JP2001118567A - Positive electrode for lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery

Info

Publication number
JP2001118567A
JP2001118567A JP29874199A JP29874199A JP2001118567A JP 2001118567 A JP2001118567 A JP 2001118567A JP 29874199 A JP29874199 A JP 29874199A JP 29874199 A JP29874199 A JP 29874199A JP 2001118567 A JP2001118567 A JP 2001118567A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
secondary battery
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29874199A
Other languages
Japanese (ja)
Other versions
JP4649691B2 (en
Inventor
Itsuki Sasaki
厳 佐々木
Yoshio Ukiyou
良雄 右京
Hideyuki Nakano
秀之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP29874199A priority Critical patent/JP4649691B2/en
Publication of JP2001118567A publication Critical patent/JP2001118567A/en
Application granted granted Critical
Publication of JP4649691B2 publication Critical patent/JP4649691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium secondary battery having superior cycle characteristic configured, such that the coating ratio of a surface of a positive electrode active material of a binder and a conductive agent is not under a certain ratio by using stable positive active material. SOLUTION: An electrode for a lithium secondary battery formed by binding a positive electrode active material 1, including a lithium transition metal compound oxide and a conductive agent 2 as a binder 3, is configured so that before charging and discharging, at least 80% of a surface of the positive electrode active material 1 is coated on one side of the conductive agent 2 and the binder 3 and after exceeding 100 cycles of charging and discharging of maximum current amount, capable of charging and discharging reversibly at 60 deg.C, at least 50% of a surface of the positive electrode active material 1 is coated in one side of the conductive agent 2 and the binder 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池を構成する正極に
関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to a positive electrode constituting a lithium secondary battery utilizing a desorption phenomenon.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化等に伴い、高性能の電池が必要ととされ、高エネ
ルギー密度であるという理由から、情報関連機器、通信
機器等の分野では、リチウム二次電池が既に実用化さ
れ、広く普及するに至っている。二次電池は、一般に、
繰り返される充放電によってもその容量があまり低下し
ないという良好なサイクル特性が求められ、特に高価な
リチウム二次電池では、より高いサイクル特性が要求さ
れる。
2. Description of the Related Art With the downsizing of personal computers, video cameras, mobile phones, and the like, high-performance batteries are required, and because of their high energy density, in the fields of information-related equipment and communication equipment, Lithium secondary batteries have already been put to practical use and have come into widespread use. Rechargeable batteries are generally
Good cycle characteristics are required in which the capacity is not significantly reduced even by repeated charging and discharging, and particularly high cost lithium secondary batteries require higher cycle characteristics.

【0003】リチウム二次電池を構成する正極は、一般
に、リチウム遷移金属複合酸化物を正極活物質とし、こ
の正極活物質と正極内の電子伝導性を確保するための導
電材とを混合し、さらに結着剤を混合してペースト状の
正極合材としたものを、正極集電体の表面に層状に塗布
し、次いで乾燥して作製される。つまり、正極は、電極
合材層を含み、この正極合材層は、正極活物質および導
電材が結着剤にて結着されて形成されている。
In general, a positive electrode constituting a lithium secondary battery uses a lithium-transition metal composite oxide as a positive electrode active material, and mixes the positive electrode active material with a conductive material for ensuring electron conductivity in the positive electrode. Further, a paste-like positive electrode mixture obtained by mixing a binder is applied to the surface of the positive electrode current collector in a layered form, and then dried to produce a paste. That is, the positive electrode includes the electrode mixture layer, and the positive electrode mixture layer is formed by binding the positive electrode active material and the conductive material with the binder.

【0004】従来の考えでは、この正極を構成する正極
合材層は、連続した微細な空隙を有することを前提と
し、この空隙に電解液が浸透することで正極合材層中の
Liイオンの移動を確保しようとする試みがなされてい
る。例えば、特開平11−31534号公報に示す技術
等では、正極合材層中の空隙率をある程度以上の値に保
持することで、リチウム二次電池のサイクル特性を良好
なものとすることが検討されている。
[0004] Conventionally, it is assumed that the positive electrode mixture layer constituting the positive electrode has continuous fine voids, and that the electrolyte solution penetrates into these voids, so that the Li ions in the positive electrode mixture layer are removed. Attempts have been made to secure movement. For example, in the technique disclosed in Japanese Patent Application Laid-Open No. H11-31534, it has been studied to improve the cycle characteristics of a lithium secondary battery by maintaining the porosity of the positive electrode mixture layer at a certain value or more. Have been.

【0005】[0005]

【発明が解決しようとする課題】ところが、本発明者が
実験を行ったところ、最も一般的なポリフッ化ビニリデ
ン(PVdF)等を正極結着剤に用いた正極では、この
PVdF等が電解液によって膨潤することで、Liイオ
ン伝導性は確保されることが明らかになり、従来におい
て必要とされていた正極合材層の空隙は、殆ど必要がな
いとの知見を得ることができた。
However, the present inventor conducted an experiment and found that in the most common positive electrode using polyvinylidene fluoride (PVdF) or the like as a positive electrode binder, the PVdF or the like was changed by an electrolytic solution. It was clarified that swelling ensures Li ion conductivity, and it was possible to obtain the knowledge that the conventionally required voids in the positive electrode mixture layer were hardly necessary.

【0006】一方、正極活物質となるリチウム遷移金属
複合酸化物は、単結晶に近い1次粒子が凝集して2次粒
子を形成するという構造をなしている。充放電に伴うリ
チウム遷移金属複合酸化物中へのリチウムの吸蔵・脱離
により、このリチウム遷移金属複合酸化物はそれ自体が
膨張・収縮をする。充放電が繰り返されることで、その
体積変化から、2次粒子は崩壊し微細化する。2次粒子
が微細化することによって、正極合材層は、その空隙を
増加させることになる。そして、このような空隙の増加
は、結着剤または導電材に接触しない正極活物質の存在
割合が大きくなることから、正極の電子伝導性を悪化さ
せ、内部抵抗が増加することにより、むしろリチウム二
次電池のサイクル特性を悪化させる原因となるとの知見
も得た。
On the other hand, a lithium transition metal composite oxide serving as a positive electrode active material has a structure in which primary particles close to a single crystal aggregate to form secondary particles. The lithium transition metal composite oxide itself expands and contracts due to insertion and extraction of lithium into and from the lithium transition metal composite oxide during charge and discharge. As the charge and discharge are repeated, the secondary particles collapse and become finer due to the volume change. As the secondary particles are refined, the positive electrode mixture layer increases the voids. Such an increase in the voids increases the proportion of the positive electrode active material that does not come into contact with the binder or the conductive material, thereby deteriorating the electron conductivity of the positive electrode and increasing the internal resistance. We have also obtained knowledge that this may cause deterioration of the cycle characteristics of the secondary battery.

【0007】本発明は、上記知見に基づいてなされたも
のであり、結着剤および導電材の正極活物質の表面を覆
う割合がある一定割合を下回らないように、構造的に安
定した正極活物質を用いることで、サイクル特性の良好
なリチウム二次電池を構成することのできるリチウム二
次電池用正極を提供することを課題としている。
The present invention has been made on the basis of the above findings, and has a structure in which a positive electrode active material which is structurally stable so that the ratio of the binder and the conductive material covering the surface of the positive electrode active material does not fall below a certain ratio. It is an object of the present invention to provide a positive electrode for a lithium secondary battery that can form a lithium secondary battery having good cycle characteristics by using a substance.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム二次電
池用正極は、リチウム遷移金属複合酸化物を含む正極活
物質と導電材とを結着剤で結着して形成したリチウム二
次電池用正極であって、充放電前に、前記正極活物質の
表面の少なくとも80%が前記導電材および前記結着剤
の少なくとも一方で覆われており、かつ、60℃におい
て可逆的に充放電可能な最大電気量の充放電を100サ
イクル経過した後に、該正極活物質の表面の少なくとも
50%が前記導電材および前記結着剤の少なくとも一方
で覆われていることを特徴とする。
A positive electrode for a lithium secondary battery according to the present invention is a lithium secondary battery formed by binding a positive electrode active material containing a lithium transition metal composite oxide and a conductive material with a binder. A positive electrode for use, wherein at least 80% of the surface of the positive electrode active material is covered with at least one of the conductive material and the binder before charging and discharging, and can be reversibly charged and discharged at 60 ° C. At least 50% of the surface of the positive electrode active material is covered with at least one of the conductive material and the binder after 100 cycles of charging and discharging of a maximum amount of electricity.

【0009】正極活物質および導電材を結着剤で結着さ
せて形成した正極の断面を概念的に示せば、図1(a)
のようになり、正極活物質であるリチウム遷移金属複合
酸化物の2次粒子1は、例えば炭素材料の粒子からなる
導電材2とともに、例えばポリフッ化ビニリデン(PV
dF)からなる結着剤3によって結着されている。この
正極を用いてリチウム二次電池を構成させ、充放電を繰
り返せば、リチウム遷移金属複合酸化物の2次粒子1
は、体積膨張・収縮を繰り返すことにより崩壊し、微細
化して、図1(b)のようになる。図1(b)に示すリ
チウム遷移金属複合酸化物の2次粒子1は、微細化した
ことで、導電材2および結着剤3に接触していない表面
1aが存在している。このような表面の存在は、正極活
物質粒子どうしの電子伝導性が悪く、このような状態の
正極では、その内部抵抗が大きいものとなる。
FIG. 1A schematically shows a cross section of a positive electrode formed by binding a positive electrode active material and a conductive material with a binder.
The secondary particles 1 of the lithium transition metal composite oxide as the positive electrode active material are made of, for example, polyvinylidene fluoride (PV) together with the conductive material 2 made of particles of a carbon material, for example.
It is bound by a binder 3 made of dF). When a lithium secondary battery is formed using this positive electrode and charge and discharge are repeated, secondary particles 1 of lithium transition metal composite oxide can be obtained.
Is disintegrated and miniaturized by repeating volume expansion and contraction, and becomes as shown in FIG. The secondary particles 1 of the lithium transition metal composite oxide shown in FIG. 1B have a surface 1 a that is not in contact with the conductive material 2 and the binder 3 due to the miniaturization. Due to the presence of such a surface, the electron conductivity between the positive electrode active material particles is poor, and the internal resistance of the positive electrode in such a state is large.

【0010】粒子構造に弱い部分を持つリチウム遷移金
属複合酸化物の場合、微細化しやすく、その表面の導電
材および結着剤のいずれによっても覆われていない部分
の増加率が極めて大きくなる。これに対して、粒子構造
の安定したリチウム遷移金属複合酸化物を用いる場合、
微細化し難いことから、導電材および結着剤のいずれに
よっても覆われていない部分の増加割合が小さく、良好
な電子伝導性を保つ正極を構成できる。
In the case of a lithium transition metal composite oxide having a portion having a weak particle structure, it is easy to miniaturize, and the rate of increase in the portion of the surface not covered by any of the conductive material and the binder becomes extremely large. In contrast, when using a lithium transition metal composite oxide having a stable particle structure,
Since it is difficult to miniaturize, the rate of increase in the portion not covered by any of the conductive material and the binder is small, and a positive electrode that maintains good electron conductivity can be configured.

【0011】つまり、本発明のリチウム二次電池用正極
では、製造当初、表面の少なくとも80%が導電材およ
び結着剤の少なくとも一方で覆われており、所定の充放
電を繰り返した後も正極活物質の表面の少なくとも50
%が導電材および結着剤の少なくとも一方で覆われてい
るような、強固な粒子構造をもつリチウム遷移金属複合
酸化物を正極活物質として用いることで、正極の内部抵
抗の増加を抑制し、サイクル特性の良好なリチウム二次
電池を構成できる正極となる。
That is, in the positive electrode for a lithium secondary battery of the present invention, at least 80% of the surface is covered with at least one of the conductive material and the binder at the beginning of the production, and the positive electrode is formed even after repeated charging and discharging. At least 50 on the surface of the active material
% Is covered with at least one of the conductive material and the binder, and the use of a lithium transition metal composite oxide having a strong particle structure as the positive electrode active material suppresses an increase in the internal resistance of the positive electrode, It becomes a positive electrode that can form a lithium secondary battery having good cycle characteristics.

【0012】なお、正極活物質の表面の導電材および結
着剤の少なくとも一方で覆われている割合(被覆率)
は、正極をダイヤモンドカッター等により切断し、その
断面を走査型電子顕微鏡(SEM)により観察し、その
断面において、正極活物質粒子の輪郭総長に対する導電
材および結着剤の少なくとも一方が接している輪郭の長
さの百分率で定義する。実際の測定は、1つの断面にお
いて、無作為に5箇所の部分の被覆率を測定し、その平
均の値を、その正極における被覆率としている。
The percentage of the surface of the positive electrode active material that is covered by at least one of the conductive material and the binder (coverage)
Is that the positive electrode is cut with a diamond cutter or the like, and the cross section thereof is observed with a scanning electron microscope (SEM). In the cross section, at least one of the conductive material and the binder is in contact with the total contour length of the positive electrode active material particles. Defined as a percentage of the contour length. In the actual measurement, the coverage of five portions is randomly measured in one cross section, and the average value is defined as the coverage of the positive electrode.

【0013】また、可逆的に充放電可能な最大電気量の
充放電とは、その正極とその正極より容量の大きい負極
とを対向させてリチウム二次電池を構成し、そのリチウ
ム二次電池において可逆的に充放電可能な範囲の空放電
状態と満充電状態とを往復するような充放電を意味す
る。一般に、正極活物質と負極活物質の種類によって可
逆的に充放電可能な範囲は変化し、その範囲はその二次
電池の電池電圧によって管理できる。そこで、本明細書
中においては、所定の充電終止電圧と所定の放電終止電
圧との間を往復する充放電を、可逆的に充放電可能な最
大電気量の充放電としている。ちなみに、正極活物質に
LiCoO2、LiNiO2等を用い、負極活物質に炭素
材料を用いた場合においては、電池電圧は約4.1〜
3.0Vの範囲となる。
[0013] The charge / discharge of the maximum amount of electricity that can be charged / discharged reversibly means that a positive electrode and a negative electrode having a larger capacity than the positive electrode are opposed to each other to constitute a lithium secondary battery. This means charge / discharge that reciprocates between an empty discharge state and a fully charged state in a reversibly chargeable / dischargeable range. In general, the reversible chargeable / dischargeable range changes depending on the types of the positive electrode active material and the negative electrode active material, and the range can be managed by the battery voltage of the secondary battery. Therefore, in this specification, charging / discharging reciprocating between a predetermined end-of-charge voltage and a predetermined end-of-discharge voltage is defined as the maximum amount of charge / discharge that can be reversibly charged / discharged. Incidentally, when LiCoO 2 , LiNiO 2, or the like is used for the positive electrode active material and a carbon material is used for the negative electrode active material, the battery voltage is about 4.1 to 4.1.
The range is 3.0 V.

【0014】[0014]

【発明の実施の形態】以下に、本発明のリチウム二次電
池用正極の実施形態について、その正極を構成する正極
活物質、導電材、結着剤および正極の製造に分けて説明
し、その後に、本正極を用いたリチウム二次電池につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a positive electrode for a lithium secondary battery according to the present invention will be described with respect to a positive electrode active material, a conductive material, a binder and a production of the positive electrode constituting the positive electrode. Next, a lithium secondary battery using the present positive electrode will be described.

【0015】〈正極活物質〉本発明の正極では、正極活
物質にリチウム遷移金属複合酸化物を含む。リチウム遷
移金属複合酸化物のみを正極活物質として用いることも
でき、また、他の公知の正極活物質材料とリチウム遷移
金属複合酸化物とを混合したものを正極活物質とするこ
ともできる。
<Positive Electrode Active Material> In the positive electrode of the present invention, the positive electrode active material contains a lithium transition metal composite oxide. Only the lithium transition metal composite oxide can be used as the positive electrode active material, or a mixture of another known positive electrode active material and a lithium transition metal composite oxide can be used as the positive electrode active material.

【0016】リチウム遷移金属複合酸化物は、正極活物
質材料として用いることのできるものであれば特に限定
するものではないが、基本組成をLiCoO2とする層
状岩塩構造リチウムコバルト複合酸化物、基本組成をL
iNiO2とする層状岩塩構造リチウムニッケル複合酸
化物、基本組成をLiMnO2とする層状岩塩構造リチ
ウムマンガン複合酸化物、基本組成をLiMn24とす
るスピネル構造リチウムマンガン複合酸化物等は、4V
級のリチウム二次電池を構成することができることか
ら、エネルギー密度の高いリチウム二次電池を構成する
ことのできる正極活物質となる。また、これら基本組成
のものの他、正極活物質としての特性を改善するため
に、遷移金属のサイトを他の元素で置換したもの、Li
サイトをアルカリ金属等の元素で置換したもの等を用い
ることもできる。また、これらのリチウム遷移金属複合
酸化物は、正極活物質として、1種のものを単独で用い
てもよく、2種以上ののものを混合して用いてもよい。
The lithium transition metal composite oxide is not particularly limited as long as it can be used as a positive electrode active material, but it has a layered rock-salt structure lithium-cobalt composite oxide whose basic composition is LiCoO 2. To L
layered rock salt structure lithium nickel composite oxide according to iNiO 2, layered rock salt type lithium-manganese composite oxide of the basic composition and LiMnO 2, spinel-type lithium-manganese composite oxide or the like to the basic composition as LiMn 2 O 4 is, 4V
A positive electrode active material that can form a lithium secondary battery having a high energy density because it can form a lithium secondary battery of a high grade. In addition to those having these basic compositions, those in which the transition metal site is replaced with another element in order to improve the characteristics as a positive electrode active material, Li
What substituted the site | part with elements, such as an alkali metal, can also be used. These lithium transition metal composite oxides may be used alone as a positive electrode active material, or may be used as a mixture of two or more.

【0017】これらのうち、リチウムコバルト複合酸化
物は、合成が容易でありかつ最も安定で、サイクル特性
も良好であり、現在のリチウム二次電池の主流をなす正
極活物質材料である。したがって、サイクル特性を優先
させる場合は、リチウムコバルト複合酸化物を用いるこ
とがのぞましい。ただし、構成元素であるCoが非常に
高価であり、リチウム電池のコストは高い。これに対
し、リチウムマンガン複合酸化物は、構成元素であるM
nが安価であるため、正極活物質としてのコストは安く
なる。したがって、リチウム二次電池のコストを優先さ
せる場合は、正極活物質にリチウムマンガン複合酸化物
を用いることが望ましい。
Of these, the lithium-cobalt composite oxide is easy to synthesize, is the most stable, has good cycle characteristics, and is a positive electrode active material which is the mainstream of current lithium secondary batteries. Therefore, when giving priority to cycle characteristics, it is preferable to use a lithium-cobalt composite oxide. However, Co as a constituent element is very expensive, and the cost of a lithium battery is high. On the other hand, the lithium manganese composite oxide has the constituent element M
Since n is inexpensive, the cost as a positive electrode active material is reduced. Therefore, when giving priority to the cost of the lithium secondary battery, it is desirable to use a lithium manganese composite oxide as the positive electrode active material.

