JP3838712B2 - Antimony purification method - Google Patents

Antimony purification method Download PDF

Info

Publication number
JP3838712B2
JP3838712B2 JP29443196A JP29443196A JP3838712B2 JP 3838712 B2 JP3838712 B2 JP 3838712B2 JP 29443196 A JP29443196 A JP 29443196A JP 29443196 A JP29443196 A JP 29443196A JP 3838712 B2 JP3838712 B2 JP 3838712B2
Authority
JP
Japan
Prior art keywords
antimony
raw material
purity
vacuum
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29443196A
Other languages
Japanese (ja)
Other versions
JPH10121162A (en
Inventor
喜志雄 田山
一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP29443196A priority Critical patent/JP3838712B2/en
Publication of JPH10121162A publication Critical patent/JPH10121162A/en
Application granted granted Critical
Publication of JP3838712B2 publication Critical patent/JP3838712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、純度99.99重量%程度の金属アンチモンを真空蒸留精製によって純度99.9999重量%(6N)以上の精製金属とする高純度アンチモンの製造方法およびそのための装置に関する。
【0002】
【従来の技術】
一般に金属アンチモンは輝安鉱(主成分Sb23 )などの硫化鉱物を加熱し岩石分と分離したのち金属鉄で還元するか、硫化物を焙焼して酸化物に変えたのち炭素で還元するかして粗アンチモンを得、さらに得られた粗アンチモン(87〜94%Sb)に適当なフラックスを加えて溶融精製を行う乾式法や粗アンチモンを陽極、硫酸塩とフッ化物の混液を電解液として電解精製を行う電解法によって純アンチモンを得ている。金属アンチモンの精製には上記電解精製法のほか、真空下で蒸留する減圧精製法あるいはゾーン精製法等が用いられている。
【0003】
【発明が解決しようとする課題】
上記電解法によって得られる金属アンチモンの純度はSb99.99重量%程度であり、不純物として含有されるSi、Ca、Fe、Cu、As等はいずれも0.5ppm以上含まれている。さらに、ゾーン精製法の場合においても、精製後の切断加工の必要性と汚染の危険があることから、精製時の処理量の制約や精製収率の低下が避けられない上、得られた精製アンチモンをインゴットにする場合には鋳造時の不純物の混入による汚染の問題があった。
【0004】
したがって本発明の目的は、従来の電解法ではアンチモンとの完全分離が困難であったSi、Ca、Fe、Cu、Asなどを完全に分離できる新規な精製手段を開発することによって純度99.9999重量%以上の高純度アンチモンを直接インゴット状で製造できる製造方法と製造装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究の結果、外筒と内筒からなる二重の石英筒で封体した内部に原料アンチモンが装入される原料るつぼとこれに連接して設けられる回収鋳型を配置して真空蒸留を行い、蒸発したアンチモンを石英筒面に凝縮させ、これを回収鋳型に回収するようにすれば、従来よりも簡易な構造でしかも精製から鋳造までを一回の連続工程で処理できる上、汚染が少ないので、含有する不純物が1ppm未満の純度99.9999%以上の高純度アンチモンが得られることを見いだし本発明に到達した。
【0006】
すなわち本発明は、原料アンチモンを真空蒸留してアンチモンを精製する方法において、原料るつぼに装入された原料アンチモンを温度650〜800℃、真空度1×10-2〜1×10-3Torrで真空蒸留することにより蒸発させたアンチモンを該原料るつぼ上方で凝縮させ該原料るつぼ下方の回収鋳型に回収してインゴットとし、さらに前記凝縮後のガスを該回収鋳型の下方で冷却して固化することを特徴とするアンチモンの精製方法である。
【0007】
【発明の実施の形態】
本発明の高純度アンチモンの製造装置は、一例として図1の概略図に示す構造とすることができる。すなわち電気炉1内に配置された石英製外筒3内を真空排気装置2により真空排気を行えるよう、上記外筒3内に原料るつぼ5、回収鋳型6、該鋳型中央部に設けた吸入台9、吸入台下の冷却トラップ8、これを冷却する水冷フランジ7を連接し、さらに原料るつぼ上面に石英製内筒4を設けて外筒3と共に二重構造となって封体されている。
【0008】
この場合、原料アンチモン(純度99.99%程度)を原料るつぼ5に適量入れ、電気炉で600℃以上、好ましくは650〜800℃の温度範囲にすると共に真空度を1×10-2Torr以下、好ましくは1×10-2〜1×10-3Torrの範囲に制御すると、原料るつぼ内の原料アンチモンが融解・蒸発し、該るつぼ5と上部の内筒4との間に落下して、るつぼ底部に連接する回収鋳型6の中に回収される。
【0009】
原料アンチモン中に含有される不純物のうち、アンチモンより蒸気圧の低いアルミニウム、ケイ素、カルシウム、鉄、ニッケル、銅、銀、鉛、ビスマスは原料るつぼ5内に残留し、逆に蒸気圧の高い硫黄、塩素、ナトリウム、カリウム、ヒ素、テルルは凝縮することなく気体状で真空排気装置2によって吸入台9の吸入孔を通って冷却トラップ8内に吸収され、水冷フランジ7の働きにより冷却されて固化する。
【0010】
本発明においては、予め回収用の鋳型の形状を精製後の次工程で用いる鋳型の形状にしてあるため、従来方法のように精製されたアンチモンを再度鋳造する必要はなく、このため汚染の少ない製品を、精製、鋳造の工程を区別することなく一回の処理で製造できる。
【0011】
このようにして得られた高純度アンチモンをグロー放電質量分析機で分析したところ、Si、S、Cl、Fe、As、Te、Biが0.05ppm以下で、Na、Al、K、Ca、Ni、Cu、Ag、Pbはそれぞれ0.01ppm未満で、かつガス成分以外の不純物の合計が1ppm未満の値を示していた。
【0012】
したがって本発明においては、測定対象元素をNa、Al、Si、S、Cl、K、Ca、Fe、Ni、Cu、As、Ag、Te、Pb、Biとし、グロー放電質量分析装置により定量分析を行い、得られた不純物含有の総和を100%から差し引いて得られる数値が99.9999重量%以上の場合をもって純度99.9999重量%以上の高純度アンチモンと定義した。
【0013】
以下、実施例により本発明をさらに説明するが、本発明の範囲はこれらに限定されるものではない。
【0014】
【実施例1】
図1の高純度アンチモン製造装置の概要を示す断面図を参照して以下説明する。
【0015】
先ず、純度99.99重量%の金属アンチモン1000gを原料るつぼ5に入れ、回収鋳型6中央部に設置した吸入台9上に固定した後、図1に示すように電気炉1内に装入した。
【0016】
この場合、原料るつぼ5と回収鋳型6の上面には石英製の外筒3と内筒4とが設けられ、真空排気装置2によって内筒4内部の空気が吸入台9上部に設けられた吸入孔(図示せず)を通して吸い出され、内筒4の内部が真空状態となる構造である。
【0017】
真空排気装置2で排気して内筒4内の真空度を1×10-2Torrとするとともに炉温を650℃一定で5時間精製したところ、原料中のアンチモンはいったん蒸発した後、原料るつぼ5上の内筒4の面に接触して次第に凝縮し始め、粒状になって原料るつぼ5の底部に設けた回収鋳型6の中に落下した。この粒状アンチモン900gを回収し、その品位を表1に示した。
【0018】
一方、アンチモンより蒸気圧の高いものはガス状のまま排気装置で吸引され、吸入台9の上部に設けられた吸入孔を通過して冷却トラップ8上で固化した。この固化物を分析したところ、その主成分はアンチモンで、ナトリウム、硫黄、塩素、カリウム、ヒ素、テルルのいずれも蒸気圧の高い物質が多く含まれていることがわかった。また、併せて原料るつぼ内に残っている金属を分析したところ、その主成分はアンチモンで、アルミニウム、ケイ素、カルシウム、鉄、ニッケル、銅、銀、鉛、ビスマスなどの蒸気圧の低い物質が原料より多く含まれていることがわかった。
【0019】
【実施例2】
純度99.99重量%の金属アンチモン1000gを原料るつぼ5に入れて、真空度を1×10-3Torr、加熱温度を700℃として実施例1と同様に精製を行い、精製アンチモン950gを得た。この品位を表1に併せて示した。
【0020】
【比較例】
比較のため従来の電解精製法で得られた純度99.99重量%の金属アンチモンの品位を表1に併せて示した。
【0021】
【表1】

Figure 0003838712
【0022】
【発明の効果】
以上説明したように、本発明の方法に基づく製造装置によれば、原料るつぼで溶解したアンチモンはいったん蒸発して内筒表面に接触して凝縮し、るつぼに連接する回収鋳型に回収されてインゴットを形成するので、従来必要とされていた蒸留後の鋳造や後処理等の複雑な工程が省略され、簡易な構造の製造装置を用いることになるので、精製から鋳造までの一連の工程を、汚染の危険が少ない一回の処理で行えるようになり、従来よりも分離精度が高くしかもコスト低減可能な精製手段を提供できるようになった。
【図面の簡単な説明】
【図1】本発明に係る高純度アンチモンの製造装置の概要を示す概略断面図である。
【符号の説明】
1 電気炉
2 真空排気装置
3 石英製外筒
4 石英製内筒
5 原料るつぼ
6 回収鋳型
7 水冷フランジ
8 冷却トラップ
9 吸入台[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity antimony and to an apparatus therefor, which is obtained by converting metal antimony having a purity of about 99.99% by weight into purified metal having a purity of 99.9999% by weight (6N) or more by vacuum distillation purification.
[0002]
[Prior art]
In general, metal antimony is heated with sulfide minerals (such as Sb 2 S 3 ) and separated from rocks and then reduced with metallic iron, or the sulfides are roasted and converted into oxides. Reduced to obtain crude antimony, and then add the appropriate flux to the obtained crude antimony (87-94% Sb) and melt-purify the dry method or crude antimony as anode, mixed solution of sulfate and fluoride Pure antimony is obtained by an electrolytic method of performing electrolytic purification as an electrolytic solution. In addition to the above-described electrolytic purification method, metal antimony is purified by a vacuum purification method or a zone purification method in which distillation is performed under vacuum.
[0003]
[Problems to be solved by the invention]
The purity of the metal antimony obtained by the above electrolytic method is about 99.99% by weight of Sb, and all of Si, Ca, Fe, Cu, As, etc. contained as impurities are contained at 0.5 ppm or more. Furthermore, even in the case of the zone purification method, there is a need for a cutting process after purification and there is a risk of contamination, so it is inevitable that the processing amount during purification will be limited and the purification yield will be lowered. When antimony was made into an ingot, there was a problem of contamination due to contamination of impurities during casting.
[0004]
Therefore, the object of the present invention is to develop a novel purification means capable of completely separating Si, Ca, Fe, Cu, As, etc., which has been difficult to completely separate from antimony by the conventional electrolysis method, and thereby purify the purity 99.9999. It is an object of the present invention to provide a production method and a production apparatus capable of producing high-purity antimony of at least wt% directly in an ingot shape.
[0005]
[Means for Solving the Problems]
As a result of earnest research to achieve the above object, the present inventors have provided a raw material crucible filled with a raw material antimony and enclosed in a double quartz tube composed of an outer tube and an inner tube and connected thereto. If the recovery mold is placed, vacuum distillation is performed, the evaporated antimony is condensed on the quartz cylinder surface, and this is recovered in the recovery mold, the structure is simpler than before, and from purification to casting once. In addition, the present inventors have found that high-purity antimony having a purity of less than 1 ppm and having a purity of 99.9999% or more can be obtained because it can be processed by the above-described continuous processes and has less contamination.
[0006]
That is, the present invention relates to a method for purifying antimony by vacuum distillation of raw material antimony, wherein the raw material antimony charged in the raw material crucible is at a temperature of 650 to 800 ° C. and a vacuum degree of 1 × 10 −2 to 1 × 10 −3 Torr. Antimony evaporated by vacuum distillation is condensed above the raw material crucible and collected in a recovery mold below the raw material crucible to form an ingot. Further, the condensed gas is cooled below the recovery template and solidified. Is a method for purifying antimony.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The high-purity antimony production apparatus of the present invention can have the structure shown in the schematic diagram of FIG. 1 as an example. That is, the raw material crucible 5, the recovery mold 6, and the suction table provided at the center of the mold are arranged in the outer cylinder 3 so that the inside of the quartz outer cylinder 3 disposed in the electric furnace 1 can be evacuated by the evacuation apparatus 2. 9, a cooling trap 8 under the suction table and a water cooling flange 7 for cooling the trap 8 are connected to each other, and a quartz inner cylinder 4 is provided on the upper surface of the raw material crucible so as to form a double structure together with the outer cylinder 3.
[0008]
In this case, an appropriate amount of raw material antimony (purity of about 99.99%) is put in the raw material crucible 5, and the temperature is set to 600 ° C. or higher, preferably 650 to 800 ° C. in an electric furnace, and the degree of vacuum is 1 × 10 −2 Torr or lower. , Preferably when controlled in the range of 1 × 10 −2 to 1 × 10 −3 Torr, the raw material antimony in the raw material crucible melts and evaporates and falls between the crucible 5 and the upper inner cylinder 4, It is recovered in a recovery mold 6 connected to the bottom of the crucible.
[0009]
Among impurities contained in the raw material antimony, aluminum, silicon, calcium, iron, nickel, copper, silver, lead, and bismuth having a vapor pressure lower than that of antimony remain in the raw material crucible 5 and conversely sulfur having a high vapor pressure. Chlorine, sodium, potassium, arsenic, and tellurium are in a gaseous form without being condensed and absorbed by the vacuum exhaust device 2 through the suction hole of the suction table 9 into the cooling trap 8 and cooled and solidified by the action of the water cooling flange 7. To do.
[0010]
In the present invention, since the shape of the recovery mold is preliminarily made into the shape of the mold to be used in the next step after purification, there is no need to recast the purified antimony as in the conventional method, and therefore there is little contamination. Products can be manufactured in a single process without distinction between the refining and casting processes.
[0011]
The high-purity antimony thus obtained was analyzed with a glow discharge mass spectrometer. Si, S, Cl, Fe, As, Te, Bi were 0.05 ppm or less, and Na, Al, K, Ca, Ni , Cu, Ag, and Pb were each less than 0.01 ppm, and the total of impurities other than the gas component was less than 1 ppm.
[0012]
Therefore, in the present invention, the measurement target element is Na, Al, Si, S, Cl, K, Ca, Fe, Ni, Cu, As, Ag, Te, Pb, Bi, and quantitative analysis is performed by a glow discharge mass spectrometer. When the numerical value obtained by subtracting from 100% the total impurity content obtained was 99.9999% by weight or more, it was defined as high-purity antimony having a purity of 99.9999% by weight or more.
[0013]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these.
[0014]
[Example 1]
This will be described below with reference to a cross-sectional view showing an outline of the high-purity antimony production apparatus in FIG.
[0015]
First, 1000 g of metal antimony having a purity of 99.99% by weight was placed in a raw material crucible 5 and fixed on a suction table 9 installed at the center of the recovery mold 6 and then charged into the electric furnace 1 as shown in FIG. .
[0016]
In this case, a quartz outer cylinder 3 and an inner cylinder 4 are provided on the upper surfaces of the raw material crucible 5 and the recovery mold 6, and the air inside the inner cylinder 4 is provided at the upper part of the suction table 9 by the vacuum exhaust device 2. It is a structure that is sucked out through a hole (not shown) and the inside of the inner cylinder 4 is in a vacuum state.
[0017]
When the vacuum in the inner cylinder 4 is evacuated by the vacuum evacuation device 2 to 1 × 10 −2 Torr and refined at a constant furnace temperature of 650 ° C. for 5 hours, the antimony in the raw material once evaporates, and then the raw material crucible 5 began to condense gradually upon contact with the surface of the inner cylinder 4 on the upper surface 5, and became granular and dropped into the recovery mold 6 provided at the bottom of the raw material crucible 5. 900 g of this granular antimony was recovered and the quality is shown in Table 1.
[0018]
On the other hand, the one having a higher vapor pressure than antimony was sucked by the exhaust device in a gaseous state, passed through a suction hole provided in the upper part of the suction table 9 and solidified on the cooling trap 8. An analysis of the solidified product revealed that its main component was antimony, and sodium, sulfur, chlorine, potassium, arsenic, and tellurium were all rich in substances with high vapor pressure. In addition, when the metal remaining in the raw material crucible was analyzed, the main component was antimony, and materials with low vapor pressure such as aluminum, silicon, calcium, iron, nickel, copper, silver, lead and bismuth were used as the raw material. It was found that more were included.
[0019]
[Example 2]
1000 g of metal antimony having a purity of 99.99% by weight was put into the raw material crucible 5 and purified in the same manner as in Example 1 with a vacuum of 1 × 10 −3 Torr and a heating temperature of 700 ° C. to obtain 950 g of purified antimony. . This quality is also shown in Table 1.
[0020]
[Comparative example]
For comparison, the quality of metal antimony having a purity of 99.99% by weight obtained by the conventional electrolytic purification method is also shown in Table 1.
[0021]
[Table 1]
Figure 0003838712
[0022]
【The invention's effect】
As described above, according to the manufacturing apparatus based on the method of the present invention, the antimony dissolved in the raw material crucible is once evaporated and contacted with the inner cylinder surface to be condensed and recovered by the recovery mold connected to the crucible and ingot. Therefore, complicated processes such as casting after distillation and post-treatment, which have been conventionally required, are omitted, and a simple structure manufacturing apparatus is used. It has become possible to carry out by a single treatment with less risk of contamination, and it has become possible to provide a purification means with higher separation accuracy and lower cost than before.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an outline of an apparatus for producing high-purity antimony according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Vacuum exhaust apparatus 3 Quartz outer cylinder 4 Quartz inner cylinder 5 Raw material crucible 6 Recovery mold 7 Water cooling flange 8 Cooling trap 9 Suction stand

Claims (1)

原料アンチモンを真空蒸留してアンチモンを精製する方法において、原料るつぼに装入された原料アンチモンを温度650〜800℃、真空度1×10-2〜1×10-3Torrで真空蒸留することにより蒸発させたアンチモンを該原料るつぼ上方で凝縮させ該原料るつぼ下方の回収鋳型に回収してインゴットとし、さらに前記凝縮後のガスを該回収鋳型の下方で冷却して固化することを特徴とするアンチモンの精製方法。In the method of purifying antimony by vacuum distillation of the raw material antimony, the raw material antimony charged in the raw material crucible is vacuum distilled at a temperature of 650 to 800 ° C. and a vacuum degree of 1 × 10 −2 to 1 × 10 −3 Torr. The antimony is characterized by condensing the evaporated antimony above the raw material crucible and collecting it in a recovery mold below the raw material crucible to form an ingot, and further cooling and solidifying the condensed gas below the recovery mold Purification method.
JP29443196A 1996-10-16 1996-10-16 Antimony purification method Expired - Fee Related JP3838712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29443196A JP3838712B2 (en) 1996-10-16 1996-10-16 Antimony purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29443196A JP3838712B2 (en) 1996-10-16 1996-10-16 Antimony purification method

Publications (2)

Publication Number Publication Date
JPH10121162A JPH10121162A (en) 1998-05-12
JP3838712B2 true JP3838712B2 (en) 2006-10-25

Family

ID=17807685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29443196A Expired - Fee Related JP3838712B2 (en) 1996-10-16 1996-10-16 Antimony purification method

Country Status (1)

Country Link
JP (1) JP3838712B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005683A1 (en) * 2003-07-15 2005-01-20 Nikko Materials Co., Ltd. Sputtering target and optical recording medium
JP2007270308A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Antimony and method for refining the same
CN101942575B (en) * 2010-08-27 2011-12-14 河南豫光金铅股份有限公司 Production method of continuous antimony smelting by bottom blowing bath smelting of stibnite and device thereof
CN104561567A (en) * 2014-12-10 2015-04-29 昆明理工大学 High-arsenic antimony alloy dearsenication method by vacuum distillation
CN113999981A (en) * 2021-11-02 2022-02-01 广东先导微电子科技有限公司 Impurity removal method for high-purity metal through vacuum sublimation
CN115305361B (en) * 2022-08-26 2023-05-09 山东恒邦冶炼股份有限公司 High-purity antimony rod and high-purity antimony white combined preparation process

Also Published As

Publication number Publication date
JPH10121162A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP3838716B2 (en) Purification method of bismuth
JP4538663B2 (en) High-purity metal purification method and purification apparatus
JP3842851B2 (en) Indium purification method
JP3857589B2 (en) High-purity metal purification method and purification apparatus
JP3838717B2 (en) Magnesium purification method
US6805833B2 (en) Apparatus for enhanced purification of high-purity metals
JP2006283192A (en) High-purity indium
JP3838712B2 (en) Antimony purification method
JP3768332B2 (en) High purity tellurium manufacturing method and manufacturing apparatus thereof
CN107326199B (en) The continuous producing method of impurity zinc-mercury in a kind of removing gallium
JP3646234B2 (en) Method and apparatus for producing high purity silver
US6932852B2 (en) Method and apparatus for enhanced purification of high-purity metals
JP3838713B2 (en) Zinc purification method
JP3838744B2 (en) Method for producing high purity selenium
JP3838743B2 (en) Method for producing high purity cadmium
US3397056A (en) Separation of aluminum from impure aluminum sources
EP0606977B1 (en) Analytical method for nonmetallic contaminants in silicon
US2930678A (en) Process for the production of selenium of at least 99.99% purity
CN116406429A (en) Preparation method of high-purity metal scandium
RU2583574C1 (en) Method of producing high-purity gallium
JPH0213032B2 (en)
RU2370558C1 (en) Method of production of high purity cobalt for sputtering targets
AU638627B2 (en) One step process for the treatment of parkes desilvering crust to recover zinc and produce a suitable feed for cupellation
RU2698237C1 (en) Silvery foam processing method by vacuum distillation
JPS59169908A (en) Purification of tellurium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees