成分以外の不純物量が1ppm 未満である純
度99.9999%以上の高純度ビスマスを得ることを
特徴とする高純度ビスマスの製造方法;第2に、真空精
製部と、これを加熱する電気炉を備えた加熱部とを主要
構成部とする高純度ビスマスの製造装置であって、上記
真空精製部がそれぞれ脱着可能に連接する原料るつぼと
回収鋳型、冷却トラップおよび水冷フランジとからな
り、かつ上記原料るつぼと回収鋳型が耐熱材からなる二
重の筒で封体されていることを特徴とする高純度ビスマ
スの製造装置を提供するものである。
That is, a first aspect of the present invention is a method for producing high-purity bismuth by vacuum-dissolving a bismuth raw material,
The raw material bismuth charged in the raw material crucible is subjected to vacuum distillation at a temperature of 650 ° C. or more and a degree of vacuum of 1 × 10 −3 Torr or less, so that the evaporated bismuth is recovered in a recovery mold connected to the raw material crucible to form an ingot, Sulfur as an impurity,
A method for producing high-purity bismuth, characterized in that high-purity bismuth having a purity of 99.9999% or more with a content of calcium and lead of 0.05 ppm or less and an impurity amount other than gas components of less than 1 ppm, respectively; Secondly, there is provided a high-purity bismuth production apparatus mainly comprising a vacuum purifying section and a heating section provided with an electric furnace for heating the vacuum purifying section, wherein the vacuum purifying section is detachably connected to the raw material crucible. And a recovery mold, a cooling trap and a water-cooled flange, and wherein the raw material crucible and the recovery mold are sealed by a double cylinder made of a heat-resistant material. It is.

【0010】[0010]

【発明の実施の形態】本発明の高純度ビスマスの製造装
置は、一例として図1の概略図に示す構造とすることが
できる。すなわち電気炉1内に配置された石英製外筒3
内を真空排気装置2により真空排気を行えるよう、上記
外筒3内に原料るつぼ5、回収鋳型6、鋳型中央部に設
けた吸入台9、吸入台下の冷却トラップ8、これを冷却
する水冷フランジ7を脱着可能に連接し、さらに原料る
つぼ上面に石英製内筒4を設けて外筒3と共に二重構造
となって封体されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus for producing high-purity bismuth according to the present invention can have the structure shown in the schematic diagram of FIG. 1 as an example. That is, a quartz outer cylinder 3 placed in the electric furnace 1
The raw material crucible 5, the recovery mold 6, the suction table 9 provided at the center of the mold, the cooling trap 8 below the suction table, and water cooling for cooling the crucible 5 in the outer tube 3 so that the inside can be evacuated by the vacuum evacuation device 2. A flange 7 is detachably connected, and an inner tube 4 made of quartz is provided on the upper surface of the raw material crucible.

【0011】この場合、原料ビスマスとして市販金属ビ
スマス(純度99.99%程度)を原料るつぼ5に適量
入れ、電気炉で650℃以上、好ましくは650〜90
0℃の温度範囲にすると共に、真空度を1×10-3To
rr以下、好ましくは1×10-3〜1×10-4Torr
の範囲に制御すると原料るつぼ内の原料ビスマスが融解
・蒸発し、該るつぼ5と上部の内筒4との間に落下し
て、るつぼ底部に連接する回収鋳型6の中に回収され
る。
In this case, an appropriate amount of commercially available metal bismuth (purity of about 99.99%) is charged into the raw material crucible 5 as the raw material bismuth, and is heated at 650 ° C. or higher, preferably 650 to 90 ° C. in an electric furnace.
The temperature range is 0 ° C. and the degree of vacuum is 1 × 10 −3 To.
rr or less, preferably 1 × 10 −3 to 1 × 10 −4 Torr
In this case, the raw material bismuth in the raw material crucible melts and evaporates, falls between the crucible 5 and the upper inner cylinder 4, and is recovered in the recovery mold 6 connected to the bottom of the crucible.

【0012】原料ビスマス中に含有される不純物のう
ち、ビスマスより蒸気圧の低いアルミニウム、ケイ素、
鉄、ニッケル、銅、銀、鉛は原料るつぼ5内に残留し、
逆に蒸気圧の高い、ナトリウム、硫黄、塩素、カルシウ
ム、カリウム、亜鉛、アンチモン、テルルは凝縮するこ
となく気体状で真空排気装置2によってるつぼ底部に設
けられた吸入孔を通って冷却トラップ8内に吸収され、
水冷フランジ7の働きにより冷却されて固化する。
Among the impurities contained in the raw material bismuth, aluminum, silicon, and the like having a lower vapor pressure than bismuth,
Iron, nickel, copper, silver and lead remain in the raw material crucible 5,
Conversely, sodium, sulfur, chlorine, calcium, potassium, zinc, antimony, and tellurium having a high vapor pressure are in a gaseous state without condensing and pass through a suction hole provided at the bottom of the crucible by the evacuation device 2 to form the cooling trap 8. Is absorbed by
It is cooled and solidified by the action of the water cooling flange 7.