【0018】リチウムニッケル複合酸化物は、容量が大
きいというメリットがあり、さらにコスト面でもリチウ
ムコバルト複合酸化物ほど高くなく、リチウムコバルト
複合酸化物に代わる正極活物質として期待されている。
ただし、リチウムの吸蔵・脱離に伴う体積変化が比較的
大きいため、若干サイクル特性に劣る。しかし、本発明
においては、後に説明するように、リチウム遷移金属複
合酸化物に対して、化学的手段によってリチウムの吸蔵
・脱離を行う改質処理を施すことができる。この改質処
理によって、粒子構造を強化できるため、リチウムニッ
ケル複合酸化物を用いた場合、電池容量が大きく、サイ
クル特性にも優れた、バランスのとれたリチウム二次電
池となる。
[0018] The lithium nickel composite oxide has the advantage of a large capacity and is not as expensive as the lithium cobalt composite oxide in terms of cost, and is expected as a positive electrode active material to replace the lithium cobalt composite oxide.
However, the cycle change is slightly inferior because the volume change accompanying the occlusion / desorption of lithium is relatively large. However, in the present invention, as described later, the lithium transition metal composite oxide can be subjected to a reforming treatment for inserting and extracting lithium by chemical means. Since the particle structure can be strengthened by the reforming treatment, when a lithium nickel composite oxide is used, a well-balanced lithium secondary battery having a large battery capacity and excellent cycle characteristics is obtained.

【0019】リチウムニッケル複合酸化物を用いる場
合、組成式LiNiO2で表される化学量論組成のもの
を用いることができる。また、二次電池のサイクル特性
等を改善するため、Niサイトの一部を、他元素で置換
するものを用いることもできる。他元素で置換するもの
のうちでは、組成式LiNixM1yM2z2(M1はC
o、Mnから選ばれた少なくとも1種;M2はAl、
B、Fe、Cr、Mgから選ばれた少なくとも1種;x
+y+z=1;0.5<x<0.95;0.01<y<
0.4;0.001<z<0.2)で表されるものを用
いるのが望ましい。
When a lithium nickel composite oxide is used, a stoichiometric composition represented by the composition formula LiNiO 2 can be used. Further, in order to improve the cycle characteristics and the like of the secondary battery, a battery in which part of the Ni site is replaced with another element can be used. Among those substituted with other elements, the composition formula LiNi x M1 y M2 z O 2 (M1 is C
at least one selected from o and Mn; M2 is Al;
At least one selected from B, Fe, Cr, and Mg; x
+ Y + z = 1; 0.5 <x <0.95; 0.01 <y <
0.4; 0.001 <z <0.2).

【0020】この、LiNixM1yM2z2は、役割の異
なるM1、M2の2種以上の元素でNiサイトの一部を置
換したものとなっている。置換させずにNiを存置させ
る割合つまり組成式におけるxの値で置換割合を規定す
れば、0.5<x<0.95となる。x≦0.5の場合
は、層状岩塩構造のものだけでなく、スピネル構造等の
第2の相が生成するからであり、また、x≧0.95の
場合は、置換効果が少なすぎて、目的とする良好なサイ
クル特性の電池を構成できないからである。なお、0.
7<x<0.9の範囲とするのがさらに好ましい。
The LiNi x M1 y M2 z O 2 is obtained by partially substituting Ni sites with two or more kinds of elements M1 and M2 having different roles. If the substitution ratio is defined by the ratio of leaving Ni without substitution, that is, the value of x in the composition formula, 0.5 <x <0.95. If x ≦ 0.5, not only a layered rock salt structure but also a second phase such as a spinel structure is generated. If x ≧ 0.95, the substitution effect is too small. This is because a battery having the desired good cycle characteristics cannot be formed. Note that 0.
More preferably, the range is 7 <x <0.9.

【0021】Co、Mnから選ばれる元素M1は、主
に、リチウムニッケル複合酸化物の結晶構造を安定化す
る役割を果たしている。M1での結晶構造安定化によ
り、リチウム二次電池のサイクル特性はより良好に保た
れ、特に高温下での充放電および高温下での貯蔵による
電池容量の劣化が抑制される。サイクル特性の改善効果
を充分に発揮させるために、M1の置換割合、つまり組
成式におけるyの値は0.01<y<0.4とする。y
≦0.01の場合は、構成される二次電池の結晶構造安
定化が充分でないためサイクル特性が良好ではなく、y
≧0.4の場合はリチウムニッケル複合酸化物の結晶性
が低下し好ましくない。なお、0.1<y<0.3とす
るのがより好ましい。さらに、置換する元素M1はCo
であることがより望ましい。Coには、元素置換による
容量低下を抑えるとともに、得られる複合酸化物Li
(Co,Ni)O2は全固溶型であり、結晶性の低下を
最小限にとどめるという利点があるからである。
The element M1 selected from Co and Mn mainly serves to stabilize the crystal structure of the lithium nickel composite oxide. By stabilizing the crystal structure at M1, the cycle characteristics of the lithium secondary battery are more favorably maintained, and particularly, deterioration of the battery capacity due to charge / discharge at high temperature and storage at high temperature is suppressed. In order to sufficiently exert the effect of improving the cycle characteristics, the substitution ratio of M1, that is, the value of y in the composition formula, is set to 0.01 <y <0.4. y
When ≦ 0.01, the crystal structure of the formed secondary battery is not sufficiently stabilized, so that the cycle characteristics are not good.
If ≧ 0.4, the crystallinity of the lithium-nickel composite oxide is undesirably reduced. It is more preferable that 0.1 <y <0.3. Further, the replacing element M1 is Co
Is more desirable. In Co, while suppressing the capacity reduction due to the element substitution, the obtained composite oxide Li
This is because (Co, Ni) O 2 is an all-solid solution type and has an advantage of minimizing a decrease in crystallinity.

【0022】Al、B、Fe、Cr、Mgから選ばれる
元素M2は、主に、酸素放出に伴う活物質の分解反応を
抑え、熱安定性を向上させるという役割を果たしてい
る。この役割のため、M2の置換割合、つまり組成式に
おけるzの値は、0.001<z<0.2とする。z≦
0.001の場合は、安全性に対して十分な効果が得ら
れなくなり、z≧0.2の場合は、正極の容量が低下し
てしまうため好ましくない。なお、0.01<z<0.
1とするのがより好ましい。さらに、置換する元素M2
には、Alを用いることがより望ましい。Alには、熱
安定性を向上させつつ、容量低下を最小限に抑えるとい
う利点があるからである。
The element M2 selected from Al, B, Fe, Cr and Mg mainly serves to suppress the decomposition reaction of the active material due to the release of oxygen and to improve the thermal stability. Due to this role, the substitution ratio of M2, that is, the value of z in the composition formula, is set to 0.001 <z <0.2. z ≦
In the case of 0.001, a sufficient effect on safety cannot be obtained, and in the case of z ≧ 0.2, the capacity of the positive electrode decreases, which is not preferable. In addition, 0.01 <z <0.
It is more preferably set to 1. Further, the substituting element M2
It is more preferable to use Al. This is because Al has an advantage of minimizing a decrease in capacity while improving thermal stability.

【0023】リチウム遷移金属複合酸化物自体の製造方
法は、特に限定するものではない。例えば、組成式Li
NixCoyAlz2で表される層状岩塩構造リチウムニ
ッケル複合酸化物を製造しようとする場合は、LiOH
・H2O、Ni(OH)2、Co34、Al(OH)3
それぞれ所定量混合し、酸素気流中で850℃程度の温
度で、20時間程度の時間焼成するいわゆる固相法よっ
て、これを合成することができる。また、液相法によれ
ば、各金属元素の硝酸塩を所定量イオン交換水に溶解さ
せ、これを噴霧し乾燥させた前駆体を所定の温度、雰囲
気下(例えば、850℃、酸素気流中)で焼成すること
によって合成することができる。
The method for producing the lithium transition metal composite oxide itself is not particularly limited. For example, the composition formula Li
In order to produce a layered rock salt structure lithium nickel composite oxide represented by Ni x Co y Al z O 2 , LiOH
A so-called solid-phase method in which H 2 O, Ni (OH) 2 , Co 3 O 4 , and Al (OH) 3 are each mixed in a predetermined amount and fired in an oxygen stream at a temperature of about 850 ° C. for a time of about 20 hours. Therefore, this can be synthesized. According to the liquid phase method, a predetermined amount of nitrate of each metal element is dissolved in ion-exchanged water, and this is sprayed and dried, and the precursor is dried under a predetermined temperature and atmosphere (for example, at 850 ° C. in an oxygen stream). Can be synthesized by firing.

【0024】本発明のリチウム二次電池用正極に正極活
物質として用いるリチウム遷移金属複合は粉末状のもの
を用い、この粉末の粒子は、単結晶に近い1次粒子が凝
集して2次粒子を構成するという粒子構造をもつ。そし
て、その2次粒子は、前述したように、正極の製造当
初、表面の少なくとも80%が導電材および結着剤の少
なくとも一方で覆われており、所定の充放電を繰り返し
た後であっても表面の少なくとも50%が導電材および
結着剤の少なくとも一方で覆われているような強固さ、
つまり、充放電に伴い2次粒子が容易に崩壊して微細化
しないような粒子構造を有するものである。
The lithium transition metal composite used as the positive electrode active material in the positive electrode for a lithium secondary battery of the present invention is in the form of a powder, and the particles of the powder are formed by agglomeration of primary particles close to a single crystal and secondary particles. Has a particle structure. Then, as described above, at least 80% of the surface of the secondary particles is covered with at least one of the conductive material and the binder at the beginning of the production of the positive electrode, and after the predetermined charge / discharge is repeated. And at least 50% of the surface is covered with at least one of a conductive material and a binder.
That is, it has a particle structure such that the secondary particles do not easily collapse and become finer with charge and discharge.

【0025】このような、強固な粒子構造をもつリチウ
ム遷移金属複合酸化物は、その製造方法を特に限定する
ものではないが、以下に説明するような改質処理を施す
ことによって製造できる。
Such a lithium transition metal composite oxide having a strong particle structure is not particularly limited in its production method, but can be produced by performing a modification treatment as described below.

【0026】この改質処理は、化学的手段によってリチ
ウムの吸蔵・脱離を行うという処理である。リチウム遷
移金属複合酸化物では、前述したように、その2次粒子
が体積変化により崩壊し微細化する。そして、その崩壊
は、2次粒子のもつ弱体部から発生する。したがって、
本改質処理は、正極を構成する前に、予めリチウムの吸
蔵・脱離を繰り返す処理を行うことで、弱体部から発生
する崩壊をある程度完了させ、比較的安定した粒子構造
をもつリチウム遷移金属複合酸化物を得ようとする目的
で行う処理である。なお、化学的手段とは、電気化学的
手段を除く意味であり、実際の充放電と違ったプロセス
で、リチウムの吸蔵・脱離を行う手段である。
This reforming treatment is a treatment of inserting and extracting lithium by chemical means. In the lithium transition metal composite oxide, as described above, the secondary particles are collapsed by the volume change and become fine. Then, the collapse occurs from a weak portion of the secondary particle. Therefore,
In this reforming process, before forming the positive electrode, by repeating the process of inserting and extracting lithium in advance, the collapse generated from the weak part is completed to some extent, and the lithium transition metal having a relatively stable particle structure This is a process performed for the purpose of obtaining a composite oxide. Note that the chemical means is a means excluding the electrochemical means, and is a means for inserting and extracting lithium by a process different from actual charging and discharging.

【0027】具体的には、リチウム遷移金属複合酸化物
を硫酸、硝酸、塩酸等の酸の水溶液に浸漬させて、この
リチウム遷移金属複合酸化物からリチウムを脱離させる
工程と、その工程後に、ヨウ化リチウム等のリチウム化
合物をアセトニトリル等の有機溶媒に溶解させた溶液に
浸漬して還流することで、そのリチウム遷移金属複合酸
化物にリチウムを吸蔵させる工程とからなり、これらの
工程を繰り返すことで行う処理である。
More specifically, a step of immersing the lithium transition metal composite oxide in an aqueous solution of an acid such as sulfuric acid, nitric acid or hydrochloric acid to desorb lithium from the lithium transition metal composite oxide, and after the step, Immersing and refluxing a solution of a lithium compound such as lithium iodide in an organic solvent such as acetonitrile to absorb lithium in the lithium transition metal composite oxide, and repeating these steps. This is the process to be performed.

【0028】リチウムを脱離させる工程で用いる酸は、
その後の電池特性に悪影響を与えないという理由から、
硫酸が望ましく、その水溶液の濃度は、0.5〜3M程
度であることが望ましい。また、脱離工程は、その水溶
液を充分に攪拌しつつ、30〜120分間程度行うのが
よい。リチウムを脱離させた後は、吸引濾過して、真空
乾燥により充分に水分を取り除くのが望ましい。
The acid used in the step of removing lithium is as follows:
Because it does not adversely affect the subsequent battery characteristics,
Sulfuric acid is desirable, and the concentration of the aqueous solution is desirably about 0.5 to 3M. Further, the desorption step is preferably performed for about 30 to 120 minutes while sufficiently stirring the aqueous solution. After the lithium is desorbed, it is desirable to perform suction filtration and sufficiently remove moisture by vacuum drying.

【0029】リチウムを吸蔵させる工程で用いるリチウ
ム化合物は、効率的に化学的Liの挿入が行えるという
理由から、ヨウ化リチウムが望ましく、溶媒は、適度の
沸点でありかつ危険性が少ないという理由から、アセト
ニトリルが望ましい。また、リチウム化合物の濃度は、
1〜6M程度であることが望ましい。リチウム化合物溶
液での還流は、2〜10時間程度行うのがよく、リチウ
ム吸蔵後は、充分量の溶媒と共に吸引濾過し、室温で真
空乾燥を2〜24時間程度行うのが望ましい。なお、リ
チウムの吸蔵・脱離は、2〜10回程度繰り返すのが望
ましい。
As the lithium compound used in the step of inserting lithium, lithium iodide is desirable because chemical Li can be efficiently inserted, and the solvent has an appropriate boiling point and is less dangerous. , Acetonitrile is preferred. The concentration of the lithium compound is
It is desirable to be about 1 to 6M. The reflux with the lithium compound solution is preferably performed for about 2 to 10 hours, and after occlusion of lithium, it is preferable to perform suction filtration with a sufficient amount of a solvent and perform vacuum drying at room temperature for about 2 to 24 hours. Note that it is desirable that the insertion and extraction of lithium be repeated about 2 to 10 times.

【0030】このような、化学的手段によってリチウム
の吸蔵・脱離を行うリチウム遷移金属複合酸化物の改質
処理は、充放電を繰り返すことによる電気化学的処理と
異なり、正極を構成する前のリチウム遷移金属複合酸化
物に対して簡便に行える処理であり、この処理によれ
ば、弱体部から発生する2次粒子の崩壊を、活物質とし
て正極を構成する前に起こさせることで、正極を構成し
た後の充放電によっても2次粒子の崩壊が抑制されるリ
チウム遷移金属複合酸化物を製造することができる。
Such a reforming treatment of the lithium transition metal composite oxide in which lithium is absorbed and desorbed by a chemical means is different from an electrochemical treatment by repeating charge and discharge, and is different from an electrochemical treatment before forming a positive electrode. This is a process that can be easily performed on the lithium transition metal composite oxide. According to this process, the collapse of the secondary particles generated from the weakened part is caused to occur before forming the positive electrode as an active material. It is possible to produce a lithium transition metal composite oxide in which the collapse of the secondary particles is suppressed even by charging and discharging after the composition.

【0031】なお、正極活物質として用いる場合、リチ
ウム遷移金属複合酸化物の粉末粒子径つまり2次粒子径
は、平均粒径で5〜30μm程度のものを用いるのが望
ましい。5μm未満の場合は、多量の導電材が必要、正
極合材ペーストの粘度が上がりすぎる等の不都合が生
じ、30μmを超える場合は、適度な電極合材層厚の電
極作製が困難となるからである。
When used as a positive electrode active material, it is desirable to use a lithium transition metal composite oxide having a powder particle diameter, that is, a secondary particle diameter of about 5 to 30 μm in average particle diameter. When the thickness is less than 5 μm, a large amount of conductive material is required, and disadvantages such as an excessive increase in the viscosity of the positive electrode mixture paste occur. When the thickness exceeds 30 μm, it becomes difficult to produce an electrode having an appropriate electrode mixture layer thickness. is there.

【0032】〈導電材、結着剤および正極の製造〉正極
を構成する導電材は、正極の電子伝導性を確保するため
のものであり、カーボンブラック、アセチレンブラッ
ク、黒鉛等の炭素物質粉状体の1種又は2種以上を混合
したもの等を用いることができる。
<Manufacture of Conductive Material, Binder, and Positive Electrode> The conductive material constituting the positive electrode is for ensuring the electronic conductivity of the positive electrode, and is a powder of carbon material such as carbon black, acetylene black, and graphite. One or a mixture of two or more of the bodies can be used.

【0033】正極の結着剤は、上記リチウム遷移金属複
合酸化物を含む活物質粒子および導電材粒子を繋ぎ止め
る役割を果たすもので、本発明の正極の場合は、電池を
構成する非水電解液によって膨潤するものであることが
必要となる。非水電解液によって膨潤するものとして
は、ポリフッ化ビニリデン(PVdF)等の含フッ素樹
脂や、SBRラテックス、フッ素ゴム等を用いることが
できる。これらの中でも、接着性、溶媒に対する溶解
度、不燃性の面から、PVdFを用いることが望まし
い。なお、結着剤を溶解させ、活物質粒子、導電材粒子
を分散させるための分散媒(溶剤)としては、N−メチ
ル−2−ピロリドン等の有機溶剤を用いることができ
る。
The binder of the positive electrode plays a role of binding the active material particles and the conductive material particles containing the lithium transition metal composite oxide. In the case of the positive electrode of the present invention, the nonaqueous electrolyte constituting the battery is used. It must be one that swells with the liquid. As a material that swells with the nonaqueous electrolyte, a fluorine-containing resin such as polyvinylidene fluoride (PVdF), an SBR latex, or a fluorine rubber can be used. Among them, it is desirable to use PVdF from the viewpoint of adhesiveness, solubility in a solvent, and nonflammability. Note that as a dispersion medium (solvent) for dissolving the binder and dispersing the active material particles and the conductive material particles, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0034】正極の製造はその方法を特に限定するもの
ではなく、既に公知の方法によって行えばよい。その一
例を示せば、まず、上記正極活物質と上記導電材とを混
合し、上記結着剤に分散させ、必要に応じて上記溶剤を
添加してペースト状の正極合材を調製する。正極合材の
調製は、活物質粒子表面を充分に結着剤が覆うように、
例えばボールミル等を用いて充分に混練させるのが望ま
しい。なお、正極活物質と導電材と結着剤との混合割合
は、正極活物質を100重量部とした際に、導電材を5
〜15重量部、結着剤を4〜10重量部の範囲とするの
が望ましい。
The production of the positive electrode is not particularly limited, and may be performed by a known method. As an example, first, the positive electrode active material and the conductive material are mixed, dispersed in the binder, and the solvent is added as necessary to prepare a paste-like positive electrode mixture. Preparation of the positive electrode mixture, so that the binder sufficiently covers the active material particle surface,
For example, it is desirable to sufficiently knead using a ball mill or the like. The mixing ratio of the positive electrode active material, the conductive material and the binder is such that the conductive material is 5 parts by weight when the positive electrode active material is 100 parts by weight.
It is desirable that the content be in the range of 1515 parts by weight and the binder in the range of 4〜1010 parts by weight.

【0035】次いで、この正極合材を、コータ等によ
り、アルミニウム箔等の正極集電体の表面に塗布し、乾
燥させる。その後、必要に応じて、ロールプレス等によ
り、正極合材密度を高めるための圧縮処理を行ってもよ
い。このように製造された正極は、正極集電体の表面に
正極合材が層状に形成されたシート状の電極となる。シ
ート状の正極は、作成しようとするリチウム二次電池
の、大きさ、形状等に応じ、適正な寸法に裁断し、ま
た、正極から外部への集電のために、集電用リード等を
正極に付設するなどの工程を経て完成する。
Next, this positive electrode mixture is applied to the surface of a positive electrode current collector such as an aluminum foil by a coater or the like, and dried. Thereafter, if necessary, a compression process for increasing the density of the positive electrode mixture may be performed by a roll press or the like. The positive electrode thus manufactured is a sheet-like electrode in which a positive electrode mixture is formed in a layer on the surface of a positive electrode current collector. The sheet-shaped positive electrode is cut into appropriate dimensions according to the size, shape, etc. of the lithium secondary battery to be created, and a current-collecting lead, etc., is used for current collection from the positive electrode to the outside. It is completed through processes such as attaching it to the positive electrode.

【0036】〈リチウム二次電池〉上記本発明の正極を
用いたリチウム二次電池は、その正極の他に、対向する
負極、正極負極間に挟装するセパレータ、非水電解液等
を主な構成要素として構成される。その一実施形態を簡
単に説明する。
<Lithium Secondary Battery> A lithium secondary battery using the above-described positive electrode of the present invention mainly comprises, in addition to the positive electrode, an opposing negative electrode, a separator sandwiched between the positive and negative electrodes, a non-aqueous electrolyte, and the like. It is configured as a component. One embodiment will be briefly described.

【0037】負極は、負極活物質に金属リチウム、リチ
ウム合金等を用いて構成することができる。ただし、こ
れら金属リチウム等を負極に用いる場合、繰り返される
充放電により負極表面へのデンドライトの析出の可能性
があり、二次電池の安全性が懸念される。したがって、
リチウム二次電池の安全性を考慮する場合、負極活物質
には、リチウムの吸蔵・脱離可能な炭素材料を用いるの
が望ましい。
The negative electrode can be constituted by using metal lithium, lithium alloy or the like as a negative electrode active material. However, when such metal lithium or the like is used for the negative electrode, there is a possibility that dendrite is deposited on the surface of the negative electrode due to repeated charging and discharging, and there is a concern about the safety of the secondary battery. Therefore,
In consideration of the safety of the lithium secondary battery, it is desirable to use a carbon material capable of inserting and extracting lithium as the negative electrode active material.

【0038】用いることができる炭素材料には、天然黒
鉛、球状あるいは繊維状の人造黒鉛、難黒鉛化性炭素、
および、フェノール樹脂等の有機化合物焼成体、コーク
ス等の易黒鉛化性炭素等の粉状体を挙げることができ
る。負極活物質となる炭素材料にはそれぞれの利点があ
り、作製しようとするリチウム二次電池の特性に応じて
選択すればよい。また炭素材料は1種のものを単独で用
いることもでき、2種以上を混合して用いることもでき
る。
The carbon materials that can be used include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon,
Further, there may be mentioned a fired body of an organic compound such as a phenol resin, and a powdered body of easily graphitizable carbon such as coke. The carbon material used as the negative electrode active material has respective advantages, and may be selected according to the characteristics of the lithium secondary battery to be manufactured. One type of carbon material can be used alone, or two or more types can be used in combination.

【0039】負極活物質に炭素材料を用いる場合、負極
は、この炭素材料の粉状体に結着剤を混合し、必要に応
じて適当な溶剤を加えて、ペースト状の負極合材とした
ものを、正極同様、銅等の金属箔製の集電体表面に塗
布、乾燥し、その後必要に応じプレス等にて負極合材の
密度を高めることによって形成する。結着剤としては、
正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等
を、溶剤としてはN−メチル−2−ピロリドン等の有機
溶剤を用いることができる。
When a carbon material is used as the negative electrode active material, the negative electrode is obtained by mixing a binder into a powder of the carbon material and adding an appropriate solvent as needed to obtain a paste-like negative electrode mixture. Like the positive electrode, the negative electrode mixture is applied to the surface of a current collector made of metal foil such as copper, dried, and then, if necessary, formed by increasing the density of the negative electrode mixture by pressing or the like. As a binder,
Like the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride or the like can be used, and as a solvent, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0040】正極と負極の間に挟装されるセパレータ
は、正極と負極とを分離し電解液を保持するものであ
り、ポリエチレン、ポリプロピレン等の薄い微多孔膜を
用いることができる。また非水電解液は、有機溶媒に電
解質であるリチウム塩を溶解させたもので、有機溶媒と
しては、非プロトン性有機溶媒、例えばエチレンカーボ
ネート、プロピレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネー
ト、γ−ブチロラクトン、アセトニトリル、1,2−ジ
メトキシエタン、テトラヒドロフラン、ジオキソラン、
塩化メチレン等の1種またはこれらの2種以上の混合液
を用いることができる。また、溶解させる電解質として
は、LiI、LiClO4、LiAsF6、LiBF4
LiPF6、LiN(CF3SO22等のリチウム塩を用
いることができる。
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode and the negative electrode and holds the electrolyte, and a thin microporous film of polyethylene, polypropylene or the like can be used. The non-aqueous electrolyte is a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent.As the organic solvent, an aprotic organic solvent, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan,
One kind of methylene chloride or a mixture of two or more kinds thereof can be used. The electrolyte to be dissolved is LiI, LiClO 4 , LiAsF 6 , LiBF 4 ,
Lithium salts such as LiPF 6 and LiN (CF 3 SO 2 ) 2 can be used.

【0041】以上のものを主構成要素として構成される
リチウム二次電池であるが、その形状は円筒型、積層
型、コイン型、カード型等、種々のものとすることがで
きる。いずれの形状を採る場合であっても、正極および
負極にセパレータを挟装させ電極体とし、そして正極集
電体および負極集電体から外部に通ずる正極端子および
負極端子までの間を集電用リード等を用いて接続し、こ
の電極体を非水電解液とともに電池ケースに密閉してリ
チウム電池を完成することができる。
The above-described lithium secondary battery is a main component of the lithium secondary battery. The lithium secondary battery can have various shapes such as a cylindrical type, a stacked type, a coin type, and a card type. Regardless of the shape used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and current is collected from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that lead to the outside. The electrodes are connected using a lead or the like, and the electrode body is sealed in a battery case together with the non-aqueous electrolyte to complete a lithium battery.

【0042】[0042]

【実施例】上記実施形態に基づく改質処理を施したリチ
ウム遷移金属複合酸化物を用いた本発明の正極と、改質
処理を施していないリチウム遷移金属複合酸化物を用い
た正極とを作製し、それぞれの正極を用いたリチウム二
次電池を構成して、それらリチウム二次電池のサイクル
特性を比較することで本発明のリチウム二次電池用正極
の優位性を確認した。
EXAMPLE A positive electrode of the present invention using a modified lithium transition metal composite oxide based on the above embodiment and a positive electrode using a non-modified lithium transition metal composite oxide were produced. Then, lithium secondary batteries using the respective positive electrodes were constructed, and the superiority of the positive electrode for a lithium secondary battery of the present invention was confirmed by comparing the cycle characteristics of the lithium secondary batteries.

【0043】〈実施例〉液相法によって合成した組成式
LiNi0.8Co0.15Al0.052で表される層状岩塩構
造リチウムニッケル複合酸化物に、改質処理を施した。
改質処理は、以下のように行った。このリチウムニッケ
ル複合酸化物の100gを1Nの硫酸10L(リット
ル)に浸し、30分間攪拌し、その後吸引濾過して、真
空乾燥で水分を取り除いた。次いで、そのリチウムニッ
ケル複合酸化物を、ヨウ化リチウム(LiI)148g
を溶解させたアセトニトリル1Lの中に入れ、2時間還
流し、多量のアセトニトリルと共に吸引濾過した後、真
空乾燥を室温で20時間行った。このようにLiを化学
的に吸蔵・脱離させるサイクルを10回繰り返すことで
改質処理を完了した。
Example A layered rock-salt structure lithium nickel composite oxide represented by a composition formula LiNi 0.8 Co 0.15 Al 0.05 O 2 synthesized by a liquid phase method was subjected to a modification treatment.
The reforming treatment was performed as follows. 100 g of this lithium nickel composite oxide was immersed in 10 L (liter) of 1N sulfuric acid, stirred for 30 minutes, and then suction-filtered to remove water by vacuum drying. Next, 148 g of lithium iodide (LiI) was added to the lithium nickel composite oxide.
Was dissolved in 1 L of acetonitrile in which was dissolved, refluxed for 2 hours, and suction-filtered together with a large amount of acetonitrile, followed by vacuum drying at room temperature for 20 hours. Thus, the reforming process was completed by repeating the cycle of chemically inserting and extracting Li ten times.

【0044】改質処理を施した上記リチウムニッケル複
合酸化物を正極活物質とし、この正極活物質100重量
部に対して、導電材としてアセチレンブラックを11.
8重量部、結着剤としてポリフッ化ビニリデンを5.9
重量部混合し、さらに溶剤としてN−メチル−2−ピロ
リドンを約70重量部添加し、これらを充分に混練し
て、ペースト状の正極合材を調製した。そして、このペ
ースト状の正極合材を、厚さ20μmのアルミニウム箔
集電体の両面に塗布し、乾燥し、その後プレス、裁断し
て、幅54mm、長さ450mm(正極合材塗工長さ4
00mm)のシート状の正極を作製した。なお、この正
極は、正極活物質の目付量が片面単位面積当たり7.0
mg/cm2となるように塗工され、正極合材層の密度
が最終的に2.5g/cm3となるようにプレスされて
いる。
The modified lithium nickel composite oxide was used as a positive electrode active material, and acetylene black was used as a conductive material with respect to 100 parts by weight of the positive electrode active material.
8 parts by weight, 5.9 polyvinylidene fluoride as a binder
Parts by weight, further added about 70 parts by weight of N-methyl-2-pyrrolidone as a solvent, and kneaded them sufficiently to prepare a paste-like positive electrode mixture. Then, this paste-like positive electrode mixture is applied to both sides of a 20-μm-thick aluminum foil current collector, dried, and then pressed and cut to obtain a width of 54 mm and a length of 450 mm (positive electrode mixture coating length). 4
00 mm) in the form of a sheet. In this positive electrode, the basis weight of the positive electrode active material was 7.0 per unit area on one side.
mg / cm 2, and pressed so that the density of the positive electrode mixture layer finally becomes 2.5 g / cm 3 .

【0045】負極は、負極活物質として黒鉛化メソフェ
ーズ小球体(MCMB25−28:大坂ガスケミカル
製)70重量部とコークス(MBC:三菱化学製)30
重量部とを混合したものを用いて構成した。まず、この
負極活物質100重量部に対して、結着剤としてポリフ
ッ化ビニリデンを5.3重量部混合し、さらに溶剤とし
てN−メチル−2−ピロリドンを約65重量部添加し、
これらを充分に混練して、ペースト状の負極合材を調製
した。次いで、このペースト状の負極合材を、厚さ10
μmの銅箔集電体の両面に塗布し、乾燥し、その後プレ
ス、裁断して、幅56mm、長さ520mm(正極合材
塗工長さ500mm)のシート状の負極を作製した。な
お、この負極は、負極活物質の目付量が片面単位面積当
たり5.0mg/cm2となるように塗工され、負極合
材層の密度が最終的に1.3g/cm3となるようにプ
レスされている。
As the negative electrode, 70 parts by weight of graphitized mesophase microspheres (MCMB25-28: manufactured by Osaka Gas Chemicals) and coke (MBC: manufactured by Mitsubishi Chemical) 30 as negative electrode active materials were used.
It was constituted by using a mixture of the above-mentioned components and parts by weight. First, with respect to 100 parts by weight of the negative electrode active material, 5.3 parts by weight of polyvinylidene fluoride was mixed as a binder, and about 65 parts by weight of N-methyl-2-pyrrolidone was added as a solvent.
These were sufficiently kneaded to prepare a paste-like negative electrode mixture. Next, this paste-like negative electrode mixture was applied to a thickness of 10
It was applied to both sides of a copper foil current collector having a thickness of μm, dried, and then pressed and cut to produce a sheet-shaped negative electrode having a width of 56 mm and a length of 520 mm (a coating length of the positive electrode mixture of 500 mm). The negative electrode was coated so that the basis weight of the negative electrode active material was 5.0 mg / cm 2 per unit area on one side, and the density of the negative electrode mixture layer was finally 1.3 g / cm 3. Pressed to.

【0046】上記正極および負極を、その間に厚さ25
μm、幅58mmのポリエチレンセパレータを挟装して
ロール状に捲回し、電極体を形成させた。なお、正極の
正極合材未塗工部および負極の負極合材未塗工部には、
捲回前に予めそれぞれの集電用リードが接合されてい
る。また、正極の両面の正極合材層が形成されている部
分にはセパレータを介して必ず負極の負極合材層が形成
されている部分が対向するように、正極および負極が捲
回されている。
The above positive electrode and negative electrode were placed between them with a thickness of 25
A polyethylene separator having a width of 58 μm and a width of 58 mm was sandwiched therebetween and wound into a roll to form an electrode body. In the positive electrode mixture uncoated portion of the positive electrode and the negative electrode mixture uncoated portion of the negative electrode,
Before the winding, each current collecting lead is bonded in advance. In addition, the positive electrode and the negative electrode are wound so that the part where the negative electrode mixture layer of the negative electrode is always opposed to the part where the positive electrode mixture layer is formed on both surfaces of the positive electrode via a separator. .

【0047】ロール状の電極体の両端面にポリエチレン
製の絶縁板を配し、これをNiメッキを施した鉄製電池
ケースに挿入し、さらに、負極集電用リードを電池ケー
ス内の底部にそして正極集電用リードを電池ケースを封
口するためのキャップにそれぞれ接合した。
A polyethylene insulating plate is arranged on both end surfaces of the roll-shaped electrode body, inserted into a Ni-plated iron battery case, and a negative electrode current collecting lead is placed on the bottom of the battery case. The positive electrode current collecting lead was joined to a cap for sealing the battery case.

【0048】次いで、エチレンカーボネートとジエチル
カーボネートとを体積比3:7で混合した混合有機溶媒
に電解質としてLiPF6を1Mの濃度で溶解させた非
水電解液を、電池ケースの中に注入し、加圧と減圧を繰
り返して電極体に含浸させた。そして、余剰の非水電解
液を排出し、キャップを電池ケースの開口部にカシメる
ことで、電池ケースを密閉させてリチウム二次電池の組
付けを完了した。なお、注液した非水電解液は約4gで
あった。
Next, a non-aqueous electrolyte obtained by dissolving LiPF 6 at a concentration of 1 M as an electrolyte in a mixed organic solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 3: 7 was poured into the battery case. Pressurization and depressurization were repeated to impregnate the electrode body. Then, the excess nonaqueous electrolyte was discharged, and the cap was caulked to the opening of the battery case, thereby closing the battery case and completing the assembly of the lithium secondary battery. The amount of the nonaqueous electrolyte injected was about 4 g.

【0049】組付けを完了したリチウム二次電池を室温
で約1日放置した後、このリチウム二次電池に対して、
コンディショニングのための充放電を行った。この充放
電の条件は、100mAの電流で充電終止電圧4.1V
まで定電流充電を行い、その後100mAの電流で放電
終止電圧3.0Vまで定電流放電を行うものとした。コ
ンディショニングを完了することで、リチウム二次電池
の製造を完了した。なお、リチウム二次電池は複数個作
製し、これらの二次電池を実施例の二次電池とした。
After the assembled lithium secondary battery is allowed to stand at room temperature for about one day,
Charging and discharging for conditioning were performed. The conditions for this charge and discharge are as follows: a current of 100 mA, a charge end voltage of 4.1 V;
, And then discharge at a constant current of 100 mA up to a discharge end voltage of 3.0 V. By completing the conditioning, the manufacture of the lithium secondary battery was completed. In addition, a plurality of lithium secondary batteries were manufactured, and these secondary batteries were used as secondary batteries of Examples.

【0050】〈比較例〉上記実施例の場合と同様に液相
法で合成したリチウムニッケル複合酸化物であるが、上
記の改質処理を施さずに、合成したままのものを正極活
物質として用いて正極を作製した。そして、この正極を
用いて、リチウム二次電池を完成させた。正極活物質を
除く、他の構成は実施例の場合と同様である。完成した
リチウム二次電池を比較例の二次電池とした。なお、比
較例の二次電池も複数個作製した。
<Comparative Example> A lithium nickel composite oxide synthesized by a liquid phase method in the same manner as in the above-described embodiment, but without being subjected to the above-mentioned reforming treatment, the as-synthesized one was used as a positive electrode active material. A positive electrode was produced using the same. Then, using this positive electrode, a lithium secondary battery was completed. Other configurations except for the positive electrode active material are the same as those of the embodiment. The completed lithium secondary battery was used as a secondary battery of a comparative example. In addition, a plurality of secondary batteries of the comparative example were also manufactured.

【0051】〈充放電サイクル試験〉上記実施例および
比較例の二次電池に対して、リチウム二次電池に実使用
温度範囲の上限と目される60℃の高温環境の下、充放
電サイクル試験を行った。充放電サイクル試験は、ま
ず、これらの二次電池を60℃に保持した恒温槽内に入
れて、2時間放置した後に、充放電を開始するものとし
た。充放電サイクル試験の条件は、972mAの電流で
充電終止電圧4.1Vまで定電流充電を行い、次いで9
72mAの電流で放電終止電圧3.0Vまで定電流放電
を行うサイクルを1サイクルとし、このサイクルを10
00サイクルまで行うものとした。
<Charge / Discharge Cycle Test> The charge / discharge cycle test was performed on the secondary batteries of the above Examples and Comparative Examples under a high temperature environment of 60 ° C., which is regarded as the upper limit of the actual use temperature range of the lithium secondary battery. Was done. In the charge / discharge cycle test, first, these secondary batteries were placed in a thermostat kept at 60 ° C., left for 2 hours, and then charge / discharge was started. The conditions of the charge / discharge cycle test were as follows: constant current charging was performed with a current of 972 mA up to a charging end voltage of 4.1 V;
A cycle in which a constant current discharge is performed to a discharge end voltage of 3.0 V with a current of 72 mA is defined as one cycle.
It was performed up to 00 cycles.

【0052】1サイクル目の正極活物質単位重量あたり
の放電容量を測定し、これを初期放電容量とし、100
0サイクル目の正極活物質単位重量あたりの放電容量を
測定し、これを1000サイクル後の放電容量とした。
次いで、これらの値から、1サイクルあたりの容量劣化
率を求めた。さらに、1000サイクル目の平均充電電
圧と平均放電電圧とを測定し、その平均充放電電圧差を
求め、リチウム二次電池の分極の大きさ、すなわち内部
抵抗の大きさを表す指針とした。平均充放電電圧差が大
きければ、分極が大きく内部抵抗の大きな二次電池であ
り、平均充放電電圧差が小さければ、分極が小さく内部
抵抗の小さな二次電池といえる。下記表1に、実施例お
よび比較例それぞれの二次電池の、初期放電容量、10
00サイクル後の放電容量、1サイクルあたりの容量劣
化率、1000サイクル後の平均充放電電圧差をそれぞ
れ示す。
The discharge capacity per unit weight of the positive electrode active material in the first cycle was measured, and this was taken as the initial discharge capacity.
The discharge capacity per unit weight of the positive electrode active material at the 0th cycle was measured, and this was defined as the discharge capacity after 1000 cycles.
Next, the capacity deterioration rate per cycle was determined from these values. Further, the average charge voltage and average discharge voltage at the 1000th cycle were measured, and the average charge / discharge voltage difference was obtained, which was used as a guideline representing the magnitude of the polarization of the lithium secondary battery, that is, the magnitude of the internal resistance. If the average charge / discharge voltage difference is large, the secondary battery has a large polarization and a large internal resistance. If the average charge / discharge voltage difference is small, the secondary battery has a small polarization and a small internal resistance. Table 1 below shows the initial discharge capacity and the initial discharge capacity of the secondary batteries of the examples and comparative examples.
The discharge capacity after 00 cycles, the capacity deterioration rate per cycle, and the average charge / discharge voltage difference after 1000 cycles are shown.

【0053】[0053]

【表1】 [Table 1]

【0054】〈正極合材層の断面観察〉実施例および比
較例の1部の二次電池は、100サイクル経過後に充放
電試験を停止し、電池を開封して正極を取り出し、その
正極をダイヤモンドカッターで切断し、正極合材層の断
面をSEMにて観察した。そして、そして無作為に抽出
した5箇所において、正極活物質粒子が導電材および結
着剤の少なくとも一方で覆われている部分の割合を測定
し、これらを平均することで、その正極の100サイク
ル後の表面被覆率とした。なお、正極合材層の断面観察
は、充放電を行っていない正極についても行い、これに
よって求めた表面被覆率を初期表面被覆率とした。
<Observation of Cross Section of Positive Electrode Mixture Layer> The charge / discharge test was stopped after 100 cycles, the battery was opened, the positive electrode was taken out, and the positive electrode was replaced with diamond. It cut | disconnected with the cutter and the cross section of the positive electrode mixture layer was observed with SEM. Then, at five locations extracted at random, the ratio of the portion where the positive electrode active material particles are covered by at least one of the conductive material and the binder is measured, and these are averaged to obtain 100 cycles of the positive electrode. The surface coverage was determined later. In addition, the cross section observation of the positive electrode mixture layer was also performed on the positive electrode which was not charged and discharged, and the surface coverage obtained by the observation was defined as the initial surface coverage.

【0055】実施例の二次電池に用いた正極における初
期の正極合材層の断面写真を図2(a)に、100サイ
クル後の正極合材層の断面写真を図2(b)に、また、
比較例の二次電池に用いた正極における初期の正極合材
層の断面写真を図2(c)に、100サイクル後の正極
合材層の断面写真を図2(d)にそれぞれ示す。また、
下記表2に、実施例および比較例の二次電池に用いた正
極の初期表面被覆率および100サイクル後の表面被覆
率を示す。
FIG. 2A shows a cross-sectional photograph of the initial positive electrode mixture layer in the positive electrode used in the secondary battery of the example, and FIG. 2B shows a cross-sectional photograph of the positive electrode mixture layer after 100 cycles. Also,
FIG. 2C shows a cross-sectional photograph of the initial positive electrode mixture layer of the positive electrode used in the secondary battery of the comparative example, and FIG. 2D shows a cross-sectional photograph of the positive electrode mixture layer after 100 cycles. Also,
Table 2 below shows the initial surface coverage and the surface coverage after 100 cycles of the positive electrodes used in the secondary batteries of Examples and Comparative Examples.

【0056】[0056]

【表2】 [Table 2]

【0057】〈評価〉図2(a)〜(d)において、白
く写っている部分は正極活物質の粒子であり、その周り
に黒く写っている部分は導電材および結着剤である。図
2(a)および図2(c)においては、導電材および結
着剤の少なくとも一方が正極活物質粒子の輪郭のほとん
どの部分に接触しており、高い表面被覆率のものとなっ
ていることが判る。これに対し、図2(b)および図2
(d)では、活物質粒子が崩壊して(割れて)微細化
し、活物質粒子の輪郭の一部に導電材および結着剤のい
ずれもが接触していない部分が増加していることが判
る。改質処理を施していないリチウムニッケル複合酸化
物からなる図2(d)では、活物質粒子の微細化がより
進行し、導電材および結着剤のいずれもが接触していな
い部分がかなりの部分を占めていることが判る。
<Evaluation> In FIGS. 2A to 2D, white portions are particles of the positive electrode active material, and black portions around them are the conductive material and the binder. In FIGS. 2A and 2C, at least one of the conductive material and the binder is in contact with most of the contour of the positive electrode active material particles, and has a high surface coverage. You can see that. 2 (b) and FIG.
In (d), the active material particles are disintegrated (cracked) and become finer, and a portion of the outline of the active material particles where neither the conductive material nor the binder is in contact increases. I understand. In FIG. 2D made of the lithium nickel composite oxide that has not been subjected to the modification treatment, the active material particles are further refined, and a portion where neither the conductive material nor the binder is in contact is considerably large. It turns out that it occupies a part.

【0058】また、活物質粒子を導電材および結着剤の
少なくとも一方が被覆している状態を表面被覆率として
示した表2からも、その被覆状態が明らかなように、改
質処理していないリチウムニッケル複合酸化物を正極活
物質に用いた比較例の正極では、活物質粒子表面の被覆
率が25%極めて低いものとなっている。これに対し、
改質処理を施したリチウムニッケル複合酸化物を正極活
物質に用いた実施例の正極では、84%と高い被覆率を
維持していることが判る。
Further, the surface was covered with at least one of the conductive material and the binder as a surface coverage, and the active material particles were subjected to the modification treatment so that the covering state is clear from Table 2. In the positive electrode of Comparative Example using no lithium nickel composite oxide as the positive electrode active material, the coverage of the active material particle surface was extremely low by 25%. In contrast,
It can be seen that the positive electrode of the example using the modified lithium nickel composite oxide as the positive electrode active material maintains a high coverage of 84%.

【0059】また、二次電池のサイクル特性を示す表1
から、比較例の二次電池に対して、実施例の二次電池
は、1000サイクル後の放電容量、1サイクルあたり
の容量劣化率、1000サイクル後の平均充放電電圧差
のいずれについても優り、サイクル特性の良好なリチウ
ム二次電池であることが判る。これは、導電材または結
着剤による正極活物質の被覆率を高く維持できること
で、正極内の電子伝導性が確保され、その結果、放電容
量の低下が抑制されるものと考えられる。
Table 1 showing the cycle characteristics of the secondary battery
From the secondary battery of the comparative example, the secondary battery of the example is superior in any of the discharge capacity after 1000 cycles, the capacity deterioration rate per cycle, and the average charge / discharge voltage difference after 1000 cycles. It can be seen that the lithium secondary battery has good cycle characteristics. It is considered that this is because the coverage of the positive electrode active material with the conductive material or the binder can be kept high, so that the electron conductivity in the positive electrode is ensured, and as a result, a decrease in the discharge capacity is suppressed.

【0060】これらの結果を総合すれば、粒子の微細化
が抑制された正極活物質を用い、充放電前に、正極活物
質の表面の少なくとも80%が導電材および結着剤の少
なくとも一方で覆われており、かつ、60℃において可
逆的に充放電可能な最大電気量の充放電を100サイク
ル経過した後に、その正極活物質の表面の少なくとも5
0%が導電材および結着剤の少なくとも一方で覆われて
いるような正極を用いれば、そのリチウム二次電池のサ
イクル特性は実用的に満足なものとなることが推認でき
る。また、正極活物質となるリチウム遷移金属複合酸化
物の微細化を抑制するためには、化学的手段によってリ
チウムの吸蔵・脱離を行う上記改質処理が有効であるこ
とも確認できる。
When these results are combined, at least 80% of the surface of the positive electrode active material is charged with at least one of the conductive material and the binder before charging / discharging, using a positive electrode active material in which the particle size is suppressed. After 100 cycles of charging and discharging of the maximum amount of electricity that is covered and reversibly chargeable and dischargeable at 60 ° C., at least 5
When a positive electrode in which 0% is covered with at least one of the conductive material and the binder is used, it can be estimated that the cycle characteristics of the lithium secondary battery are practically satisfactory. In addition, it can be confirmed that the above-described reforming treatment for absorbing and desorbing lithium by chemical means is effective in miniaturizing the lithium transition metal composite oxide serving as the positive electrode active material.

【0061】[0061]

【発明の効果】本発明は、リチウム遷移金属複合酸化物
を含む正極活物質と導電材とを結着剤で結着して形成し
たリチウム二次電池用正極を、正極活物質粒子の微細化
を抑制し、充放電前に、正極活物質の表面の少なくとも
80%が導電材および結着剤の少なくとも一方で覆われ
ており、かつ、60℃において可逆的に充放電可能な最
大電気量の充放電を100サイクル経過した後に、その
正極活物質の表面の少なくとも50%が導電材および結
着剤の少なくとも一方で覆われているように構成するも
のである。このような構成の正極を用いたリチウム二次
電池は、サイクル特性の良好な二次電池となる。
According to the present invention, a positive electrode for a lithium secondary battery formed by binding a positive electrode active material containing a lithium transition metal composite oxide and a conductive material with a binder is used to reduce the size of positive electrode active material particles. Before charging / discharging, at least 80% of the surface of the positive electrode active material is covered with at least one of the conductive material and the binder, and the maximum amount of electricity that can be charged / discharged reversibly at 60 ° C. After 100 cycles of charge and discharge, at least 50% of the surface of the positive electrode active material is covered with at least one of the conductive material and the binder. A lithium secondary battery using the positive electrode having such a structure is a secondary battery having good cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正極活物質および導電材を結着剤で結着させ
て形成した正極の断面を概念的に示す。
FIG. 1 conceptually shows a cross section of a positive electrode formed by binding a positive electrode active material and a conductive material with a binder.

【図2】 実施例および比較例の二次電池に用いた正極
における初期のおよび100サイクル後の正極合材層の
断面写真を示す。
FIG. 2 shows cross-sectional photographs of the positive electrode mixture layers at the initial stage and after 100 cycles in the positive electrodes used in the secondary batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:正極活物質粒子 (リチウム遷移金属複合酸化物の2次粒子) 1a:導電材および結着剤に接触していない表面 2:導電材 3:結着剤 1: Positive electrode active material particles (secondary particles of lithium transition metal composite oxide) 1a: Surface not in contact with conductive material and binder 2: Conductive material 3: Binder

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月20日(1999.12.
20)
[Submission date] December 20, 1999 (1999.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 秀之 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 5H003 AA04 BA07 BB02 BB04 BB05 BB11 BB14 BC05 BD01 BD03 5H014 AA02 AA04 BB11 EE05 EE10 HH01 HH04 HH08 5H029 AJ05 AK03 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM07 CJ15 DJ08 HJ02 HJ14 HJ19 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hideyuki Nakano 41-d, Cho-ku, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture F-term in Toyota Central R & D Laboratories Co., Ltd. 5H003 AA04 BA07 BB02 BB04 BB05 BB11 BB14 BC05 BD01 BD03 5H014 AA02 AA04 BB11 EE05 EE10 HH01 HH04 HH08 5H029 AJ05 AK03 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM07 CJ15 DJ08 HJ02 HJ14 HJ19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物を含む正極
活物質と導電材とを結着剤で結着して形成したリチウム
二次電池用正極であって、 充放電前に、前記正極活物質の表面の少なくとも80%
が前記導電材および前記結着剤の少なくとも一方で覆わ
れており、かつ、60℃において可逆的に充放電可能な
最大電気量の充放電を100サイクル経過した後に、該
正極活物質の表面の少なくとも50%が前記導電材およ
び前記結着剤の少なくとも一方で覆われていることを特
徴とするリチウム二次電池用正極。
1. A positive electrode for a lithium secondary battery formed by binding a positive electrode active material containing a lithium transition metal composite oxide and a conductive material with a binder, wherein the positive electrode active material is charged and discharged. At least 80% of the surface
Is covered with at least one of the conductive material and the binder, and after 60 cycles of charging and discharging of the maximum amount of electricity that can be reversibly charged and discharged at 60 ° C., the surface of the positive electrode active material is A positive electrode for a lithium secondary battery, wherein at least 50% of the positive electrode is covered with at least one of the conductive material and the binder.
【請求項2】 前記リチウム遷移金属複合酸化物は、化
学的手段によってリチウムの吸蔵・脱離を行う改質処理
が施されている請求項1に記載のリチウム二次電池用正
極。
2. The positive electrode for a lithium secondary battery according to claim 1, wherein the lithium transition metal composite oxide has been subjected to a reforming treatment for inserting and extracting lithium by chemical means.
【請求項3】 前記リチウム遷移金属複合酸化物は、組
成式LiNixM1yM2 z2(M1はCo、Mnから選ば
れた少なくとも1種;M2はAl、B、Fe、Cr、M
gから選ばれた少なくとも1種;x+y+z=1;0.
5<x<0.95;0.01<y<0.4;0.001
<z<0.2)で表されるリチウムニッケル複合酸化物
である請求項1または請求項2に記載のリチウム二次電
池用正極。
3. The lithium transition metal composite oxide according to claim 1, wherein
Formula LiNixM1yM2 zOTwo(M1 is selected from Co and Mn
M2 is Al, B, Fe, Cr, M
g + x + y + z = 1;
5 <x <0.95; 0.01 <y <0.4; 0.001
<Z <0.2) lithium nickel composite oxide
The lithium secondary battery according to claim 1 or 2, wherein
Pond positive electrode.
JP29874199A 1999-10-20 1999-10-20 Positive electrode for lithium secondary battery Expired - Fee Related JP4649691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29874199A JP4649691B2 (en) 1999-10-20 1999-10-20 Positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29874199A JP4649691B2 (en) 1999-10-20 1999-10-20 Positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001118567A true JP2001118567A (en) 2001-04-27
JP4649691B2 JP4649691B2 (en) 2011-03-16

Family

ID=17863660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29874199A Expired - Fee Related JP4649691B2 (en) 1999-10-20 1999-10-20 Positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4649691B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076391A1 (en) * 2004-02-07 2005-08-18 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2011045182A (en) * 2009-08-20 2011-03-03 Toyota Motor Corp Method of adjusting voltage of secondary battery
CN102324553A (en) * 2011-09-02 2012-01-18 蔡道国 Safe lithium ion battery
JP2017107727A (en) * 2015-12-09 2017-06-15 ソニー株式会社 Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JPWO2017056448A1 (en) * 2015-09-30 2018-07-19 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2022083160A (en) * 2020-11-24 2022-06-03 株式会社豊田中央研究所 Composite particle, electrode, power storage device, method for producing composite particle, and method for producing electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162935A1 (en) 2007-06-22 2010-03-17 Boston-Power, Inc. Cid retention device for li-ion cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992265A (en) * 1995-09-22 1997-04-04 Denso Corp Positive active material of secondary battery, its manufacture, and positive electrode
JPH10149829A (en) * 1996-11-18 1998-06-02 Toshiba Battery Co Ltd Manufacture of lithium manganese composite oxide for positive active material and lithium secondary battery
JPH10188955A (en) * 1996-11-06 1998-07-21 Denso Corp Battery electrode, manufacture of the electrode and battery
JPH10284057A (en) * 1997-03-31 1998-10-23 Toray Ind Inc Electrode for battery and secondary battery using the same
JPH10302766A (en) * 1997-04-22 1998-11-13 Toshiba Battery Co Ltd Lithium ion secondary battery
JPH10321224A (en) * 1997-05-16 1998-12-04 Nikki Kagaku Kk Lithium battery positive electrode material and its manufacture
JP2000058063A (en) * 1998-08-12 2000-02-25 Hitachi Metals Ltd Lithium secondary battery having high conductive positive electrode and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992265A (en) * 1995-09-22 1997-04-04 Denso Corp Positive active material of secondary battery, its manufacture, and positive electrode
JPH10188955A (en) * 1996-11-06 1998-07-21 Denso Corp Battery electrode, manufacture of the electrode and battery
JPH10149829A (en) * 1996-11-18 1998-06-02 Toshiba Battery Co Ltd Manufacture of lithium manganese composite oxide for positive active material and lithium secondary battery
JPH10284057A (en) * 1997-03-31 1998-10-23 Toray Ind Inc Electrode for battery and secondary battery using the same
JPH10302766A (en) * 1997-04-22 1998-11-13 Toshiba Battery Co Ltd Lithium ion secondary battery
JPH10321224A (en) * 1997-05-16 1998-12-04 Nikki Kagaku Kk Lithium battery positive electrode material and its manufacture
JP2000058063A (en) * 1998-08-12 2000-02-25 Hitachi Metals Ltd Lithium secondary battery having high conductive positive electrode and manufacture thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076391A1 (en) * 2004-02-07 2005-08-18 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
KR100674011B1 (en) 2004-02-07 2007-01-24 주식회사 엘지화학 Electrode additives coated with electro conductive material and lithium secondary comprising the same
US9252429B2 (en) 2004-02-07 2016-02-02 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2011045182A (en) * 2009-08-20 2011-03-03 Toyota Motor Corp Method of adjusting voltage of secondary battery
CN102324553A (en) * 2011-09-02 2012-01-18 蔡道国 Safe lithium ion battery
JPWO2017056448A1 (en) * 2015-09-30 2018-07-19 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2017107727A (en) * 2015-12-09 2017-06-15 ソニー株式会社 Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2022083160A (en) * 2020-11-24 2022-06-03 株式会社豊田中央研究所 Composite particle, electrode, power storage device, method for producing composite particle, and method for producing electrode
JP7322865B2 (en) 2020-11-24 2023-08-08 株式会社豊田中央研究所 Composite particles, electrode, electricity storage device, method for producing composite particles, and method for producing electrode

Also Published As

Publication number Publication date
JP4649691B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4878687B2 (en) Lithium secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP4878683B2 (en) Lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2004319105A (en) Positive active material and nonaqueous electrolyte secondary battery using it
JP7135269B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
KR102199028B1 (en) Negative electrode material for Li-ion secondary battery and its manufacturing method, negative electrode for Li-ion secondary battery, and Li-ion secondary battery
JP4656349B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
JP2001052699A (en) Lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4649691B2 (en) Positive electrode for lithium secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4534291B2 (en) Lithium secondary battery
JP4780361B2 (en) Lithium secondary battery
JP4202009B2 (en) Nonaqueous electrolyte secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP2002343364A (en) Nonaqueous electrolyte solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees