JP2001118960A - Carbon-based metal composite material board with electric insulating film - Google Patents

Carbon-based metal composite material board with electric insulating film

Info

Publication number
JP2001118960A
JP2001118960A JP29355399A JP29355399A JP2001118960A JP 2001118960 A JP2001118960 A JP 2001118960A JP 29355399 A JP29355399 A JP 29355399A JP 29355399 A JP29355399 A JP 29355399A JP 2001118960 A JP2001118960 A JP 2001118960A
Authority
JP
Japan
Prior art keywords
carbon
composite material
insulating film
based metal
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29355399A
Other languages
Japanese (ja)
Inventor
Noriaki Kawamura
憲明 川村
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTAN ZAIRYO KK
Original Assignee
SENTAN ZAIRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTAN ZAIRYO KK filed Critical SENTAN ZAIRYO KK
Priority to JP29355399A priority Critical patent/JP2001118960A/en
Publication of JP2001118960A publication Critical patent/JP2001118960A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an electronic board device which is high in thermal conductivity by a method wherein an electric insulating film of ceramic or plastic is formed on a carbon-based metal composite material board, and an electronic circuit is provided to the electric insulating film, where the carbon-based metal composite material board is nearly equal to metal in thermal condcutivity and electrically conductive and whose thermal expansion coefficient is as small as that of a ceramic and Young's modulus is small, a ceramic insulating board is bonded to the carbon-based metal composite material board with metal brazing material to serve as a board device in a usual method, but the above board device is low in thermal condcutivity due to the fact that the ceramic insulating board and metal brazing material are high in thermal resistance. SOLUTION: An electric insulating film of ceramic or plastic is formed direct on a carbon-based metal composite material board taking advantage of the fact that Young's modulus of the composite material board is low. An electronic circuit is provided on the electric insulating film, by which an electronic board device of high thermal conductivity can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素成分が体積分
率で過半を占め残りを金属とする炭素基金属複合材と呼
称する材料に電気絶縁膜を付与した製品に関するもので
ある。本製品は主として半導体パッケージあるいはそれ
を含む電子回路の基板として使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a product obtained by adding an electrical insulating film to a material called a carbon-based metal composite material in which a carbon component accounts for a majority in volume fraction and the remainder is metal. This product is mainly used as a substrate for a semiconductor package or an electronic circuit including the same.

【0002】[0002]

【従来の技術】高機能化、高出力の電子装置では、大量
の熱が発生しており、この熱を効率良く除去するため
に、熱伝導が良く、熱膨張率の小さい材料が要求されて
いる。半導体素子、抵抗体、トランス、コンデンサーあ
るいは配線からなる電子回路から発生する熱の大部分
は、電気絶縁基板及びベース基板を経て冷却装置により
大気あるいは冷却液体に放熱される構造になっている。
電気絶縁基板材料には熱伝導率の高い窒化アルミニウム
のセラミックスが多用され、ベース基板材料にはアルミ
ニウム、銅の金属材料あるいは炭化珪素、タングステン
焼結体に金属を含浸することで熱膨張率を小さくした複
合材を使用する例が多い。
2. Description of the Related Art High-performance, high-output electronic devices generate a large amount of heat. In order to efficiently remove the heat, a material having good heat conduction and a small coefficient of thermal expansion is required. I have. Most of the heat generated from an electronic circuit including a semiconductor element, a resistor, a transformer, a capacitor, and wiring is radiated to the atmosphere or a cooling liquid by a cooling device via an electric insulating substrate and a base substrate.
Aluminum nitride ceramics, which have high thermal conductivity, are frequently used as the material of the electrically insulating substrate, and the base substrate material is made of a metal material of aluminum or copper or a sintered metal of silicon carbide or tungsten to reduce the coefficient of thermal expansion by impregnating the metal. In many cases, a composite material is used.

【0003】電気絶縁基板とべース基板は、通例はんだ
(軟ろう)または硬ろう材で接合される。この接合には、
通例融点が220℃から300℃の高温はんだまたは金
すず、銀ろうが使用されている。
[0003] The electrically insulating substrate and the base substrate are usually soldered.
(Soft solder) or hard brazing material. In this joint,
Usually, high-temperature solder having a melting point of 220 ° C. to 300 ° C. or gold tin or silver brazing is used.

【0004】この構造には熱抵抗の観点からして次のよ
うな問題点がある。電気絶縁基板の必要厚さは電気絶縁
耐圧性能上からは、0.1mm程度であるが、製造工程
での破損を防ぐために通例0.635mm厚さの窒化ア
ルミニウム基板が使用されている。このため、同基板内
部での熱抵抗が必要以上に大きくなっていること。電気
絶縁基板とべース基板にあるろう材の厚みは、両基板間
の熱膨張率差から生じる熱応力を緩衝する機能を持たせ
るため通例0.05mm以上になっている。はんだ等の
ろう材の熱伝導率が低いため、この層の熱抵抗が大きく
なっている。
This structure has the following problems from the viewpoint of thermal resistance. The required thickness of the electrically insulating substrate is about 0.1 mm from the standpoint of the electric withstand voltage, but an aluminum nitride substrate having a thickness of 0.635 mm is usually used to prevent breakage in the manufacturing process. Therefore, the thermal resistance inside the substrate must be unnecessarily large. The thickness of the brazing material on the electrical insulating substrate and the base material is usually 0.05 mm or more to provide a function of buffering thermal stress caused by a difference in thermal expansion coefficient between the two substrates. Since the thermal conductivity of the brazing material such as solder is low, the thermal resistance of this layer is large.

【0005】[0005]

【発明が解決しようとする課題】炭素基金属複合材料
は、熱伝導が良く、熱膨張率も小さく半導体基板材料と
しては良好な特性を有しているが、電気絶縁性でないた
め同基板上に電気絶縁を設置することが出来ない。この
ため、同基板は、従来のベース基板材料であるアルミニ
ウム、銅あるいはそれらの合金金属からなる基板の代替
品として使用されている。具体的には、炭素基金属複合
材料の基板上にセラミックス製の絶縁基板をろう材で接
合するか、あるいはプラスチック製の膜を敷設する構造
になっている。このため、炭素基金属複合材料の熱膨張
率が小さく、ヤング弾性率が小さいという特性が十分に
活用されていない。
The carbon-based metal composite material has a good thermal conductivity and a small coefficient of thermal expansion, and has good characteristics as a semiconductor substrate material. Electric insulation cannot be installed. For this reason, this substrate is used as a substitute for a substrate made of aluminum, copper, or an alloy metal thereof, which is a conventional base substrate material. Specifically, the structure is such that an insulating substrate made of ceramics is joined with a brazing material on a substrate made of a carbon-based metal composite material, or a plastic film is laid. For this reason, the characteristics that the carbon-based metal composite material has a small coefficient of thermal expansion and a small Young's modulus are not fully utilized.

【0006】また、熱伝導率の小さいはんだを使用する
ため電気絶縁面とベース基板間の熱抵抗が大きくなる点
とセラミックス基板の厚さが、加工操作上の制約から機
能上必要な厚さより厚く、特に安価なアルミナ製の基板
を使用する場合にはセラミックス絶縁基板での熱抵抗が
大きくなる。従って、基板装置として炭素基金属複合材
の熱伝導の良さが活かされていない。
In addition, since a solder having a low thermal conductivity is used, the point that the thermal resistance between the electric insulating surface and the base substrate becomes large, and the thickness of the ceramic substrate is larger than a functionally necessary thickness due to restrictions on processing operations. In particular, when an inexpensive alumina substrate is used, the thermal resistance of the ceramic insulating substrate increases. Therefore, the good heat conduction of the carbon-based metal composite material is not utilized as a substrate device.

【0007】従来、ベース基板と絶縁基板の熱抵抗を小
さくするために、プラスチック膜あるいはセラミックス
膜を直接敷設する試みがされている。プラスチック膜の
場合には、プラスチック膜の熱伝導率がセラミックス膜
の数十分の1以下のため、熱抵抗は小さくならない。セ
ラミックス膜の場合は、ベース基板がアルミニウム、銅
等の金属では熱膨張率が大きくことなり、製膜ができな
い、また、熱膨張率の小さい炭化珪素、タングステン焼
結体に金属を含浸した複合材でも、同基板上にわれの無
いセラミックス膜を直接作ることは難しかった。この理
由は、炭化珪素、タングステン焼結体に金属を含浸した
複合材基板の弾性率が大きいため、セラミックス膜と複
合材基板の間にわずかな熱膨張率差があると、膜に大き
な応力がかかりわれが生じるためである。
Conventionally, attempts have been made to directly lay a plastic film or a ceramic film in order to reduce the thermal resistance between the base substrate and the insulating substrate. In the case of a plastic film, the thermal resistance of the plastic film is not more than one-tenth of the ceramic film, so that the thermal resistance does not decrease. In the case of a ceramic film, if the base substrate is made of a metal such as aluminum or copper, the coefficient of thermal expansion will be large, making it impossible to form a film. In addition, a composite material in which silicon carbide or tungsten sintered body with a low coefficient of thermal expansion is impregnated with the metal However, it was difficult to form a solid ceramic film directly on the substrate. The reason is that the elastic modulus of the composite material substrate in which silicon carbide and tungsten sintered bodies are impregnated with a metal has a large elastic modulus.If there is a slight difference in the coefficient of thermal expansion between the ceramic film and the composite material substrate, a large stress is applied to the film. This is due to the occurrence of the problem.

【0008】本発明は、電気絶縁面からベース基板まで
の熱伝導率を大きくするために、熱伝導率の悪いはんだ
層を取り除き、炭素基金属複合材料に電気絶縁性の膜を
直接敷設した製品の提供を目的とする。
According to the present invention, there is provided a product in which an electrically insulating film is directly laid on a carbon-based metal composite material by removing a solder layer having poor thermal conductivity in order to increase the thermal conductivity from the electrical insulating surface to the base substrate. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、炭素基金属複合材料のヤング弾性率が小さいことを
利用して、電気絶縁性の耐熱プラスチック、あるいはセ
ラミックス製の膜を直接敷設する。
In order to achieve the above object, a film made of electrically insulating heat-resistant plastic or ceramics is directly laid by utilizing the low Young's modulus of the carbon-based metal composite material. .

【0010】炭素基金属複合材料は、炭素と金属の複合
材でヤング弾性率が30GPa以下で、熱伝導率が10
0W/(m.K)以上、線膨張率が5×10- 6/℃以上
11×10- 6/℃以下の材料が望ましい。炭素基金属複
合材のヤング弾性率は、従来のベース基板材料であるア
ルミニウム、銅あるいは炭化珪素、タングステン焼結体
に金属を含浸することで熱膨張率を小さくした複合材基
板のヤング弾性率の10分の1以下である。このため、
炭素基金属複合材基板表面の膜にかかる応力は小さく、
特にセラミックス絶縁膜の場合にはわれの無い良好な膜
が生成できる。
The carbon-based metal composite material is a composite material of carbon and metal having a Young's modulus of 30 GPa or less and a thermal conductivity of 10 GPa or less.
0 W / (mK) or more, the linear expansion coefficient of 5 × 10 - 6 / ℃ least 11 × 10 - 6 / ℃ following materials is desirable. The Young's modulus of a carbon-based metal composite is the Young's modulus of a composite substrate whose thermal expansion coefficient is reduced by impregnating a conventional base substrate material such as aluminum, copper or silicon carbide, or tungsten with a metal. It is less than 1/10. For this reason,
The stress on the film on the surface of the carbon-based metal composite substrate is small,
Particularly, in the case of a ceramic insulating film, a good film without cracks can be formed.

【0011】電気絶縁用のプラスチックとは、エポキ
シ、ポリウレタン、ポリエステル、ポリイミド、ポリア
ミノビスマレイミド、ビスマレイミド、ポリエーテルイ
ミド、ポリアミドイミド、シロキサンが使用されるが、
これら材料に限定されるものではない。炭素基金属複合
材料製基板上に膜として敷設し246℃以上、5秒間の
はんだ浸漬試験でふくれ及びはがれのないプラスチック
をいう。
The plastics for electrical insulation include epoxy, polyurethane, polyester, polyimide, polyaminobismaleimide, bismaleimide, polyetherimide, polyamideimide, and siloxane.
It is not limited to these materials. A plastic that is laid as a film on a substrate made of a carbon-based metal composite material and has no blistering or peeling in a solder immersion test at 246 ° C. or more for 5 seconds.

【0012】電気絶縁用のセラミックスとしては、アル
ミナ、窒化アルミニウム、シリカ、窒化珪素、酸化チタ
ン、ジルコニアあるいはガラス質が使用されるが、これ
ら材料に限定されるものではない。炭素基金属複合材料
製品に膜として敷設し、いわゆる高温はんだが使用でき
る300℃以上で使用できる無機質材料をいう。
As ceramics for electrical insulation, alumina, aluminum nitride, silica, silicon nitride, titanium oxide, zirconia or vitreous are used, but are not limited to these materials. An inorganic material that is laid as a film on a carbon-based metal composite material product and that can be used at 300 ° C. or higher where so-called high-temperature solder can be used.

【0013】電気絶縁用のプラスチックの膜厚は、プラ
スチックの熱伝導率が低いため、0.5mm以下とす
る。望ましい厚みは、0.01mmから0.1mmであ
る。
The thickness of the plastic for electrical insulation is 0.5 mm or less because the thermal conductivity of the plastic is low. Desirable thickness is from 0.01 mm to 0.1 mm.

【0014】電気絶縁用のセラミックスの膜厚は、1m
m以下とする。望ましい厚みは、0.01mmから0.
1mmである。
The thickness of the ceramic for electrical insulation is 1 m
m or less. Desirable thickness is 0.01 mm to 0.1 mm.
1 mm.

【0015】電気絶縁用のプラスチック膜の製膜方法に
は、ディッピング、スプレーコート、スピンコート、ス
クリーン印刷、電着、MOCVD、あるいはプラスチッ
クフィルムのラミネート法がある。
As a method of forming a plastic film for electrical insulation, there are dipping, spray coating, spin coating, screen printing, electrodeposition, MOCVD, and lamination of a plastic film.

【0016】電気絶縁用のセラミックス膜の製膜方法に
は、PVD、CVD、プラズマ溶射法があり、半導体チ
ップを搭載する場合には、PVD法の一種であるスパッ
タリングによる製膜が特に望ましい。プラズマ溶射で
は、セラミックス溶射後ガラス質のグレーズで封孔する
必要がある。
As a method for forming a ceramic film for electrical insulation, there are PVD, CVD, and plasma spraying methods. When a semiconductor chip is mounted, film formation by sputtering, which is a kind of PVD method, is particularly desirable. In plasma spraying, it is necessary to seal the glass with a vitreous glaze after spraying ceramics.

【0017】[0017]

【発明の実施の形態】以下、発明の実施の形態を実施例
に基づく図面を参照して説明する。本発明の製品は、炭
素基金属複合材と電気絶縁膜からなることを特徴とす
る。その基本構造は図1でで示される。図1において、
1は炭素基金属複合材からなる基板、2はセラミックス
溶射する場合、金属の薄膜であり、プラスチックフィル
ムをラミネートする場合には、接着性の樹脂である。P
VDあるいはCVDあるいはワニスを使用してプラスチ
ック膜を敷設する場合には不要である。3はセラミック
スあるいはプラスチック膜である。4は電気回路で、通
常銅が使われる。5は半導体素子、抵抗器、コンデンサ
ー等の電子部品である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings based on embodiments. The product of the present invention is characterized by comprising a carbon-based metal composite and an electric insulating film. Its basic structure is shown in FIG. In FIG.
1 is a substrate made of a carbon-based metal composite material, 2 is a metal thin film when spraying ceramics, and an adhesive resin when laminating a plastic film. P
This is unnecessary when laying a plastic film using VD, CVD, or varnish. 3 is a ceramic or plastic film. Reference numeral 4 denotes an electric circuit, which is usually made of copper. Reference numeral 5 denotes an electronic component such as a semiconductor element, a resistor, and a capacitor.

【0018】[0018]

【実施例】以下、実施例により本発明をさらに説明する
が、本発明の技術的範囲がこれに限定されるものではな
い。
EXAMPLES The present invention will be further described below with reference to examples, but the technical scope of the present invention is not limited to these examples.

【0019】実施例1 空隙が体積の8%である炭素繊維一方向配列炭素複合材
に、溶融した銅を高圧で含浸することにより製造した炭
素基アルミニウム複合材から、炭素繊維の長さ方向を厚
さ方向として厚み3mm、30mm角の基板を調整す
る。同基板にプラズマ溶射でモリブデン、クロムを主材
とする厚さ10ミクロンの金属膜を敷設する。同金属膜
上に平均粒径1μmで純度99.6%以上のホワイトア
ルミナをプラズマ溶射し金属膜とあわせた全体膜厚が
0.1mmのセラミックス膜を調製する。この膜にはピ
ンホールがあるためガラスフリットを薄くかけ900℃
で焼成する。この膜上に厚み10μmアルミニウム箔、
さらにその上に厚み0.3mmの銅箔を重ね、ホットプ
レスで2MPa、650℃30分間の処理を行い、銅板
付きの基板を得る。
Example 1 A carbon fiber unidirectionally arrayed carbon composite material having a void of 8% by volume was impregnated with molten copper at a high pressure. A substrate having a thickness of 3 mm and a square of 30 mm is adjusted in the thickness direction. On the substrate, a metal film having a thickness of 10 μm mainly composed of molybdenum and chromium is laid by plasma spraying. White alumina having an average particle diameter of 1 μm and a purity of 99.6% or more is plasma-sprayed on the metal film to prepare a ceramic film having a total thickness of 0.1 mm together with the metal film. Since this film has pinholes, apply a thin glass frit to 900 ° C.
Baking. 10 μm thick aluminum foil on this film,
Further, a copper foil having a thickness of 0.3 mm is stacked thereon and subjected to a treatment at 2 MPa and 650 ° C. for 30 minutes by hot pressing to obtain a substrate with a copper plate.

【0020】セラミックス膜の電気絶縁性を確認するた
めに、炭素基金属複合材基板と銅板間に500Vの電位
差をつけて電気絶縁テスターで電気抵抗値を測定した。
抵抗値は無限大で、セラミックス膜の電気絶縁性が確認
できた。
In order to confirm the electrical insulation of the ceramic film, a potential difference of 500 V was applied between the carbon-based metal composite substrate and the copper plate, and the electrical resistance was measured with an electrical insulation tester.
The resistance was infinite and the electrical insulation of the ceramic film was confirmed.

【0021】実施例2 実施例1と同様の炭素基金属複合材基板10mm角、厚
み1mmの表面を磨き、平均平面粗さを0.1μmとす
る。同基板上にマグネトロンスパッタリング装置を使用
して、雰囲気圧力1Pa、アルゴンガスと酸素ガス9/1
の混合気を1分間あたり10ml流し、300Wの出力
で12時間かけてアルミナ膜を0.03mmつける。こ
のときの基板温度は300℃である。
Example 2 The same carbon-based metal composite substrate as in Example 1 was polished on a 10 mm square, 1 mm thick surface to have an average plane roughness of 0.1 μm. Atmospheric pressure 1 Pa, argon gas and oxygen gas 9/1 on the same substrate using a magnetron sputtering device.
Is flowed at a rate of 10 ml per minute, and an alumina film is applied to a thickness of 0.03 mm at an output of 300 W for 12 hours. At this time, the substrate temperature is 300 ° C.

【0022】アルミナ基板膜を走査型電子顕微鏡500
0倍で観察した。膜は、透明で、ガラス質であった。わ
れ、ピンホール等の瑕疵は観察できなかった。
Scanning the alumina substrate film with a scanning electron microscope 500
Observed at 0x. The membrane was clear and vitreous. No defects such as pinholes could be observed.

【0023】この基板の耐熱性を確認するために、基板
を大気中で400℃に加熱したのち自然冷却するという
工程を5回繰り返した後、走査型電子顕微鏡5000倍
で観察した。膜にわれ、ピンホール等の瑕疵は観察でき
ず、400℃の耐熱性を実証した。
In order to confirm the heat resistance of the substrate, a process of heating the substrate to 400 ° C. in the air and then naturally cooling it was repeated five times, and then observed with a scanning electron microscope at a magnification of 5,000. No defects such as pinholes were observed on the film, and heat resistance at 400 ° C. was verified.

【0024】マグネトロンスパッタリング装置でつけた
アルミナ膜に金を蒸着し、金膜と炭素基金属複合材基板
の電気絶縁性を電気絶縁テスターで膜の耐電圧を実測し
た。この結果、この膜の耐電圧は500V以上650V
で以下であった。また、膜の固有抵抗値は1012Ω・m
以上と実測された。
Gold was vapor-deposited on the alumina film provided by a magnetron sputtering apparatus, and the electrical insulation between the gold film and the carbon-based metal composite substrate was measured with an electric insulation tester to measure the withstand voltage of the film. As a result, the withstand voltage of this film was 500 V or more and 650 V or more.
It was the following. The specific resistance of the film is 10 12 Ω · m
It was actually measured above.

【0025】[0025]

【発明の効果】炭素基金属複合材基板は、従来の炭化珪
素、アルミナ、タングステン等の粉体焼結体に金属を含
浸することにより製造される複合材基板と同様に熱膨張
率が小さく、かつヤング弾性率が一桁低い。この特性を
利用して炭素基金属複合材基板上に膜質が良く、熱サイ
クルに耐えるセラミックス製電気絶縁膜を敷設できた。
この絶縁膜上に電子回路を設置することにより、熱伝導
率の良い電子基板装置を容易に製造することができる。
The carbon-based metal composite substrate has a small coefficient of thermal expansion similarly to a conventional composite substrate manufactured by impregnating a metal into a powder sintered body of silicon carbide, alumina, tungsten, or the like. And the Young's modulus is one digit lower. By utilizing this characteristic, a ceramic electrical insulating film having good film quality and withstanding thermal cycling could be laid on the carbon-based metal composite substrate.
By disposing an electronic circuit on this insulating film, an electronic substrate device having good thermal conductivity can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子基板装置の基本構造を示す概略図
である。
FIG. 1 is a schematic view showing a basic structure of an electronic substrate device of the present invention.

【図2】実施例2で使用したマグネトロンスパッタリン
グ装置の概念図である。
FIG. 2 is a conceptual diagram of a magnetron sputtering apparatus used in Example 2.

【符号の説明】[Explanation of symbols]

1 炭素基金属複合材基板 2 接合層、セラミックス溶射する場合、金属の薄膜
が、プラスチックフィルムをラミネートする場合には、
接着性の樹脂が使用される。(PVDあるいはCVDあ
るいはワニスを使用してプラスチック膜を敷設する場合
には不要となる。) 3 電気絶縁膜 (セラミックスあるいはプラスチック
膜) 4 電気回路 (通常銅が使用される。) 5 半導体素子、抵抗器、コンデンサー等の電子部品 6 チャンバー 7 陰極 8 陽極 9 ソレノイドコイル
1 Carbon-based metal composite substrate 2 Bonding layer, when spraying ceramics, when metal thin film is laminated with plastic film,
Adhesive resin is used. (This is not necessary when a plastic film is laid using PVD, CVD, or varnish.) 3 Electric insulating film (ceramic or plastic film) 4 Electric circuit (usually copper is used) 5 Semiconductor element, resistor Components such as heaters and condensers 6 Chamber 7 Cathode 8 Anode 9 Solenoid coil

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D075 CA17 CA23 DB63 DC21 EB02 4G046 AA00 AB01 4K018 AA02 AA04 AA15 AB07 BB02 DA19 DA50 FA24 FA25 JA14 JA16 JA38 KA32 5F036 AA01 BB08 BD01 BD03 BD11 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D075 CA17 CA23 DB63 DC21 EB02 4G046 AA00 AB01 4K018 AA02 AA04 AA15 AB07 BB02 DA19 DA50 FA24 FA25 JA14 JA16 JA38 KA32 5F036 AA01 BB08 BD01 BD03 BD11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭素と金属が相互に入り混じり、炭素成分
の体積比率が60%以上、残りがアルミニウムまたはそ
の合金、銅またはその合金、銀またはその合金あるいは
前述の金属を一種類以上含む合金からなる炭素基金属複
合材料でその表面の一部あるいは全面を、電気絶縁性の
皮膜で覆った製品。
An alloy in which carbon and a metal are mixed with each other, and a volume ratio of a carbon component is 60% or more, and the balance is aluminum or an alloy thereof, copper or an alloy thereof, silver or an alloy thereof, or an alloy containing one or more kinds of the above metals A product whose surface is partially or entirely covered with an electrically insulating film with a carbon-based metal composite material consisting of
【請求項2】請求項1の炭素基金属複合材料は、ヤング
弾性率が30GPa以下で熱伝導率が100W/(m・
K)以上あるいは線膨張率が12×10- 6/℃以下のい
ずれかの特性を持つ材料。
2. The carbon-based metal composite material according to claim 1, having a Young's modulus of 30 GPa or less and a thermal conductivity of 100 W / (m ·
Material with any of the characteristics of 6 / ° C. or less - K) or more, or linear expansion coefficient is 12 × 10.
【請求項3】請求項1の電気絶縁性の皮膜材料がプラス
チック製で、電気絶縁性の皮膜と電気回路が単層あるい
は複数層積層され、その厚さが0.5mm以下の製品。
3. The product according to claim 1, wherein the electrically insulating film material is made of plastic, the electric insulating film and an electric circuit are laminated in a single layer or a plurality of layers, and the thickness thereof is 0.5 mm or less.
【請求項4】請求項1の電気絶縁性の皮膜材料がセラミ
ックス製で、電気絶縁性の皮膜と電気回路が単層あるい
は複数層積層され、その厚さが1mm以下の製品。
4. The product according to claim 1, wherein the electrically insulating film material is made of ceramics, the electric insulating film and the electric circuit are laminated in a single layer or a plurality of layers, and the thickness thereof is 1 mm or less.
JP29355399A 1999-10-15 1999-10-15 Carbon-based metal composite material board with electric insulating film Pending JP2001118960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29355399A JP2001118960A (en) 1999-10-15 1999-10-15 Carbon-based metal composite material board with electric insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29355399A JP2001118960A (en) 1999-10-15 1999-10-15 Carbon-based metal composite material board with electric insulating film

Publications (1)

Publication Number Publication Date
JP2001118960A true JP2001118960A (en) 2001-04-27

Family

ID=17796252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29355399A Pending JP2001118960A (en) 1999-10-15 1999-10-15 Carbon-based metal composite material board with electric insulating film

Country Status (1)

Country Link
JP (1) JP2001118960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343035A (en) * 2003-04-24 2004-12-02 Ngk Spark Plug Co Ltd Heat radiating component, circuit board, and semiconductor device
WO2005091360A1 (en) * 2004-03-24 2005-09-29 A.L.M.T.Corp. Substrate for semiconductor device and semiconductor device
CN100397960C (en) * 2005-04-08 2008-06-25 神基科技股份有限公司 Printed circuit board structure and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343035A (en) * 2003-04-24 2004-12-02 Ngk Spark Plug Co Ltd Heat radiating component, circuit board, and semiconductor device
WO2005091360A1 (en) * 2004-03-24 2005-09-29 A.L.M.T.Corp. Substrate for semiconductor device and semiconductor device
US7470982B2 (en) 2004-03-24 2008-12-30 A.L.M.T. Corp. Substrate for semiconductor device and semiconductor device
CN100397960C (en) * 2005-04-08 2008-06-25 神基科技股份有限公司 Printed circuit board structure and method for manufacturing same

Similar Documents

Publication Publication Date Title
US20220000965A1 (en) Method of fabricating an electronic power module by additive manufacturing, and associated substrate and module
US5073840A (en) Circuit board with coated metal support structure and method for making same
JPS5815241A (en) Substrate for semiconductor device
US20080212255A1 (en) Electrostatic chuck and method for manufacturing same
US6056186A (en) Method for bonding a ceramic to a metal with a copper-containing shim
US5276423A (en) Circuit units, substrates therefor and method of making
US4777060A (en) Method for making a composite substrate for electronic semiconductor parts
KR20110075451A (en) Manufacturing method for integrated semiconductor power module substrate
JP4686996B2 (en) Heating device
US11147851B2 (en) Method of fabricating an electronic power module by additive manufacturing, and associated substrate and module
JPS6022347A (en) Substrate for semiconductor element mounting
JP2001118960A (en) Carbon-based metal composite material board with electric insulating film
EP0113088B1 (en) Substrate for mounting semiconductor element
JPS63124555A (en) Substrate for semiconductor device
JP4383866B2 (en) Power electronic unit
JPS58103156A (en) Substrate for semiconductor device
US5786097A (en) Assembly substrate and method of making
US20190056186A1 (en) Cooling device and method for producing the cooling device
US5040292A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JPS59184586A (en) Circuit board for placing semiconductor element
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JPS5848954A (en) Substrate for tape carrier type integrated circuit
JP2006186350A (en) Substrate heating structure and substrate processor
JPS60178655A (en) Lead frame