【0013】本発明においては、予め、回収用の鋳型の
形状を精製後の次工程で用いる鋳型の形状にしてあるた
め、従来法のように精製されたビスマスを再度鋳造する
必要はなく、このため汚染の少ない高純度ビスマス製品
を精製・鋳造の工程を区別することなく一回の処理で製
造できる。
In the present invention, since the shape of the recovery mold is previously set to the shape of the mold used in the next step after purification, it is not necessary to cast the purified bismuth again as in the conventional method. Therefore, a high-purity bismuth product with little contamination can be manufactured in one process without discriminating between the steps of refining and casting.

【0014】このようにして得られた高純度ビスマスを
グロー放電質量分析装置で分析したところ、硫黄、カル
シウム、鉛が共に0.05ppm 以下であり、ナトリウ
ム、アルミニウム、ケイ素、塩素、カリウム、鉄、ニッ
ケル、銅、銀、亜鉛、アンチモン、テルルがそれぞれ
0.01ppm 以下で、かつガス成分以外の不純物の合計
が1ppm 未満の値を示していた。
When the thus obtained high purity bismuth was analyzed by a glow discharge mass spectrometer, the content of sulfur, calcium and lead was 0.05 ppm or less, and sodium, aluminum, silicon, chlorine, potassium, iron, Nickel, copper, silver, zinc, antimony, and tellurium were each 0.01 ppm or less, and the total amount of impurities other than gas components was less than 1 ppm.

【0015】したがって、本発明においては測定対象元
素をNa、Al、Si、S、Cl、K、Ca、Fe、N
i、Cu、Ag、Zn、Sb、Pb、Teとし、グロー
放電質量分析装置により定量分析を行い、得られた不純
物含有量の総和を100%から差し引いて得られた数値
が99.9999%以上の場合をもって純度99.99
99%以上の高純度ビスマスと定義した。
Therefore, in the present invention, the elements to be measured are Na, Al, Si, S, Cl, K, Ca, Fe, N
i, Cu, Ag, Zn, Sb, Pb, and Te were used for quantitative analysis by a glow discharge mass spectrometer, and a value obtained by subtracting the total of the obtained impurity contents from 100% was 99.9999% or more. 99.99 purity
It was defined as high purity bismuth of 99% or more.

【0016】以下、実施例により本発明をさらに説明す
るが、本発明の範囲はこれらに限定されるものではな
い。
Hereinafter, the present invention will be further described with reference to examples, but the scope of the present invention is not limited thereto.

【0017】[0017]

【実施例1】図1の高純度ビスマス製造装置を参照して
以下説明する。先ず、純度99.99%の市販金属ビス
マス100gを原料るつぼ5に入れ、回収鋳型6中央部
に設置した吸入台9上に固定した後、図1に示すように
電気炉1内に装入した。
Embodiment 1 A description will be given below with reference to a high-purity bismuth manufacturing apparatus shown in FIG. First, 100 g of commercially available bismuth metal having a purity of 99.99% was placed in a raw material crucible 5, fixed on a suction table 9 provided at the center of the recovery mold 6, and then charged into the electric furnace 1 as shown in FIG. 1. .

【0018】この場合、原料るつぼ5と回収鋳型6の上
面には、石英製の外筒3と内筒4とが設けられ、真空排
気装置2によって内筒4内部が真空状態となる構造であ
る。
In this case, an outer cylinder 3 and an inner cylinder 4 made of quartz are provided on the upper surfaces of the raw material crucible 5 and the recovery mold 6, and the inside of the inner cylinder 4 is evacuated by the vacuum exhaust device 2. .

【0019】真空排気装置2で排気して内筒4の真空度
を1×10-3Torrとすると共に炉温を650℃一定
で1時間精製したところ、原料中のビスマスはいったん
蒸発した後、原料るつぼ5上の内筒4の面に接触して次
第に凝縮し始め、粒状になって原料るつぼ5の底部に設
けた回収鋳型6の中に落下した。この粒状ビスマス90
gを回収し、その品位を表1に示した。
When the interior of the inner cylinder 4 was evacuated to 1 × 10 −3 Torr and the furnace temperature was kept constant at 650 ° C. for one hour, the bismuth in the raw material was evaporated. The powder gradually came into contact with the surface of the inner cylinder 4 on the raw material crucible 5, began to condense, and fell into granular form into the collecting mold 6 provided at the bottom of the raw material crucible 5. This granular bismuth 90
g were collected and the grade is shown in Table 1.

【0020】一方、ビスマスより蒸気圧の高いものはガ
ス状のまま排気装置で吸引され、吸入台9の上部に設け
られた吸入孔を通過して冷却トラップ8上で固化した。
この固化物を分析したところ、その主成分はビスマス
で、ナトリウム、硫黄、塩素、カリウム、カルシウム、
亜鉛、アンチモン、テルルなどいずれも蒸気圧の高い物
質が多く含まれていることがわかった。併せて原料るつ
ぼ内に残っている金属を分析したところ、その主成分は
ビスマスで、アルミニウム、ケイ素、鉄、ニッケル、
銅、銀、鉛などの蒸気圧の低い物質が原料より多く含ま
れていることがわかった。
On the other hand, the gas having a higher vapor pressure than bismuth is sucked by the exhaust device in a gaseous state, and solidified on the cooling trap 8 through a suction hole provided at an upper portion of the suction table 9.
When this solid was analyzed, its main component was bismuth, and sodium, sulfur, chlorine, potassium, calcium,
It was found that zinc, antimony, tellurium, etc. all contained a lot of substances having high vapor pressure. At the same time, when the metal remaining in the raw material crucible was analyzed, its main component was bismuth, and aluminum, silicon, iron, nickel,
It was found that low vapor pressure substances such as copper, silver, and lead were contained more than the raw materials.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例2】純度99.94%の市販金属ビスマス10
0gを原料るつぼ5に入れて、真空度を1×10-4To
rr、加熱温度を850℃として実施例1と同様に精製
を行い、精製ビスマス92gを得た。この品位を表1に
併せて示した。
Example 2 Commercially available metal bismuth 10 having a purity of 99.94%
0 g is placed in the crucible 5 and the degree of vacuum is 1 × 10 −4 To.
Purification was performed in the same manner as in Example 1 except that rr and the heating temperature were set to 850 ° C., to obtain 92 g of purified bismuth. The quality is also shown in Table 1.

【0023】[0023]

【比較例1】比較のため、純度99.94%の市販金属
ビスマスの品位を表1に併せて示した。
Comparative Example 1 For the purpose of comparison, Table 1 also shows the grades of commercially available bismuth metal having a purity of 99.94%.

【0024】[0024]

【発明の効果】上述のように、本発明の方法に基づく製
造装置によれば、原料るつぼに溶解したビスマスは蒸発
して内筒表面に凝縮し、鋳型に回収されてインゴットを
形成するので、従来必要とされていた鋳造や後処理等の
複雑な工程に代わって、本発明の簡易な構造の製造装置
を用いることにより、精製から鋳造までの一連の工程を
汚染の危険が少ない一回の工程で行なえるようになり、
従来よりも分離精度が高くしかもコスト低減可能な精製
手段を提供できる。
As described above, according to the manufacturing apparatus based on the method of the present invention, bismuth dissolved in the raw material crucible evaporates and condenses on the surface of the inner cylinder and is collected in the mold to form an ingot. Instead of the complicated processes such as casting and post-processing that were conventionally required, by using the manufacturing apparatus having the simple structure of the present invention, a series of processes from refining to casting can be performed once with less risk of contamination. It can be done in the process,
It is possible to provide a purification means having a higher separation accuracy than the conventional one and capable of reducing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高純度ビスマスの製造装置の概要
を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an outline of an apparatus for producing high-purity bismuth according to the present invention.

【符号の説明】[Explanation of symbols]

1 電気炉 2 真空排気装置 3 石英製外筒 4 石英製内筒 5 原料るつぼ 6 回収鋳型 7 水冷フランジ 8 冷却トラップ 9 吸入台 DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Vacuum exhaust device 3 Quartz outer cylinder 4 Quartz inner cylinder 5 Raw material crucible 6 Collection mold 7 Water-cooled flange 8 Cooling trap 9 Suction stand

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ビスマス原料を真空溶解して高純度ビス
マスを製造する方法において、原料るつぼに装入された
原料ビスマスを温度650℃以上、真空度1×10-3
orr以下で真空蒸留することにより、蒸発させたビス
マスを原料るつぼに連接する回収鋳型に回収してインゴ
ットとし、不純物として硫黄、カルシウム、鉛の含有量
がそれぞれ0.05ppm 以下で、かつガス成分以外の不
純物量が1ppm 未満である純度99.9999%以上の
高純度ビスマスを得ることを特徴とする高純度ビスマス
の製造方法。
1. A method for producing high-purity bismuth by dissolving a bismuth raw material in vacuum, wherein the raw material bismuth charged in the raw material crucible is heated to a temperature of 650 ° C. or higher and a degree of vacuum of 1 × 10 −3 T.
Vacuum distillation at orr or lower recovers the evaporated bismuth in a recovery mold connected to the raw material crucible to form an ingot. The content of sulfur, calcium, and lead as impurities is 0.05 ppm or less, respectively, and other than gas components. A method for producing high-purity bismuth, characterized in that high-purity bismuth having a purity of 99.9999% or more and an impurity amount of less than 1 ppm is obtained.
【請求項2】 真空精製部と、これを加熱する電気炉を
備えた加熱部とを主要構成部とする高純度ビスマスの製
造装置であって、上記真空精製部がそれぞれ脱着可能に
連接する原料るつぼ、回収鋳型、冷却トラップおよび水
冷フランジからなり、かつ上記原料るつぼと回収鋳型が
耐熱材からなる二重の筒で封体されていることを特徴と
する高純度ビスマスの製造装置。
2. A high-purity bismuth production apparatus mainly comprising a vacuum purification unit and a heating unit provided with an electric furnace for heating the vacuum purification unit, wherein the vacuum purification unit is detachably connected to each other. An apparatus for producing high-purity bismuth, comprising a crucible, a recovery mold, a cooling trap, and a water-cooled flange, wherein the raw material crucible and the recovery mold are sealed by a double cylinder made of a heat-resistant material.
JP33036796A 1996-11-26 1996-11-26 Purification method of bismuth Expired - Fee Related JP3838716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33036796A JP3838716B2 (en) 1996-11-26 1996-11-26 Purification method of bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33036796A JP3838716B2 (en) 1996-11-26 1996-11-26 Purification method of bismuth

Publications (2)

Publication Number Publication Date
JPH10158754A true JPH10158754A (en) 1998-06-16
JP3838716B2 JP3838716B2 (en) 2006-10-25

Family

ID=18231819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33036796A Expired - Fee Related JP3838716B2 (en) 1996-11-26 1996-11-26 Purification method of bismuth

Country Status (1)

Country Link
JP (1) JP3838716B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444164B2 (en) * 1996-06-21 2002-09-03 Dowa Mining Co., Ltd. Apparatus for producing high-purity silver materials
US6627149B1 (en) 1996-06-21 2003-09-30 Dowa Mining Co., Ltd. High-purity silver wires for use in recording, acoustic or image transmission applications
CN103184355A (en) * 2011-12-31 2013-07-03 广东先导稀材股份有限公司 Preparation method of high purity bismuth
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
WO2014069357A1 (en) * 2012-11-02 2014-05-08 Jx日鉱日石金属株式会社 Method for producing low α-emitting bismuth, low α-emitting bismuth, and bismuth alloy
CN104018009A (en) * 2014-06-19 2014-09-03 湖南华信有色金属有限公司 Separating and purifying technology for bismuth metal
WO2015083405A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石金属株式会社 Method for manufacturing low-alpha-radiation bismuth and low-alpha-radiation bismuth
WO2015098191A1 (en) * 2013-12-24 2015-07-02 Jx日鉱日石金属株式会社 Low-α-emission bismuth and process for producing low-α-emission bismuth
WO2015102062A1 (en) * 2014-01-06 2015-07-09 Jx日鉱日石金属株式会社 Process for producing low-α-emission bismuth, and low-α-emission bismuth
WO2015125331A1 (en) * 2014-02-20 2015-08-27 Jx日鉱日石金属株式会社 Method for producing low α-emitting bismuth and low α-emitting bismuth
JP2016191083A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 BISMUTH WITH A REDUCED AMOUNT OF α RAYS AND METHOD FOR PRODUCING THE SAME
CN106191449A (en) * 2016-08-15 2016-12-07 永兴县億翔环保科技有限公司 Bismuth anode mud treatment method
CN112063854A (en) * 2020-09-02 2020-12-11 河南豫光金铅股份有限公司 Method for comprehensively recovering bismuth, silver and copper metals by taking precious lead as raw material
CN115491509A (en) * 2022-08-31 2022-12-20 永兴县鸿福金属有限公司 Vacuum purification method for multi-stage extraction of refined bismuth

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627149B1 (en) 1996-06-21 2003-09-30 Dowa Mining Co., Ltd. High-purity silver wires for use in recording, acoustic or image transmission applications
US6444164B2 (en) * 1996-06-21 2002-09-03 Dowa Mining Co., Ltd. Apparatus for producing high-purity silver materials
CN103184355A (en) * 2011-12-31 2013-07-03 广东先导稀材股份有限公司 Preparation method of high purity bismuth
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
WO2014069357A1 (en) * 2012-11-02 2014-05-08 Jx日鉱日石金属株式会社 Method for producing low α-emitting bismuth, low α-emitting bismuth, and bismuth alloy
JP5903497B2 (en) * 2012-11-02 2016-04-13 Jx金属株式会社 Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy
WO2015083405A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石金属株式会社 Method for manufacturing low-alpha-radiation bismuth and low-alpha-radiation bismuth
JP6067855B2 (en) * 2013-12-24 2017-01-25 Jx金属株式会社 Low α-ray bismuth and method for producing low α-ray bismuth
WO2015098191A1 (en) * 2013-12-24 2015-07-02 Jx日鉱日石金属株式会社 Low-α-emission bismuth and process for producing low-α-emission bismuth
WO2015102062A1 (en) * 2014-01-06 2015-07-09 Jx日鉱日石金属株式会社 Process for producing low-α-emission bismuth, and low-α-emission bismuth
JP5960341B2 (en) * 2014-01-06 2016-08-02 Jx金属株式会社 Method for producing low α-ray bismuth
WO2015125331A1 (en) * 2014-02-20 2015-08-27 Jx日鉱日石金属株式会社 Method for producing low α-emitting bismuth and low α-emitting bismuth
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
JP5996803B2 (en) * 2014-02-20 2016-09-21 Jx金属株式会社 Method for producing low α-ray bismuth and low α-ray bismuth
CN104018009A (en) * 2014-06-19 2014-09-03 湖南华信有色金属有限公司 Separating and purifying technology for bismuth metal
CN104018009B (en) * 2014-06-19 2015-05-27 湖南华信有色金属有限公司 Separating and purifying technology for bismuth metal
JP2016191083A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 BISMUTH WITH A REDUCED AMOUNT OF α RAYS AND METHOD FOR PRODUCING THE SAME
CN106191449A (en) * 2016-08-15 2016-12-07 永兴县億翔环保科技有限公司 Bismuth anode mud treatment method
CN112063854A (en) * 2020-09-02 2020-12-11 河南豫光金铅股份有限公司 Method for comprehensively recovering bismuth, silver and copper metals by taking precious lead as raw material
CN115491509A (en) * 2022-08-31 2022-12-20 永兴县鸿福金属有限公司 Vacuum purification method for multi-stage extraction of refined bismuth

Also Published As

Publication number Publication date
JP3838716B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP3838716B2 (en) Purification method of bismuth
JP5768714B2 (en) Method for producing silicon
JP4538663B2 (en) High-purity metal purification method and purification apparatus
JP3842851B2 (en) Indium purification method
JP3838717B2 (en) Magnesium purification method
JP2006283192A (en) High-purity indium
JP3646234B2 (en) Method and apparatus for producing high purity silver
JP3768332B2 (en) High purity tellurium manufacturing method and manufacturing apparatus thereof
JP3838712B2 (en) Antimony purification method
US6932852B2 (en) Method and apparatus for enhanced purification of high-purity metals
JP3838744B2 (en) Method for producing high purity selenium
JP3838713B2 (en) Zinc purification method
US3397056A (en) Separation of aluminum from impure aluminum sources
JP3838743B2 (en) Method for producing high purity cadmium
EP0606977B1 (en) Analytical method for nonmetallic contaminants in silicon
JPH01108322A (en) Distillation refining process
WO2022103295A1 (en) Method for producing high-purity metallic scandium
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
AU638627B2 (en) One step process for the treatment of parkes desilvering crust to recover zinc and produce a suitable feed for cupellation
JP3292060B2 (en) Deoxygenation method of scandium metal
RU2698237C1 (en) Silvery foam processing method by vacuum distillation
JP3709466B2 (en) Separation and recovery method of copper and iron from copper iron scrap
JP2007270308A (en) Antimony and method for refining the same
Block Preparation of high-purity yttrium by metallic reduction of yttrium trichloride
RU2191835C1 (en) Method of processing lead wastes containing noble and rare metals

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees