JP2016191083A - BISMUTH WITH A REDUCED AMOUNT OF α RAYS AND METHOD FOR PRODUCING THE SAME - Google Patents

BISMUTH WITH A REDUCED AMOUNT OF α RAYS AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2016191083A
JP2016191083A JP2015070112A JP2015070112A JP2016191083A JP 2016191083 A JP2016191083 A JP 2016191083A JP 2015070112 A JP2015070112 A JP 2015070112A JP 2015070112 A JP2015070112 A JP 2015070112A JP 2016191083 A JP2016191083 A JP 2016191083A
Authority
JP
Japan
Prior art keywords
bismuth
ion exchange
solution
dose
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015070112A
Other languages
Japanese (ja)
Other versions
JP6140752B2 (en
Inventor
侑 細川
Yu HOSOKAWA
侑 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015070112A priority Critical patent/JP6140752B2/en
Publication of JP2016191083A publication Critical patent/JP2016191083A/en
Application granted granted Critical
Publication of JP6140752B2 publication Critical patent/JP6140752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide bismuth with a reduced amount of α rays.SOLUTION: The present invention provides bismuth with a reduced amount of α rays, having an amount of α rays on its surface of 0.0025 cph/cmor less.SELECTED DRAWING: None

Description

本発明は、半導体の製造等に使用される、α線量を低減させたビスマス、及びその製造方法に関する。   The present invention relates to bismuth with a reduced α dose, which is used for manufacturing semiconductors, and a method for manufacturing the same.

最近の半導体装置等は、高密度化及び動作電圧やセルの容量が低下しているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきた。そのため、はんだ材料として使用されるビスマスについて、高純度化とともにα線の放射の少ない材料が求められている。   In recent semiconductor devices and the like, the density is increased and the operating voltage and the cell capacity are reduced. Therefore, there is an increased risk of soft errors due to the influence of α rays from the material in the vicinity of the semiconductor chip. Therefore, for bismuth used as a solder material, there is a demand for a material with high purity and less α-ray emission.

特許文献1は、ヘキサフルオロケイ酸や添加剤を用いない、酸(塩酸又は硫酸)のみの電解液において、pH、電解液中のビスマス濃度、電解液温度、電流密度を制御することで、鉛を1ppm以下、ウラン、トリウムをそれぞれ5ppb以下、α線量を0.01cph/cm2以下を達成できたことを開示している。 Patent Document 1 discloses that lead, by controlling pH, bismuth concentration in electrolyte, electrolyte temperature, and current density in an electrolyte containing only acid (hydrochloric acid or sulfuric acid) without using hexafluorosilicic acid or additives. Is 1 ppm or less, uranium and thorium are each 5 ppb or less, and α dose is 0.01 cph / cm 2 or less.

特開2013−185214号公報JP 2013-185214 A

本発明の目的は、はんだ材料としての要求に適応できるビスマスであって、従来よりもさらにα線量が低減されたビスマスを提供することにある。   An object of the present invention is to provide bismuth that can be adapted to the requirements as a solder material and that has a further reduced α dose compared to the prior art.

本発明者は、ビスマスの低α線量化について、鋭意研究を行ってきたところ、ビスマスのα線量を低減するために、ポロニウムの含有量を低減させる着想に至った。そして、硝酸ビスマス溶液を陽イオン交換樹脂と接触させて、ポロニウムを吸着後、液と樹脂を分離して硝酸ビスマス溶液を得て、電解採取により金属ビスマスを得る工程を、少なくとも2回繰り返すことで、非常にα線量の低いビスマスを得られることを見いだして、本発明に到達した。   The inventor has conducted intensive research on the reduction of α dose of bismuth, and has come up with the idea of reducing the content of polonium in order to reduce the α dose of bismuth. Then, by contacting the bismuth nitrate solution with the cation exchange resin and adsorbing the polonium, the liquid and the resin are separated to obtain the bismuth nitrate solution, and the process of obtaining metal bismuth by electrowinning is repeated at least twice. The inventors have found that bismuth having a very low α dose can be obtained, and have reached the present invention.

したがって、本発明は、次の(1)以下を含む。
(1)
α線量が0.0025cph/cm2以下である、低α線ビスマス。
(2)
α線量が0.0020cph/cm2以下である、(1)に記載の低α線ビスマス。
(3)
Pb含有量が0.1ppm以下である、(1)又は(2)に記載の低α線ビスマス。
(4)
U、Thの含有量が、それぞれ5ppb以下である、(1)〜(3)のいずれかに記載の低α線ビスマス。
(5)
α線量が2.0cph/cm2以下であるビスマスを原料として使用し、原料ビスマスを電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液を調整する工程、
硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液を得る工程(1段目のイオン交換樹脂吸着工程)、
イオン交換ビスマス溶液から電解採取して、電解採取ビスマスを回収する工程、
電解採取ビスマスを、電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液(電解採取−硝酸ビスマス溶液)を調整する工程、
電解採取−硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液(電解採取−硝酸−イオン交換ビスマス溶液)を得る工程(2段目のイオン交換樹脂吸着工程)、
電解採取−硝酸−イオン交換ビスマス溶液から、電解採取して、電解採取ビスマス(電解採取−硝酸−イオン交換−電解採取ビスマス)を回収する工程、
を含む、低α線ビスマスの製造方法。
(6)
前記1段目のイオン交換樹脂吸着工程での通液速度に対して、2段目のイオン交換樹脂吸着工程の通液速度を低くすることを特徴とする、(5)に記載の方法。
(7)
原料ビスマスのα線量が0.6cph/cm2以上、2.0cph/cm2以下である、(5)又は(6)に記載の方法。
Therefore, the present invention includes the following (1) and below.
(1)
Low α-ray bismuth having an α dose of 0.0025 cph / cm 2 or less.
(2)
The low α-ray bismuth according to (1), wherein the α dose is 0.0020 cph / cm 2 or less.
(3)
Low alpha ray bismuth as described in (1) or (2) whose Pb content is 0.1 ppm or less.
(4)
Low alpha ray bismuth in any one of (1)-(3) whose content of U and Th is 5 ppb or less, respectively.
(5)
Using bismuth having an α dose of 2.0 cph / cm 2 or less as a raw material, dissolving the raw material bismuth in a nitric acid solution by electrolysis, having a bismuth concentration of 5 to 50 g / L, pH 0.0 to 0.4 Preparing a bismuth nitrate solution;
A step of bringing a bismuth nitrate solution into contact with an ion exchange resin to obtain an ion exchange bismuth solution in which polonium in the solution is exchanged and removed by the ion exchange resin (first-stage ion exchange resin adsorption step);
Electrolytically collecting from the ion-exchanged bismuth solution and recovering the electrolytically collected bismuth,
Electrolytically collected bismuth is dissolved in a nitric acid solution by electrolysis to adjust a bismuth nitrate solution having a bismuth concentration of 5 to 50 g / L and a pH of 0.0 to 0.4 (electrolytic sampling-bismuth nitrate solution);
Step of obtaining an ion exchange bismuth solution (electrolytic collection-nitric acid-ion exchange bismuth solution) obtained by bringing the electrolytic collection-bismuth nitrate solution into contact with an ion exchange resin and exchanging and removing polonium in the solution with the ion exchange resin (second stage) Ion exchange resin adsorption process),
Electrowinning-from the nitric acid-ion exchange bismuth solution, electrowinning, and collecting the electrowinning bismuth (electrowinning-nitric acid-ion exchange-electrowinning bismuth),
The manufacturing method of the low alpha ray bismuth containing.
(6)
The method according to (5), wherein the flow rate in the second-stage ion exchange resin adsorption step is made lower than the flow rate in the first-stage ion exchange resin adsorption step.
(7)
The method according to (5) or (6), wherein the α dose of the raw material bismuth is 0.6 cph / cm 2 or more and 2.0 cph / cm 2 or less.

本発明によれば、α線が最小化された低α線ビスマスを得ることができる。本発明の低α線ビスマスによれば、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できる。   According to the present invention, low α-ray bismuth in which α rays are minimized can be obtained. According to the low α-ray bismuth of the present invention, the occurrence of soft errors due to the influence of α rays in the semiconductor device can be significantly reduced.

図1は、ウラン(U)が崩壊し、206Pbに至るまでの崩壊チェーン(ウラン・ラジウム崩壊系列)を示す図である。FIG. 1 is a diagram showing a decay chain (uranium radium decay series) from uranium (U) decay to 206 Pb. 図2は、ビスマスの溶解・鋳造後の時間経過によるα線量の推移を示す図である。FIG. 2 is a graph showing a change in α dose with time after melting and casting of bismuth.

本発明を具体的な実施の形態をあげて以下に詳細に説明する。本発明は以下に開示された具体的な実施の形態に限定されるものではない。   The present invention will be described in detail below with reference to specific embodiments. The present invention is not limited to the specific embodiments disclosed below.

[低α線ビスマスの製造方法]
本発明によれば、α線量が2.0cph/cm2以下であるビスマスを原料として使用し、原料ビスマスを電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液を調整する工程、硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液を得る工程、イオン交換ビスマス溶液から電解採取して、電解採取ビスマスを回収する工程、電解採取ビスマスを、電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液(電解採取−硝酸ビスマス溶液)を調整する工程、電解採取−硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液(電解採取−硝酸−イオン交換ビスマス溶液)を得る工程、電解採取−硝酸−イオン交換ビスマス溶液から、電解採取して、電解採取ビスマス(電解採取−硝酸−イオン交換−電解採取ビスマス)を回収する工程、を含む方法によって、低α線ビスマスを製造することができる。
[Production method of low α-ray bismuth]
According to the present invention, bismuth having an α dose of 2.0 cph / cm 2 or less is used as a raw material, the raw material bismuth is dissolved in a nitric acid solution by electrolysis, and has a bismuth concentration of 5 to 50 g / L, pH 0. A step of preparing a 0 to 0.4 bismuth nitrate solution, a step of bringing the bismuth nitrate solution into contact with an ion exchange resin, and obtaining an ion exchange bismuth solution in which polonium in the solution is exchanged and removed by the ion exchange resin; Step of recovering electrolytically collected bismuth by electrolytically collecting from solution, bismuth nitrate having a pH of 0.0 to 0.4 and having a bismuth concentration of 5 to 50 g / L by dissolving electrolytically collected bismuth in a nitric acid solution by electrolysis The step of adjusting the solution (electrowinning-bismuth nitrate solution), the electrowinning-bismuth nitrate solution is brought into contact with the ion exchange resin, and the polonium in the solution is removed. Step of obtaining ion exchange bismuth solution exchanged and removed with on-exchange resin (electrolytic collection-nitric acid-ion exchange bismuth solution), electrolytic collection-electrolytic collection from nitric acid-ion exchange bismuth solution, electrolytic collection bismuth (electrolytic collection-nitric acid) Low ion-ray bismuth can be produced by a method including a step of recovering (ion exchange-electrolytically collected bismuth).

このように、原料ビスマスを出発材料として、電気分解による硝酸溶解の工程、イオン交換の工程、電解採取の工程を行って、これらの1回目の工程に続けて2回目の工程を再び行うこと、つまりこれらの1回目の工程に続けて、硝酸再溶解の工程、再イオン交換の工程、再電解採取の工程を行うことによって、低α線ビスマスを製造できる。本発明では、1回目の工程に続けて2回目の工程を行うことによって低α線化を実現しているが、2回目の工程と同じ工程のセットを、さらに繰り返して行うことによって、さらに低α線化を行うこともまた、本発明の範囲内である。   Thus, using raw material bismuth as a starting material, performing a step of dissolving nitric acid by electrolysis, a step of ion exchange, a step of electrowinning, and performing the second step again following these first step, That is, low alpha-ray bismuth can be manufactured by performing the nitric acid re-dissolution process, the re-ion exchange process, and the re-electrolytic extraction process following these first processes. In the present invention, the α-ray reduction is realized by performing the second process subsequent to the first process, but it is further reduced by repeating the same process set as the second process. It is also within the scope of the present invention to perform alpha radiation.

[ビスマスの低α線化の着想]
ビスマスは全て放射性同位体であり、α線放射に関与する核種は複数存在する。これらの放射性同位体のためにα線量が高いと考えられており、低α線化のためにはこれらα線放射に関与する同位体を分離・除去しなければならず、工業的にα線量の低いビスマスを製造することは無理だと考えられていた。このような技術常識に対して、本発明者は、ビスマスの低α線化への検討を、次のような着想に基づいて鋭意行った。
[Concept of low alpha radiation of bismuth]
Bismuth is all a radioisotope, and there are multiple nuclides involved in alpha radiation. Because of these radioisotopes, the α dose is considered to be high. In order to reduce α-rays, the isotopes involved in these α-ray emissions must be separated and removed. It was considered impossible to produce low bismuth. In response to such common technical knowledge, the present inventor has earnestly studied to reduce the α-ray content of bismuth based on the following idea.

α線を発生する放射性元素は数多く存在するが、多くは半減期が非常に長いか非常に短いためにおそらくは問題にならず、実際に問題になるのはU崩壊チェーン(図1参照)における、ポロニウムの同位体210Poから鉛の同位体206Pbに壊変する時に発生するα線であろう。このうち、209Biは半減期が1.9×1019年と非常に長いのでおそらくは問題とならない。209Bi以外でα線放射に関与する同位体の中で最も半減期が長いのは、210Biであり半減期は5日である(図1参照)。他のα線放射に関与する同位体211Bi、212Bi、214Biは半減期がそれぞれ2分、61分、20分と非常に短く、これらの娘核種、孫核種も同様に半減期が非常に短いので、おそらくは問題とならない。図1に示すように、210Biは、210Bi→210Po→206Pbと壊変し、210Poが206Pbに壊変する時にα線が放射される。206Pbは安定同位体である。 There are many radioactive elements that generate alpha rays, but many are probably not a problem because their half-life is very long or very short, and what actually matters is in the U decay chain (see Figure 1), It will be α rays generated when the polonium isotope 210 Po is disintegrated to the lead isotope 206 Pb. Of these, 209 Bi has a very long half-life of 1.9 × 10 19 years and is probably not a problem. Among the isotopes involved in α-radiation other than 209 Bi, the longest half-life is 210 Bi and the half-life is 5 days (see FIG. 1). The other isotopes 211 Bi, 212 Bi and 214 Bi involved in α-ray emission have very short half-lives of 2 minutes, 61 minutes and 20 minutes, respectively. Is probably not a problem. As shown in FIG. 1, 210 Bi disintegrates as 210 Bi → 210 Po → 206 Pb, and α rays are emitted when 210 Po disintegrates into 206 Pb. 206 Pb is a stable isotope.

ビスマスから放射されるα線量を調査した結果、他の金属では見られないビスマス特有のα線量変化をすることが分かった(図2参照)。通常、例えば錫の場合は溶解・鋳造直後はα線量が低く、時間の経過と共にα線量が増加する。しかし、ビスマスの場合は溶解・鋳造直後にα線量が高く、時間が経過するとα線量が低くなる。このビスマス特有のα線量変化を踏まえて鋭意検討した結果、α線放射に関与するビスマス中の放射性元素の大部分はポロニウムであることが分かった。しかし、210Poの半減期よりも充分に長い時間、すなわち210Poがほとんど崩壊してなくなるほどの長時間かけても、ビスマスのα線量はある一定以下には下がってこない。 As a result of investigating the α dose emitted from bismuth, it was found that the α dose change peculiar to bismuth, which is not seen in other metals, is observed (see FIG. 2). Usually, for example, in the case of tin, the α dose is low immediately after melting and casting, and the α dose increases with time. However, in the case of bismuth, the α dose is high immediately after melting and casting, and the α dose decreases with time. As a result of intensive studies based on the α dose change peculiar to bismuth, it was found that most of the radioactive elements in bismuth involved in α-radiation are polonium. However, even when the time is sufficiently longer than the half-life of 210 Po, that is, for a long time such that 210 Po hardly disintegrates, the α dose of bismuth does not fall below a certain level.

本発明者は、この原因がビスマス中に210Pbが存在し、210Pb→210Bi→210Po→206Pbの崩壊が起こることによるものと考えた。すなわち、材料中に鉛の同位体210Pb(半減期22.3年)が含有されていると、時間の経過とともに210Pb→210Bi(半減期5日)→210Po(半減期138日)の壊変(図1)が進み、崩壊チェーンが再構築されて210Poが生じるために、ポロニウムの同位体210Poから鉛の同位体206Pbへの壊変によるα線が発生し、これがビスマスのα線の主要な原因であるとの仮説に到達した。 The present inventor considered that this cause is due to the presence of 210 Pb in bismuth and the decay of 210 Pb → 210 Bi → 210 Po → 206 Pb. That is, when the lead isotope 210 Pb (half-life 22.3 years) is contained in the material, 210 Pb → 210 Bi (half-life 5 days) → 210 Po (half-life 138 days) over time As the decay of the arsenic (Fig. 1) proceeds and the decay chain is reconstructed to yield 210 Po, α-rays are generated due to the decay of the polonium isotope 210 Po to the lead isotope 206 Pb, which is the bismuth α The hypothesis was reached that it was the main cause of the line.

この仮説によれば、ポロニウムの除去が、ビスマスの低α線化に有効であること、好ましくは鉛の除去もまた、ビスマスの低α線化に有効であることが導かれる。この着想に基づいて、本発明者は、工業的にα線量の低いビスマスを製造することを可能とする、本発明に到達した。尚、本発明で使用する「ppm」の単位表記は、「重量ppm(wtppm)」を意味する。金属ビスマスのα線カウント数は、Ordela社製のGas Flow Proportional Counterモデル8600A−LBを用いて測定した場合のα線量を示す。該装置においては、使用するガスを90%アルゴン−10%メタンとし、測定時間をバックグラウンド及び試料とも104時間とした。測定時間のうち最初の4時間は測定室パージに必要な時間とし、その後5時間から104時間後まではデータの測定に必要な時間とした。測定装置から微量のα線(バックグラウンド(BG)α線)が出るため、α線カウント数の測定データからバッググラウンドα線カウント数を差し引いた値を、金属ビスマスのα線カウント数として評価した。金属ビスマスのα線カウント数は電解採取から3ヶ月以内に測定した結果を意味する。   According to this hypothesis, it is derived that removal of polonium is effective for lowering α-rays of bismuth, and preferably removal of lead is also effective for lowering α-rays of bismuth. Based on this idea, the present inventor has reached the present invention, which makes it possible to produce bismuth with a low α dose industrially. The unit notation of “ppm” used in the present invention means “weight ppm (wtppm)”. The α-ray count number of metal bismuth indicates an α dose when measured using a Gas Flow Proportional Counter model 8600A-LB manufactured by Ordela. In this apparatus, the gas used was 90% argon-10% methane, and the measurement time was 104 hours for both the background and the sample. The first 4 hours of the measurement time was set as the time required for the measurement chamber purge, and thereafter, the time required from 5 to 104 hours was set as the time required for data measurement. Since a very small amount of α-rays (background (BG) α-rays) are emitted from the measuring device, the value obtained by subtracting the background α-ray count from the measurement data of the α-ray count was evaluated as the α-ray count of metal bismuth. . The α-ray count number of metal bismuth means the result measured within 3 months from the electrowinning.

[原料ビスマス]
原料ビスマスとしてはα線量が低い金属ビスマスが望ましい。例えば、表面α線量が、2.0cph/cm2以下、好ましくは、0.6cph/cm2以上2.0cph/cm2以下であるものを使用できる。これらは、目標とするα線の低減値によって、適宜使用することができる。
[Raw material bismuth]
As the raw material bismuth, metal bismuth having a low α dose is desirable. For example, the surface α dose can be 2.0 cph / cm 2 or less, preferably 0.6 cph / cm 2 or more and 2.0 cph / cm 2 or less. These can be used as appropriate depending on the target α-ray reduction value.

[硝酸溶解]
電気分解によって原料ビスマスを硝酸溶解して、ビスマス濃度が5〜50g/L、pH0.0〜0.4の硝酸ビスマス溶液を調製する。この電気分解によって原料ビスマスを硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去することができる。硝酸溶液のビスマス濃度は、5〜50g/Lとすることが好ましく、5g/Lよりも低いと生産効率が悪く、50g/Lよりも多いとビスマス化合物の沈澱が生じ、歩留りが悪くなる。硝酸溶液のpHは0.0〜0.4が好ましく、pHが0.0よりも低いと多くの薬品量が必要となり、0.4よりも高いとビスマスの溶解度が下がって充分なビスマス濃度を得ることが難しくなる。
[Nitric acid dissolution]
The raw material bismuth is dissolved in nitric acid by electrolysis to prepare a bismuth nitrate solution having a bismuth concentration of 5 to 50 g / L and a pH of 0.0 to 0.4. By this electrolysis, raw material bismuth can be dissolved in a nitric acid solution, and elements that are more potential than bismuth can be removed. The bismuth concentration of the nitric acid solution is preferably 5 to 50 g / L, and if it is lower than 5 g / L, the production efficiency is poor, and if it is higher than 50 g / L, precipitation of the bismuth compound occurs and the yield deteriorates. The pH of the nitric acid solution is preferably 0.0 to 0.4. When the pH is lower than 0.0, a large amount of chemical is required. When the pH is higher than 0.4, the solubility of bismuth is lowered and a sufficient bismuth concentration is obtained. It becomes difficult to obtain.

[イオン交換]
硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウム(Po)をイオン交換樹脂で交換除去して、ビスマス溶液(イオン交換ビスマス溶液)を得る。イオン交換樹脂への接触は、公知の手段で行うことができ、例えば、イオン交換樹脂を充填したカラムに硝酸ビスマス溶液を通液して接触させてもよく、あるいは硝酸ビスマス溶液中へイオン交換樹脂を投入した後に、固液分離してもよい。
[Ion exchange]
A bismuth nitrate solution is brought into contact with an ion exchange resin, and polonium (Po) in the solution is exchanged and removed with the ion exchange resin to obtain a bismuth solution (ion exchange bismuth solution). The contact with the ion exchange resin can be performed by a known means. For example, the bismuth nitrate solution may be passed through a column packed with the ion exchange resin to make contact, or the ion exchange resin is introduced into the bismuth nitrate solution. After charging, solid-liquid separation may be performed.

イオン交換樹脂としては、陽イオン交換樹脂を好適に使用できる。陽イオン交換樹脂の陽イオン交換基としては、例えば、−SO3H基、−COOH基を挙げることができる。好適な実施の態様において、−SO3H基を陽イオン交換基として有する樹脂が好ましい。イオン交換樹脂の樹脂としては、上記処理に耐えられる樹脂であれば特に制限はなく、例えば、スチレン系、ジビニルベンゼン系、アクリル系、メタクリル系等の樹脂を挙げることができる。好適な実施の態様において、スチレン系の樹脂が好ましい。 As the ion exchange resin, a cation exchange resin can be suitably used. Examples of the cation exchange group of the cation exchange resin include —SO 3 H group and —COOH group. In a preferred embodiment, a resin having —SO 3 H groups as cation exchange groups is preferred. The resin of the ion exchange resin is not particularly limited as long as it can withstand the above treatment, and examples thereof include styrene, divinylbenzene, acrylic, and methacrylic resins. In a preferred embodiment, styrenic resins are preferred.

イオン交換樹脂の容量は、硝酸ビスマス溶液の体積と濃度に応じて、適宜選択して使用することができるが、好ましくは硝酸ビスマス溶液100Lあたり500mL以上2L以下とすることができ、500mLより低容量ではポロニウムの樹脂吸着性が下がり、ポロニウム除去効率が下がり、2Lより高容量では、樹脂の使用量が増加して処理コストが高くなり、さらに樹脂に吸着されるビスマスの量が増えて歩留りが低下する。   The capacity of the ion exchange resin can be appropriately selected and used in accordance with the volume and concentration of the bismuth nitrate solution, but can preferably be 500 mL or more and 2 L or less per 100 L of the bismuth nitrate solution, and the capacity is lower than 500 mL. Decreases the polonium resin adsorbability, lowers the polonium removal efficiency, and if the capacity is higher than 2L, the amount of resin used increases and the processing cost increases, and the amount of bismuth adsorbed on the resin increases and the yield decreases. To do.

イオン交換樹脂カラムを使用する場合に、硝酸ビスマス溶液のカラムへの通液速度は、好ましくは、8L/h以上15L/h以下であり、8L/hより低速度では処理時間がかかり、15L/hを超えると通液速度が速すぎて、吸着されずに通過するポロニウムが増加し、後述の再イオン交換時に取り除ききれなくなる恐れがある。   In the case of using an ion exchange resin column, the flow rate of the bismuth nitrate solution through the column is preferably 8 L / h or more and 15 L / h or less, and processing speed is required at a rate lower than 8 L / h. If it exceeds h, the liquid passing speed is too high, and polonium that passes without being adsorbed increases, and may not be completely removed during reion exchange described later.

[電解採取]
イオン交換後に固液分離した溶液(イオン交換ビスマス溶液)から電解採取して、ビスマス(電解採取ビスマス)を回収する。この電解採取により、ビスマスよりも電位的に卑な元素を除去することができる。これにより、効果的にビスマスを高純度化できる。電解採取の条件としては、公知の条件を使用することができる。
[Electrolytic sampling]
Electrolytic collection is performed from a solution (ion exchange bismuth solution) separated into solid and liquid after ion exchange to recover bismuth (electrolytically collected bismuth). By this electrowinning, an element that is lower in potential than bismuth can be removed. Thereby, bismuth can be highly purified effectively. Known conditions can be used as the conditions for electrolytic collection.

[硝酸再溶解]
電解採取ビスマスを、電気分解により硝酸溶液に溶解(再溶解)して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液(電解採取−硝酸ビスマス溶液)を調整する。この硝酸再溶解は、上述の硝酸溶解と同様の手順で行うことができる。
[Nitric acid redissolution]
Electrolytically collected bismuth is dissolved (re-dissolved) in a nitric acid solution by electrolysis to prepare a bismuth nitrate solution having a bismuth concentration of 5 to 50 g / L and a pH of 0.0 to 0.4 (electrolytic sampling-bismuth nitrate solution). To do. This nitric acid re-dissolution can be performed in the same procedure as the above-mentioned nitric acid dissolution.

[再イオン交換]
電解採取−硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液(電解採取−硝酸−イオン交換ビスマス溶液)を得る。イオン交換樹脂の容量は、前述のイオン交換と同様に、硝酸ビスマス溶液の体積と濃度に応じて、適宜選択して使用することができるが、好ましくは硝酸ビスマス溶液100Lあたり500mL以上2L以下である。イオン交換樹脂カラムを使用する場合、通液速度は好ましくは4L/h以上8L/h以下であり、4L/hより低速度では処理時間がかかり、8L/hを超えると通液速度が速すぎて、吸着されずに通過するポロニウムが増加する。1回目のイオン交換時よりも2回目の方が液中のポロニウムの濃度が薄いため、通液速度を遅くする必要がある。
[Reion exchange]
The electrolytic collection-bismuth nitrate solution is brought into contact with an ion exchange resin to obtain an ion exchange bismuth solution in which polonium in the solution is exchanged and removed by the ion exchange resin (electrolytic collection-nitric acid-ion exchange bismuth solution). The capacity of the ion exchange resin can be appropriately selected and used according to the volume and concentration of the bismuth nitrate solution, as in the above-described ion exchange, but is preferably 500 mL to 2 L per 100 L of the bismuth nitrate solution. . When an ion exchange resin column is used, the flow rate is preferably 4 L / h or more and 8 L / h or less, and processing time is required when the flow rate is lower than 4 L / h. When the flow rate exceeds 8 L / h, the flow rate is too high. Thus, polonium passing without being adsorbed increases. Since the concentration of polonium in the liquid is thinner in the second time than in the first ion exchange, it is necessary to slow down the liquid flow rate.

[再電解採取]
電解採取−硝酸−イオン交換ビスマス溶液から、電解採取して、電解採取ビスマス(電解採取−硝酸−イオン交換−電解採取ビスマス)を回収する。この再電解採取は、上述の電解採取と同様の手順で行うことができる。
[Re-electrolysis collection]
Electrolytically collected from the electrolytically collected nitric acid-ion exchange bismuth solution to collect electrolytically collected bismuth (electrolytically collected-nitric acid-ion exchange-electrolytically collected bismuth). This re-electrolytic collection can be performed in the same procedure as the above-described electrolytic collection.

[低α線ビスマス]
本発明による低α線ビスマスは、表面α線量が0.0025cph/cm2以下、好ましくは0.0020cph/cm2以下、さらに好ましくは0.0018cph/cm2以下である。このような低α線量の金属ビスマスは、これまで製造されていない。本発明による低α線ビスマスは、好ましくはPb含有量が0.1ppm以下である。本発明による低α線ビスマスは、好ましくはU、Thの含有量が、それぞれ5ppb以下である。このような含有量とすることで、経時的に到達するであろう表面α線量を含めて、極めて低減された低α線ビスマスとすることができる。
[Low α-ray bismuth]
The low α-ray bismuth according to the present invention has a surface α dose of 0.0025 cph / cm 2 or less, preferably 0.0020 cph / cm 2 or less, more preferably 0.0018 cph / cm 2 or less. Such a low α dose metal bismuth has not been produced so far. The low α-ray bismuth according to the present invention preferably has a Pb content of 0.1 ppm or less. The low α-ray bismuth according to the present invention preferably has U and Th contents of 5 ppb or less, respectively. By setting it as such content, it can be set as the low alpha ray bismuth reduced extremely including the surface alpha dose which will reach | attain with time.

本発明の低α線ビスマスは、これを合金とした場合にも、ビスマス由来のα線に関し、同様に優れた低α線化を実現できる。本発明の低α線ビスマスを含有する合金もまた本発明の範囲内である。   Even when the low α-ray bismuth of the present invention is used as an alloy, the α-ray derived from bismuth can be similarly excellently reduced in α-ray. Alloys containing the low alpha ray bismuth of the present invention are also within the scope of the present invention.

以下に、実施例を挙げて、本発明を詳細に説明する。本発明は、以下に例示する実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to the examples illustrated below.

[実施例1]
[ビスマスの精製]
α線量が1.81cph/cm2である原料ビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度40.0g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK−1B、陽イオン交換基:スルホン酸基(−SO3H))2Lを充填したカラムに15L/hで通液した。
次に、上記通液後の液1を用いて、25A、0.48A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
上記得られたビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度39.2g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂2Lを充填したカラムに8L/hで通液した。
次に、上記通液後の液2を用いて、25A、0.48A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
[Example 1]
[Purification of bismuth]
Raw material bismuth having an α dose of 1.81 cph / cm 2 was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. As this bismuth nitrate solution, a Bi concentration of 40.0 g / L, pH = 0.3, and 100 L were used.
This bismuth nitrate solution was passed at 15 L / h through a column packed with 2 L of a cation exchange resin (Diaion SK-1B, cation exchange group: sulfonic acid group (—SO 3 H), manufactured by Mitsubishi Chemical Corporation).
Next, using the liquid 1 after passing through the liquid, electrolytic collection was performed at 25 A and 0.48 A / cm 2 to remove an element lower in potential than bismuth, thereby obtaining metal bismuth.
The obtained bismuth was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. As this bismuth nitrate solution, a Bi concentration of 39.2 g / L, pH = 0.3, and 100 L were used.
This bismuth nitrate solution was passed through a column packed with 2 L of cation exchange resin at 8 L / h.
Next, by using the liquid 2 after passing through the above, electrolytic extraction was performed at 25 A and 0.48 A / cm 2 to remove elements lower in potential than bismuth to obtain metal bismuth.

[α線測定]
得られた金属ビスマスをα線測定装置でα線量を測定した。金属ビスマスのα線カウント数は、Ordela社製のGas Flow Proportional Counterモデル8600A−LBを用いて測定した場合のα線量を示す。該装置においては、使用するガスを90%アルゴン−10%メタンとし、測定時間をバックグラウンド及び試料とも104時間とした。測定時間のうち最初の4時間は測定室パージに必要な時間とし、その後5時間から104時間後まではデータの測定に必要な時間とした。測定装置から微量のα線(バックグラウンド(BG)α線)が出るため、α線カウント数の測定データからバッググラウンドα線カウント数を差し引いた値を、金属ビスマスのα線カウント数として評価した。その結果、原料ビスマスのα線量と精製して得られたビスマスのα線量を表1に示す。表1に示すように、原料の表面α線量は1.81cph/cm2であったが、1回目の精製後は0.52cph/cm2、2回目の精製後は0.0018cph/cm2となり、α線量の低下は顕著であった。また、GDMS(グロー放電質量分析法)により得られたビスマスを分析したところ、Pbの含有量は0.1ppm以下、U、Thの含有量はそれぞれ5ppb以下であった。
[Α-ray measurement]
The α dose of the obtained metal bismuth was measured with an α ray measuring device. The α-ray count number of metal bismuth indicates an α dose when measured using a Gas Flow Proportional Counter model 8600A-LB manufactured by Ordela. In this apparatus, the gas used was 90% argon-10% methane, and the measurement time was 104 hours for both the background and the sample. The first 4 hours of the measurement time was set as the time required for the measurement chamber purge, and thereafter, the time required from 5 to 104 hours was set as the time required for data measurement. Since a very small amount of α-rays (background (BG) α-rays) are emitted from the measuring device, the value obtained by subtracting the background α-ray count from the measurement data of the α-ray count was evaluated as the α-ray count of metal bismuth. . As a result, Table 1 shows the α dose of raw material bismuth and the α dose of bismuth obtained by purification. As shown in Table 1, the surface α dose of the raw material was 1.81 cph / cm 2 , but it was 0.52 cph / cm 2 after the first purification and 0.0018 cph / cm 2 after the second purification. The decrease in α dose was significant. When bismuth obtained by GDMS (glow discharge mass spectrometry) was analyzed, the Pb content was 0.1 ppm or less, and the U and Th contents were 5 ppb or less, respectively.

[実施例2]
[ビスマスの精製]
α線量が1.95cph/cm2である原料ビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度42.6g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂500mLを充填したカラムに8L/hで通液した。
次に、上記通液後の液3を用いて、50A、0.95A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
上記得られたビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度41.3g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂500mLを充填したカラムに4L/hで通液した。
次に、上記通液後の液4を用いて、50A、0.95A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
[Example 2]
[Purification of bismuth]
Raw material bismuth having an α dose of 1.95 cph / cm 2 was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. The bismuth nitrate solution used had a Bi concentration of 42.6 g / L, pH = 0.3, and 100 L.
This bismuth nitrate solution was passed through a column packed with 500 mL of cation exchange resin at 8 L / h.
Next, using the liquid 3 after passing through the liquid, electrolytic extraction was performed at 50 A and 0.95 A / cm 2 to remove elements lower in potential than bismuth to obtain metal bismuth.
The obtained bismuth was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. As this bismuth nitrate solution, a Bi concentration of 41.3 g / L, pH = 0.3, and 100 L were used.
This bismuth nitrate solution was passed through a column packed with 500 mL of cation exchange resin at 4 L / h.
Next, using the liquid 4 after passing through the above, electrolytic extraction was performed at 50 A and 0.95 A / cm 2 to remove an element which is lower in potential than bismuth, thereby obtaining metal bismuth.

[α線測定]
得られた金属ビスマスをα線測定装置でα線量を実施例1と同様の方法で測定した。原料ビスマスのα線量と精製して得られたビスマスのα線量を表2に示す。表2に示すように、原料の表面α線量は1.95cph/cm2であったが、1回目の精製後は0.33cph/cm2、2回目の精製後は0.0005cph/cm2となり、α線量の低下は顕著であった。また、GDMS(グロー放電質量分析法)により得られたビスマスを分析したところ、Pbの含有量は0.1ppm以下であった。U、Thの含有量はそれぞれ5ppb以下であった。
[Α-ray measurement]
The α-dose of the obtained metal bismuth was measured by the same method as in Example 1 with an α-ray measuring device. Table 2 shows the α dose of raw material bismuth and the α dose of bismuth obtained by purification. As shown in Table 2, the surface α dose of the raw material was 1.95 cph / cm 2 , but it was 0.33 cph / cm 2 after the first purification and 0.0005 cph / cm 2 after the second purification. The decrease in α dose was significant. Moreover, when the bismuth obtained by GDMS (glow discharge mass spectrometry) was analyzed, content of Pb was 0.1 ppm or less. The contents of U and Th were each 5 ppb or less.

[比較例1]
[ビスマスの精製]
α線量が2.25cph/cm2である原料ビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度42.6g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂300mLを充填したカラムに17L/hで通液した。
次に、上記通液後の液5を用いて、50A、0.95A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
上記得られたビスマスを電気分解により硝酸溶液に溶解し、ビスマスよりも電位的に貴な元素を除去した。この硝酸ビスマス溶液は、Bi濃度40.3g/L、pH=0.3、100Lを用いた。
この硝酸ビスマス溶液を陽イオン交換樹脂300mLを充填したカラムに10L/hで通液した。
次に、上記通液後の液6を用いて、50A、0.95A/cm2で電解採取してビスマスよりも電位的に卑な元素を除去し、金属ビスマスを得た。
[Comparative Example 1]
[Purification of bismuth]
Raw material bismuth having an α dose of 2.25 cph / cm 2 was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. The bismuth nitrate solution used had a Bi concentration of 42.6 g / L, pH = 0.3, and 100 L.
This bismuth nitrate solution was passed through a column packed with 300 mL of cation exchange resin at 17 L / h.
Next, using the liquid 5 after passing through the above, electrolytic extraction was performed at 50 A and 0.95 A / cm 2 to remove an element that was lower in potential than bismuth, and metal bismuth was obtained.
The obtained bismuth was dissolved in a nitric acid solution by electrolysis to remove elements that are more noble than bismuth. As this bismuth nitrate solution, a Bi concentration of 40.3 g / L, pH = 0.3, and 100 L were used.
This bismuth nitrate solution was passed through a column packed with 300 mL of cation exchange resin at 10 L / h.
Next, using the liquid 6 after passing through the above, electrolytic extraction was performed at 50 A and 0.95 A / cm 2 to remove an element lower in potential than bismuth to obtain metal bismuth.

[α線測定]
得られた金属ビスマスをα線測定装置でα線量を測定した。原料ビスマスのα線量と精製して得られたビスマスのα線量を表3に示す。表3に示すように、原料の表面α線量は2.25cph/cm2であったが、1回目の精製後は0.78cph/cm2、2回目の精製後は0.0042cph/cm2となり、α線量は低下したが、実施例と対比すれば充分ではなかった。
[Α-ray measurement]
The α dose of the obtained metal bismuth was measured with an α ray measuring device. Table 3 shows the α dose of raw material bismuth and the α dose of bismuth obtained by purification. As shown in Table 3, the surface α dose of the raw material was 2.25 cph / cm 2 , but it was 0.78 cph / cm 2 after the first purification and 0.0042 cph / cm 2 after the second purification. Although the α dose decreased, it was not sufficient as compared with the examples.

本発明によれば、α線が最小化された低α線ビスマスを得ることができる。本発明は産業上有用な発明である。   According to the present invention, low α-ray bismuth in which α rays are minimized can be obtained. The present invention is industrially useful.

Claims (7)

α線量が0.0025cph/cm2以下である、低α線ビスマス。 Low α-ray bismuth having an α dose of 0.0025 cph / cm 2 or less. α線量が0.0020cph/cm2以下である、請求項1に記載の低α線ビスマス。 The low alpha ray bismuth of Claim 1 whose alpha dose is 0.0020 cph / cm < 2 > or less. Pb含有量が0.1ppm以下である、請求項1又は2に記載の低α線ビスマス。   The low alpha ray bismuth of Claim 1 or 2 whose Pb content is 0.1 ppm or less. U、Thの含有量が、それぞれ5ppb以下である、請求項1〜3のいずれかに記載の低α線ビスマス。   Low alpha ray bismuth in any one of Claims 1-3 whose content of U and Th is 5 ppb or less, respectively. α線量が2.0cph/cm2以下であるビスマスを原料として使用し、原料ビスマスを電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液を調整する工程、
硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液を得る工程(1段目のイオン交換樹脂吸着工程)、
イオン交換ビスマス溶液から電解採取して、電解採取ビスマスを回収する工程、
電解採取ビスマスを、電気分解により硝酸溶液に溶解して、ビスマス濃度5〜50g/Lである、pH0.0〜0.4の硝酸ビスマス溶液(電解採取−硝酸ビスマス溶液)を調整する工程、
電解採取−硝酸ビスマス溶液を、イオン交換樹脂に接触させて、溶液中のポロニウムをイオン交換樹脂で交換除去したイオン交換ビスマス溶液(電解採取−硝酸−イオン交換ビスマス溶液)を得る工程(2段目のイオン交換樹脂吸着工程)、
電解採取−硝酸−イオン交換ビスマス溶液から、電解採取して、電解採取ビスマス(電解採取−硝酸−イオン交換−電解採取ビスマス)を回収する工程、
を含む、低α線ビスマスの製造方法。
Using bismuth having an α dose of 2.0 cph / cm 2 or less as a raw material, dissolving the raw material bismuth in a nitric acid solution by electrolysis, having a bismuth concentration of 5 to 50 g / L, pH 0.0 to 0.4 Preparing a bismuth nitrate solution;
A step of bringing a bismuth nitrate solution into contact with an ion exchange resin to obtain an ion exchange bismuth solution in which polonium in the solution is exchanged and removed by the ion exchange resin (first-stage ion exchange resin adsorption step);
Electrolytically collecting from the ion-exchanged bismuth solution and recovering the electrolytically collected bismuth,
A step of dissolving electrolytically collected bismuth in a nitric acid solution by electrolysis to adjust a bismuth nitrate solution having a bismuth concentration of 5 to 50 g / L and having a pH of 0.0 to 0.4 (electrolytic sampling-bismuth nitrate solution);
Step of obtaining an ion exchange bismuth solution (electrolytic collection-nitric acid-ion exchange bismuth solution) obtained by bringing the electrolytic collection-bismuth nitrate solution into contact with an ion exchange resin and exchanging and removing polonium in the solution with the ion exchange resin (second stage) Ion exchange resin adsorption process),
Electrowinning-from the nitric acid-ion exchange bismuth solution, electrowinning, and collecting the electrowinning bismuth (electrowinning-nitric acid-ion exchange-electrowinning bismuth),
The manufacturing method of the low alpha ray bismuth containing.
前記1段目のイオン交換樹脂吸着工程での通液速度に対して、2段目のイオン交換樹脂吸着工程の通液速度を低くすることを特徴とする、請求項5に記載の方法。   6. The method according to claim 5, wherein the flow rate in the second-stage ion exchange resin adsorption step is lower than the flow rate in the first-stage ion exchange resin adsorption step. 原料ビスマスのα線量が0.6cph/cm2以上、2.0cph/cm2以下である、請求項5又は6に記載の方法。 The method according to claim 5 or 6, wherein the α dose of the raw material bismuth is 0.6 cph / cm 2 or more and 2.0 cph / cm 2 or less.
JP2015070112A 2015-03-30 2015-03-30 Low α-ray bismuth and method for producing the same Active JP6140752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070112A JP6140752B2 (en) 2015-03-30 2015-03-30 Low α-ray bismuth and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070112A JP6140752B2 (en) 2015-03-30 2015-03-30 Low α-ray bismuth and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016191083A true JP2016191083A (en) 2016-11-10
JP6140752B2 JP6140752B2 (en) 2017-05-31

Family

ID=57246571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070112A Active JP6140752B2 (en) 2015-03-30 2015-03-30 Low α-ray bismuth and method for producing the same

Country Status (1)

Country Link
JP (1) JP6140752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960226A (en) * 2021-10-21 2022-01-21 上海市计量测试技术研究院 Silicon-based macroporous cation exchange resin, Po separation method and method for preparing plane reference source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158754A (en) * 1996-11-26 1998-06-16 Dowa Mining Co Ltd Production of high-purity bismuth and apparatus for production
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158754A (en) * 1996-11-26 1998-06-16 Dowa Mining Co Ltd Production of high-purity bismuth and apparatus for production
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960226A (en) * 2021-10-21 2022-01-21 上海市计量测试技术研究院 Silicon-based macroporous cation exchange resin, Po separation method and method for preparing plane reference source
CN113960226B (en) * 2021-10-21 2023-12-22 上海市计量测试技术研究院 Silicon-based macroporous cation exchange resin, po separation method and method for preparing planar reference source

Also Published As

Publication number Publication date
JP6140752B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5456881B2 (en) Method for producing tin or tin alloy with low alpha dose
JP2013185214A (en) BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
CN112885495B (en) Method for producing Ac-225 from Ra-226
JP2011214040A (en) SILVER OR SILVER-CONTAINING ALLOY WITH REDUCED AMOUNT OF α RAY AND METHOD FOR PRODUCING THE SAME
Cieszykowska et al. Separation of Ytterbium from 177 Lu/Yb mixture by electrolytic reduction and amalgamation
JP6140752B2 (en) Low α-ray bismuth and method for producing the same
JP5903497B2 (en) Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy
JP6271642B2 (en) Method for producing low α-ray bismuth and low α-ray bismuth
JP2018141189A (en) Method for separating metal from each other
JP6067855B2 (en) Low α-ray bismuth and method for producing low α-ray bismuth
JP2018066052A (en) LOW α RAY BISMUTH
JP6784369B2 (en) Separation and recovery method of long-lived nuclides contained in radioactive liquid waste
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
JP5960341B2 (en) Method for producing low α-ray bismuth
TW202341180A (en) Production of 177lu from yb targets
TW202235092A (en) Ra-226 recovery method, Ra-226 solution production method, and Ac-225 solution production method
WO2015083405A1 (en) Method for manufacturing low-alpha-radiation bismuth and low-alpha-radiation bismuth
JP2015028215A (en) SILVER REDUCED IN α RAYS AMOUNT, ALLOY CONTAINING THE SAME AND METHOD OF PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6140752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250