JPH10321224A - Lithium battery positive electrode material and its manufacture - Google Patents

Lithium battery positive electrode material and its manufacture

Info

Publication number
JPH10321224A
JPH10321224A JP9126673A JP12667397A JPH10321224A JP H10321224 A JPH10321224 A JP H10321224A JP 9126673 A JP9126673 A JP 9126673A JP 12667397 A JP12667397 A JP 12667397A JP H10321224 A JPH10321224 A JP H10321224A
Authority
JP
Japan
Prior art keywords
solution
aqueous solution
nitrate
mol
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9126673A
Other languages
Japanese (ja)
Inventor
Masaki Watanabe
政喜 渡辺
Susumu Yokono
進 横野
Takayuki Fujita
隆幸 藤田
Koji Mizusawa
浩二 水沢
Makoto Maeda
誠 前田
Tsutomu Toida
努 戸井田
Masami Sakaguchi
正巳 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Kagaku KK filed Critical Nikki Kagaku KK
Priority to JP9126673A priority Critical patent/JPH10321224A/en
Publication of JPH10321224A publication Critical patent/JPH10321224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve preservability and safety of a lithium battery so as to have excellent cycle characteristics such as large discharge quantity and small decrease of battery characteristic and suppress gas generation which is caused by decomposition of a positive electrode material after charging. SOLUTION: This positive electrode material consists of a complex oxide represented by the general formula Liw Nix Coy Alz O2 , wherein w=0.90-1.10, x=0.80-0.95, y=0.04-0.19, z=0.01-0.16, and x+y+z=1.0. This complex oxide is obtained by filtering, washing, drying, and burning a deposit, which is formed by mixing Ni nitrate or an aqueous solution of sulfate, Co nitrate or an aqueous solution of sulfate, and an aqueous solution of an Al compound and an alkaline aquesous solution where an atomic ratio of Ni/Co/Al is the above mentioned x/y/z, to form an oxide containing Ni, Co, and Al, then adding a Li compound to the oxide, and burning the obtained mixture at 650-850 deg.C in an oxygen atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】テープレコーダー、携帯電
話、ラジオ等電源として電池を利用する機器には、小型
/軽量で容量が大きく、しかも何回も充電して繰り返し
使える電池が望まれている。現在、リチウム電池がその
要望に応えるものであり、ニッケル酸リチウムはそのリ
チウム電池の正極材として利用されるものである。
BACKGROUND OF THE INVENTION For equipment utilizing a battery as a power source, such as a tape recorder, a mobile phone, and a radio, a battery that is small / lightweight, has a large capacity, and can be repeatedly charged and used many times is desired. At present, a lithium battery meets the demand, and lithium nickel oxide is used as a positive electrode material of the lithium battery.

【0002】[0002]

【従来の技術】リチウム電池の正極材としてはコバルト
酸リチウムが実用化されているが、高価であり、また実
効蓄電量が理論量の約50%しかないので、安価で実効
蓄電量の大きな正極材が求められている。安価で実効蓄
電量の大きな正極材として、実効性能がコバルト酸リチ
ウムの1.4倍も良いと言われているニッケル酸リチウ
ムが最有力候補として挙げられているが、ニッケル酸リ
チウムは充電/放電の繰り返しによる放電量の低下が大
きく、サイクル特性が劣るという問題を抱えている。こ
のため、Co、Al等の第3物質を添加してサイクル特
性を向上させることが研究されている。しかし、蓄電量
が大きくなりエネルギー密度が高くなっても安全性/保
存特性は従来品と同等以上であることが望まれている
が、ニッケル酸リチウム系では、充電後に高温で保存す
ると電解質/溶媒/正極材が分解してガスが発生すると
いう問題がある。充電反応により正極材よりLi+ が抜
けて不安定なMO2 になり、分解してO2 を発生するの
が、ガス発生の主原因であると考えられている。 Li MO2 →Li + +e +MO2 (充電) MO2 →MO+1/2 O2
2. Description of the Related Art As a positive electrode material of a lithium battery, lithium cobalt oxide has been put to practical use, but it is expensive and the effective charge amount is only about 50% of the theoretical amount. Materials are required. Lithium nickelate, which is said to be inexpensive and has a large effective storage capacity, is said to be 1.4 times as good as lithium cobalt oxide in effective performance, but lithium nickelate is charged / discharged. There is a problem that the amount of discharge is greatly reduced due to repetition of the above, and the cycle characteristics are inferior. For this reason, it has been studied to improve the cycle characteristics by adding a third substance such as Co or Al. However, it is desired that the safety / storage characteristics be equal to or higher than those of conventional products even when the amount of stored electricity is increased and the energy density is increased. / There is a problem that the cathode material is decomposed to generate gas. It is considered that the main cause of gas generation is that Li + escapes from the positive electrode material due to the charge reaction to become unstable MO 2 , and is decomposed to generate O 2 . Li MO 2 → Li + + e + MO 2 (charge) MO 2 → MO + 1/2 O 2

【0003】Li Ni O2 にCo を添加したものは、サ
イクル特性はLi Ni O2 に比べて向上し、Li Co O
2 と同じレベルであるものの、保存特性/安全性をLi
CoO2 と同等にすることはできなかった。Li Ni O2
にAlを添加したものは、Ni :Al=0.85:
0.15程度にしないと保存特性/安全性改良効果がな
いので放電量が低下してしまう。
[0003] obtained by adding Co to Li Ni O 2, the cycle characteristics are improved compared to the Li Ni O 2, Li Co O
The same level as 2 , but the storage characteristics / safety is Li
It could not be equal to CoO 2 . Li Ni O 2
In the case where Al is added to Ni: Ni: Al = 0.85:
If it is not about 0.15, there is no effect of improving the storage characteristics / safety, so that the discharge amount is reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、放電量が大
きく且つ充電/放電の繰り返しによる電池特性の低下が
少なくサイクル特性が優れていると共に、充電後、正極
材分解によるガス発生が抑えられ、保存性/安全性が向
上したリチウム電池正極材及びその製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention provides a large amount of discharge, a small decrease in battery characteristics due to repeated charging / discharging, excellent cycle characteristics, and suppresses gas generation due to decomposition of a positive electrode material after charging. An object of the present invention is to provide a lithium battery positive electrode material having improved storage stability and safety, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に係るリチウム電
池正極材は、一般式Liw Nix Coy Alz2 で示
される複合酸化物よりなる。 但し w=0.90〜1.10 x=0.80〜0.95 y=0.04〜0.19 z=0.01〜0.16 x+y+z=1.0
Means for Solving the Problems] lithium battery positive electrode material according to the present invention consists of a composite oxide represented by the general formula Li w Ni x Co y Al z 0 2. However, w = 0.90 to 1.10 x = 0.80 to 0.95 y = 0.04 to 0.19 z = 0.01 to 0.16 x + y + z = 1.0

【0006】Alの原子比zは0.01〜0.16であ
る。これより少ないと、充電後、特に高温時における正
極材分解によるガス発生の抑制効果が少なくなる。また
多すぎると放電量が少なくなる。好ましくは0.02〜
0.05の範囲である。
The atomic ratio z of Al is 0.01 to 0.16. If it is less than this, the effect of suppressing gas generation due to decomposition of the positive electrode material after charging, particularly at high temperatures, is reduced. If the amount is too large, the discharge amount will be small. Preferably 0.02-
The range is 0.05.

【0007】Coの原子比yは0.04〜0.19であ
る。これより少ないと、充電後、特に高温時における正
極材分解によるガス発生の抑制効果が少なくなる。また
多いとコスト高となる。好ましくは0.10〜0.15
の範囲である。
The atomic ratio y of Co is 0.04 to 0.19. If it is less than this, the effect of suppressing gas generation due to decomposition of the positive electrode material after charging, particularly at high temperatures, is reduced. Also, if it is large, the cost increases. Preferably 0.10 to 0.15
Range.

【0008】Li/(Ni +Co+Al)の原子比は、
基本的には1.0であるが、0.90〜1.10の範囲
まで許容し得る。
The atomic ratio of Li / (Ni + Co + Al) is
Basically, it is 1.0, but a range of 0.90 to 1.10.

【0009】この一般式Liw Nix Coy Alz2
で示される複合酸化物は、Ni:Co:Alの原子比が
下記のx:y:zになる比率でNiの硝酸塩又は硫酸塩
の水溶液、Coの硝酸塩又は硫酸塩の水溶液、Al化合
物の水溶液及びアルカリ水溶液を混合して生成する沈殿
物を濾過、洗浄、乾燥、焼成してNi 、Co 及びAlを
含む酸化物とし、この酸化物に、Li/(Ni +Co+
Al)の原子比が0.90〜1.10になる比率でLi
化合物を添加混合して、酸素雰囲気で650〜850℃
で焼成することにより製造される。 但し w=0.90〜1.10 x=0.80〜0.95 y=0.04〜0.19 z=0.01〜0.16 x+y+z=1.0
This general formula Li w Ni x Co y Al z O 2
Is an aqueous solution of a nitrate or sulfate of Ni, an aqueous solution of a nitrate or sulfate of Co, or an aqueous solution of an Al compound in such a ratio that the atomic ratio of Ni: Co: Al becomes the following x: y: z: And an alkaline aqueous solution are mixed to form a precipitate, which is filtered, washed, dried, and calcined to obtain an oxide containing Ni, Co, and Al. The oxide contains Li / (Ni + Co +
Al) at an atomic ratio of 0.90 to 1.10.
The compounds are added and mixed, and 650 to 850 ° C. in an oxygen atmosphere.
It is manufactured by firing. However, w = 0.90 to 1.10 x = 0.80 to 0.95 y = 0.04 to 0.19 z = 0.01 to 0.16 x + y + z = 1.0

【0010】酸化ニッケル粉、酸化コバルト粉及びアル
ミナ粉と、水酸化リチウム粉をよく粉砕混合し、これを
酸素雰囲気で600〜850℃の範囲の温度で焼成した
もの(後記の比較例4)はLiNiO2 (ニッケル酸リ
チウム)とLiCoO2 (コバルト酸リチウム)の単な
る混合物にすぎず、均一な化合物ではない(後記の図5
参照)ので、放電量は劣る(後記の表1参照)。本発明
においては、Ni:Co:Alの原子比が上記x:y:
zになる比率でNiの硝酸塩又は硫酸塩の水溶液、Co
の硝酸塩又は硫酸塩の水溶液、Al化合物の水溶液及び
アルカリ水溶液を混合して生成する沈殿物を濾過、洗
浄、乾燥、焼成してNi 、Co 及びAlを含む酸化物と
し、この酸化物に、Li/(Ni +Co+Al)の原子
比が0.90〜1.10になる比率でLi 化合物を添加
混合して、酸素雰囲気で650〜850℃で焼成するこ
とにより、Ni 、Co及びAlが結晶構造中に入ったニ
ッケル酸リチウムが得られる。
[0010] Nickel oxide powder, cobalt oxide powder, alumina powder and lithium hydroxide powder are well pulverized and mixed, and the mixture is fired in an oxygen atmosphere at a temperature in the range of 600 to 850 ° C (Comparative Example 4 described later). It is merely a mixture of LiNiO 2 (lithium nickelate) and LiCoO 2 (lithium cobaltate) and is not a uniform compound (see FIG. 5 described below).
), The discharge amount is inferior (see Table 1 below). In the present invention, the atomic ratio of Ni: Co: Al is x: y:
An aqueous solution of nitrate or sulfate of Ni at a ratio of
A precipitate formed by mixing an aqueous solution of a nitrate or a sulfate, an aqueous solution of an Al compound and an aqueous alkali solution is filtered, washed, dried and calcined to obtain an oxide containing Ni, Co and Al. The Li compound is added and mixed at a ratio where the atomic ratio of / Ni / Co + Al is 0.90 to 1.10, and the mixture is baked at 650 to 850 ° C. in an oxygen atmosphere, whereby Ni, Co and Al have a crystal structure. Lithium nickelate is obtained.

【0011】Ni 、Co及びAlがニッケル酸リチウム
の結晶構造中に入っていることは、X線的に確認するこ
とができる(後記の試験例1及び図1、図2)。放電量
が大きく且つ充電/放電の繰り返しによる電池特性の低
下が少なくサイクル特性が優れていることは、放電容量
維持率(1サイクル目の放電容量/30サイクル目の放
電容量)から判断できる。(後記の試験例2及び表
1)。充電後、高温雰囲気でも、正極材分解によるガス
発生が抑えられ、保存性/安全性が向上していること
は、酸素の脱離開始温度(後記の試験例3及び表2)か
ら判断できる。
The fact that Ni, Co and Al are included in the crystal structure of lithium nickelate can be confirmed by X-ray (Test Example 1 and FIGS. 1 and 2 described later). It can be determined from the discharge capacity retention ratio (discharge capacity at the first cycle / discharge capacity at the 30th cycle) that the discharge amount is large and the battery characteristics due to repetition of charge / discharge are small and the cycle characteristics are excellent. (Test Example 2 and Table 1 described below). After charging, even in a high-temperature atmosphere, it can be determined from the starting temperature of desorption of oxygen (Test Example 3 and Table 2 described later) that generation of gas due to decomposition of the positive electrode material is suppressed and storage stability / safety is improved.

【0012】[0012]

【発明の実施の形態】沈殿生成の手順としては、Niの
硝酸塩又は硫酸塩の水溶液、Coの硝酸塩又は硫酸塩の
水溶液、アルカリ水溶液及びAl化合物の水溶液を同時
に注加混合して沈殿物を生成させる。別法として、Al
化合物としてアルミン酸ソーダ又はアルミン酸カリを用
いる場合には、Niの硝酸塩又は硫酸塩とCoの硝酸塩
又は硫酸塩との混合水溶液(A液)、及びアルミン酸ソ
ーダ又はアルミン酸カリとアルカリとの混合水溶液(B
液)を予め調製し、両者を混合する方法、またAl化合
物として硝酸アルミニウム又は硫酸アルミニウムを用い
る場合は、Niの硝酸塩又は硫酸塩とCoの硝酸塩又は
硫酸塩と硝酸アルミニウム又は硫酸アルミニウムの混合
水溶液(C液)を予め調製し、これとアルカリ水溶液を
混合する方法もある。A液、B液、或はC液の濃度は、
それぞれ0.15〜1.5モル/L(リッター)の範囲
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a procedure for forming a precipitate, an aqueous solution of a nitrate or sulfate of Ni, an aqueous solution of a nitrate or sulfate of Co, an aqueous solution of an alkali and an aqueous solution of an Al compound are simultaneously poured and mixed to form a precipitate. Let it. Alternatively, Al
When sodium aluminate or potassium aluminate is used as the compound, a mixed aqueous solution (solution A) of Ni nitrate or sulfate and Co nitrate or sulfate, and a mixture of sodium aluminate or potassium aluminate and alkali Aqueous solution (B
Liquid) in advance, and when both are mixed, or when aluminum nitrate or aluminum sulfate is used as the Al compound, a mixed aqueous solution of a nitrate or sulfate of Ni and a nitrate or sulfate of Co and aluminum nitrate or aluminum sulfate ( Solution C) is prepared in advance, and this is mixed with an alkaline aqueous solution. The concentration of solution A, solution B or solution C is
Each is preferably in the range of 0.15 to 1.5 mol / L (liter).

【0013】アルカリ化合物としては、ナトリウム、カ
リウム、又はアンモニアの水酸化物又は炭酸塩が適して
いる。ナトリウム又はカリウムを用いた場合は共沈殿物
を濾過、洗浄してナトリウム塩又はカリウム塩を除去す
る操作が必要である。アンモニアを用いた場合は、水溶
液で沈殿を作るとニッケルが錯イオンを生成し、一部溶
解して共沈殿物を濾過する際に排水中に逃げるので、共
沈殿物を濾過せずに、スプレードライなどで一気に乾燥
するなどの工夫が必要である。但しナトリウム塩、カリ
ウム塩除去の洗浄が不要というメリットがある。Al化
合物としては、アルミン酸ソーダ、アルミン酸カリ、硝
酸アルミニウム及び硫酸アルミニウムからなる群から選
ばれる少なくとも1種又は2種以上を用いるのが良い。
Suitable alkali compounds are hydroxides or carbonates of sodium, potassium or ammonia. When sodium or potassium is used, it is necessary to filter and wash the coprecipitate to remove the sodium salt or potassium salt. When ammonia is used, nickel forms complex ions when it forms a precipitate with an aqueous solution, and escapes into the wastewater when partially dissolving and filtering the coprecipitate. It is necessary to devise such measures as drying all at once. However, there is an advantage that washing for removing sodium salts and potassium salts is unnecessary. As the Al compound, it is preferable to use at least one or two or more selected from the group consisting of sodium aluminate, potassium aluminate, aluminum nitrate and aluminum sulfate.

【0014】リチウム化合物としては、水酸化リチウム
(Li OH)が好ましい。Li OH添加後の焼成はロー
タリーキルンで行うことが好ましい。
As the lithium compound, lithium hydroxide (LiOH) is preferable. Firing after the addition of LiOH is preferably performed in a rotary kiln.

【0015】以下本発明を実施例により具体的に説明す
るが、本発明は下記の実施例に限定されるものではな
い。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.

【0016】[0016]

【実施例1】硝酸ニッケル465.2g(1.6モル)
及び98%硝酸コバルト89.1g(0.3モル)を水
に溶解し、2Lの硝酸ニッケル及び硝酸コバルトの混合
溶液(A液)とした。炭酸ナトリウム318.0g
(3.0モル)及びアルミン酸ナトリウム9.5g
(0.1モル)を水に溶解し1.8Lの炭酸ナトリウム
及びアルミン酸ナトリウムの混合溶液(B液)とした。
80℃の熱水1LにA液とB液を80分かけて同時に一
定速度で注加し反応させた。この際温度は80℃を維持
し、良好な撹拌状態を保った。注加終了後、この状態を
更に60分維持し熟成を行った。このようにして得られ
た沈殿を濾過し、水洗後120℃で16時間乾燥し、ニ
ッケルとコバルトとアルミニウムの塩基性炭酸塩の共沈
殿物を得た。この沈殿を湿式微粉砕器にて、水を媒体と
して粉砕し、平均粒子径約1μmの粉体スラリーとし
た。このスラリーをスプレードライヤーにて乾燥造粒
し、平均粒子径約13μmの粒体とした。この平均粒子
径約13μmの粒体を空気流通下400℃まで昇温し、
炭酸ガスの発生が認められなくなるまで約2時間この温
度に維持して酸化物とした。酸化物の組成はNi:6
0.3wt%、Co:11.3wt%、Al:1.7w
t%であった。この酸化物粉体100.0g(Ni+C
o=1.28モル)と純度98%の水酸化リチウム5
2.2g(1.28モル)[Ni+Co+Al:Li原
子比=0.80+0.15+0.05:1=1:1]を
乳鉢でよく粉砕混合した。これを酸素流通下750℃で
10時間焼成しLiAl0.05Co0.15Ni0.80O2を合成した。
Example 1 465.2 g (1.6 mol) of nickel nitrate
And 89.1 g (0.3 mol) of 98% cobalt nitrate were dissolved in water to obtain a mixed solution (solution A) of 2 L of nickel nitrate and cobalt nitrate. 318.0 g of sodium carbonate
(3.0 mol) and 9.5 g of sodium aluminate
(0.1 mol) was dissolved in water to prepare 1.8 L of a mixed solution (solution B) of sodium carbonate and sodium aluminate.
The solution A and the solution B were simultaneously poured into 1 L of hot water at 80 ° C. over 80 minutes at a constant rate to cause a reaction. At this time, the temperature was maintained at 80 ° C., and a good stirring state was maintained. After completion of the pouring, this state was maintained for an additional 60 minutes for aging. The precipitate thus obtained was filtered, washed with water and dried at 120 ° C. for 16 hours to obtain a coprecipitate of a basic carbonate of nickel, cobalt and aluminum. The precipitate was pulverized with a wet pulverizer using water as a medium to obtain a powder slurry having an average particle diameter of about 1 μm. The slurry was dried and granulated with a spray dryer to obtain granules having an average particle size of about 13 μm. The temperature of the granules having an average particle diameter of about 13 μm was increased to 400 ° C. under air flow,
The temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide gas was no longer observed, to obtain an oxide. The composition of the oxide is Ni: 6
0.3 wt%, Co: 11.3 wt%, Al: 1.7 w
t%. 100.0 g of this oxide powder (Ni + C
o = 1.28 mol) and 98% pure lithium hydroxide 5
2.2 g (1.28 mol) [Ni + Co + Al: Li atomic ratio = 0.80 + 0.15 + 0.05: 1 = 1: 1] was pulverized and mixed well in a mortar. This was calcined at 750 ° C. for 10 hours under flowing oxygen to synthesize LiAl 0.05 Co 0.15 Ni 0.80 O 2 .

【0017】[0017]

【実施例2】A液を硝酸ニッケル494.2g(1.7
モル)及び98%硝酸コバルト59.4g(0.2モ
ル)の2L溶解液とすること、B液を炭酸ナトリウム3
18.0g(3.0モル)及びアルミン酸ナトリウム
9.5g(0.1モル)の1.8L溶解液とすること、
及び酸化物粉体と水酸化リチウムの混合比をNi+Co
+Al:Li原子比=0.85+0.10+0.05:
1=1:1とすること以外は実施例1と同じ方法でLiAl
0.05Co0.10Ni0.85O2を合成した。
Example 2 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
Mol) and 59.4 g (0.2 mol) of 98% cobalt nitrate.
A 1.8 L solution of 18.0 g (3.0 mol) and 9.5 g (0.1 mol) of sodium aluminate;
And the mixing ratio of oxide powder and lithium hydroxide is Ni + Co
+ Al: Li atomic ratio = 0.85 + 0.10 + 0.05:
LiAl in the same manner as in Example 1 except that 1 = 1: 1.
0.05 Co 0.10 Ni 0.85 O 2 was synthesized.

【0018】[0018]

【実施例3】A液を硝酸ニッケル471.0g(1.6
2モル)及び98%硝酸コバルト89.1g(0.3モ
ル)の2L溶解液とすること、B液を炭酸ナトリウム3
18.0g(3.0モル)及びアルミン酸ナトリウム
7.6g(0.08モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.81+0.15+0.0
4:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.04Co0.15Ni0.81O2を合成した。
Example 3 471.0 g of nickel nitrate (1.6 g)
2 mol) and 89.1 g (0.3 mol) of 98% cobalt nitrate.
A 1.8 L solution of 18.0 g (3.0 mol) and 7.6 g (0.08 mol) of sodium aluminate was used, and the mixing ratio between the oxide powder and lithium hydroxide was Ni +
Co + Al: Li atomic ratio = 0.81 + 0.15 + 0.0
In the same manner as in Example 1 except that 4: 1 = 1: 1
LiAl 0.04 Co 0.15 Ni 0.81 O 2 was synthesized.

【0019】[0019]

【実施例4】A液を硝酸ニッケル494.2g(1.7
0モル)及び98%硝酸コバルト65.3g(0.22
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)及びアルミン酸ナトリウム
7.6g(0.08モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.85+0.11+0.0
4:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.04Co0.11Ni0.85O2を合成した。
Embodiment 4 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
0 mol) and 65.3 g (0.22%) of 98% cobalt nitrate.
Mol), and the B solution is a 1.8 L dissolution of 318.0 g (3.0 mol) of sodium carbonate and 7.6 g (0.08 mol) of sodium aluminate; and The mixing ratio of powder and lithium hydroxide is Ni +
Co + Al: Li atomic ratio = 0.85 + 0.11 + 0.0
In the same manner as in Example 1 except that 4: 1 = 1: 1
LiAl 0.04 Co 0.11 Ni 0.85 O 2 was synthesized.

【0020】[0020]

【実施例5】A液を硝酸ニッケル476.8g(1.6
4モル)及び98%硝酸コバルト89.1g(0.30
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)及びアルミン酸ナトリウム
5.7g(0.06モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.82+0.15+0.0
3:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.03Co0.15Ni0.82O2を合成した。
Example 5 A solution was prepared by adding 476.8 g (1.6) of nickel nitrate.
4 mol) and 89.1 g of 98% cobalt nitrate (0.30
Solution B), and the B solution is a 1.8 L solution of 318.0 g (3.0 mol) of sodium carbonate and 5.7 g (0.06 mol) of sodium aluminate; and The mixing ratio of powder and lithium hydroxide is Ni +
Co + Al: Li atomic ratio = 0.82 + 0.15 + 0.0
In the same manner as in Example 1 except that 3: 1 = 1: 1
LiAl 0.03 Co 0.15 Ni 0.82 O 2 was synthesized.

【0021】[0021]

【実施例6】A液を硝酸ニッケル494.2g(1.7
0モル)及び98%硝酸コバルト68.4g(0.24
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)及びアルミン酸ナトリウム
5.7g(0.06モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.85+0.12+0.0
3:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.03Co0.12Ni0.85O2を合成した。
Embodiment 6 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
0 mol) and 68.4 g (0.24%) of 98% cobalt nitrate.
Solution B), and the B solution is a 1.8 L solution of 318.0 g (3.0 mol) of sodium carbonate and 5.7 g (0.06 mol) of sodium aluminate; and The mixing ratio of powder and lithium hydroxide is Ni +
Co + Al: Li atomic ratio = 0.85 + 0.12 + 0.0
In the same manner as in Example 1 except that 3: 1 = 1: 1
LiAl 0.03 Co 0.12 Ni 0.85 O 2 was synthesized.

【0022】[0022]

【実施例7】A液を硝酸ニッケル482.6g(1.6
6モル)及び98%硝酸コバルト89.1g(0.30
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)及びアルミン酸ナトリウム
3.8g(0.04モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.83+0.15+0.0
2:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.02Co0.15Ni0.83O2を合成した。
Example 7 Liquid A was treated with nickel nitrate (482.6 g, 1.6).
6 mol) and 89.1 g of 98% cobalt nitrate (0.30
Mol), and the B solution is a 1.8 L solution of 318.0 g (3.0 mol) of sodium carbonate and 3.8 g (0.04 mol) of sodium aluminate; and The mixing ratio of powder and lithium hydroxide is Ni +
Co + Al: Li atomic ratio = 0.83 + 0.15 + 0.0
In the same manner as in Example 1 except that 2: 1 = 1: 1
LiAl 0.02 Co 0.15 Ni 0.83 O 2 was synthesized.

【0023】[0023]

【実施例8】A液を硝酸ニッケル494.2g(1.7
0モル)及び98%硝酸コバルト74.1g(0.26
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)及びアルミン酸ナトリウム
3.8g(0.04モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co+Al:Li原子比=0.85+0.13+0.0
2:1=1:1とすること以外は実施例1と同じ方法で
LiAl0.02Co0.13Ni0.85O2を合成した。
Embodiment 8 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
0 mol) and 74.1 g (0.26%) of 98% cobalt nitrate.
Mol), and the B solution is a 1.8 L solution of 318.0 g (3.0 mol) of sodium carbonate and 3.8 g (0.04 mol) of sodium aluminate; and The mixing ratio of powder and lithium hydroxide is Ni +
Co + Al: Li atomic ratio = 0.85 + 0.13 + 0.0
In the same manner as in Example 1 except that 2: 1 = 1: 1
LiAl 0.02 Co 0.13 Ni 0.85 O 2 was synthesized.

【0024】[0024]

【比較例1】A液を硝酸ニッケル581.4g(2.0
0モル)の2L溶解液とすること、B液を炭酸ナトリウ
ム318.0g(3.0モル)の1.8L溶解液とする
こと、及び酸化物粉体と水酸化リチウムの混合比をN
i:Li原子比=1:1とすること以外は実施例1と同
じ方法でLiNiO2を合成した。
[Comparative Example 1] A solution was prepared by adding 581.4 g (2.0%) of nickel nitrate.
0 mol) of a 2 L solution, solution B of 318.0 g (3.0 mol) of a 1.8 L solution, and a mixture ratio of oxide powder and lithium hydroxide of N
LiNiO 2 was synthesized in the same manner as in Example 1 except that the i: Li atomic ratio was 1: 1.

【0025】[0025]

【比較例2】A液を硝酸コバルト570.3g(2.0
0モル)の2L溶解液とすること、B液を炭酸ナトリウ
ム318.0g(3.0モル)の1.8L溶解液とする
こと、及び酸化物粉体と水酸化リチウムの混合比をC
o:Li原子比=1:1とすること以外は実施例1と同
じ方法でLiCoO2を合成した。
COMPARATIVE EXAMPLE 2 Solution A was coated with 570.3 g of cobalt nitrate (2.0
0 mol) of a 2 L solution, solution B of 318.0 g (3.0 mol) of a 1.8 L solution, and a mixture ratio of oxide powder and lithium hydroxide of C
LiCoO 2 was synthesized in the same manner as in Example 1 except that the o: Li atomic ratio was 1: 1.

【0026】[0026]

【比較例3】A液を硝酸ニッケル494.2g(1.7
0モル)及び98%硝酸コバルト89.1g(0.30
モル)の2L溶解液とすること、B液を炭酸ナトリウム
318.0g(3.0モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Co:Li原子比=0.85+0.15:1=1:1と
すること以外は実施例1と同じ方法でLiCo0.15Ni0.85O2
を合成した。
Comparative Example 3 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
0 mol) and 89.1 g of 98% cobalt nitrate (0.30
Mol), a solution B of 318.0 g (3.0 mol) of 1.8 L and a mixing ratio of oxide powder and lithium hydroxide of Ni +
LiCo 0.15 Ni 0.85 O 2 in the same manner as in Example 1 except that the Co: Li atomic ratio = 0.85 + 0.15: 1 = 1: 1.
Was synthesized.

【0027】[0027]

【比較例4】市販酸化ニッケル粉(Ni含量70.5w
t%)83.0g(Niとして1.00モル)、市販酸
化コバルト粉(Co含量75.5wt%)14.2g
(Coとして0.18モル)、及び市販アルミナ粉(A
l含量34.8wt%)2.83g(Alとして0.0
37モル)と、水酸化リチウム52.1g(1.217
モル)[Ni+Co+Al:Li原子比=0.82+
0.15+0.03:1=1:1]を乳鉢で良く粉砕混
合した。これを酸素流通下750℃で10時間焼成しLi
Al0.03Co0.15Ni0.82O2を合成した。
Comparative Example 4 Commercially available nickel oxide powder (Ni content 70.5 w
83.0 g (1.00 mol as Ni), 14.2 g of commercially available cobalt oxide powder (Co content: 75.5 wt%)
(0.18 mol as Co) and commercially available alumina powder (A
2.83 g (0.03 as Al)
37 mol) and 52.1 g (1.217) of lithium hydroxide
Mol) [Ni + Co + Al: Li atomic ratio = 0.82 +
0.15 + 0.03: 1 = 1: 1] in a mortar. This is calcined at 750 ° C. for 10 hours under flowing oxygen to produce Li
Al 0.03 Co 0.15 Ni 0.82 O 2 was synthesized.

【0028】[0028]

【比較例5】A液を硝酸ニッケル494.2g(1.7
0モル)の2L溶解液とすること、B液を炭酸ナトリウ
ム318.0g(3.0モル)及びアルミン酸ナトリウ
ム28.5g(0.3モル)の1.8L溶解液とするこ
と、及び酸化物粉体と水酸化リチウムの混合比をNi+
Al:Li原子比=0.85+0.1.5:1=1:1
とすること以外は実施例1と同じ方法でLiAl0.15Ni0.85
O2を合成した。
Comparative Example 5 Solution A was prepared by adding 494.2 g (1.7) of nickel nitrate.
0 mol) of a 2 L solution, Solution B is a 1.8 L solution of 318.0 g (3.0 mol) of sodium carbonate and 28.5 g (0.3 mol) of sodium aluminate, and oxidation The mixing ratio of the product powder and lithium hydroxide is Ni +
Al: Li atomic ratio = 0.85 + 1.1.5: 1 = 1: 1
LiAl 0.15 Ni 0.85 in the same manner as in Example 1 except that
O 2 was synthesized.

【0029】[0029]

【試験例1】(X線回折測定) 実施例1〜4で合成したサンプルのX線回折パターンを
図1のA(実施例1)、B(実施例2)、C(実施例
3)、D(実施例4)に、また実施例5〜8で合成した
サンプルのX線回折パターンを図2のE(実施例5)、
F(実施例6)、G(実施例7)、H(実施例8)に示
す。比較例3で合成したサンプルのX線回折パターンを
図3のJに示す。図から明らかなように、LiNiO2
の結晶構造に帰属するピーク以外のピークは認められ
ず、添加第3成分(Co,Al)がLiNiO2 の基本
結晶構造を壊さずに均一に固溶していることが確認され
た。比較例1で合成したサンプルについてのX線回折パ
ターンを図3のIに示す。すべてのピークがLiNiO
2 の結晶構造に帰属することが確認された。比較例2で
合成したサンプルについてのX線回折パターンを図4に
示す。すべてのピークがLiCoO2 の結晶構造に帰属
することが確認された。比較例4で合成したサンプルに
ついてのX線回折パターンを図5に示す。LiNiO2
とLiCoO2 の2種類のピークが認められ、それぞれ
の単なる混合物にすぎず、均一な化合物でないことがわ
かる。◇記号がLiCoO2 に帰属するピークである。
従って、単に市販酸化物原料を混合焼成しても、LiN
iO2 の結晶構造に均一に第3成分が固溶した良質な結
晶体は得られなかった。
Test Example 1 (X-ray Diffraction Measurement) The X-ray diffraction patterns of the samples synthesized in Examples 1 to 4 are shown by A (Example 1), B (Example 2), C (Example 3), D (Example 4), and the X-ray diffraction patterns of the samples synthesized in Examples 5 to 8 are shown in FIG.
The results are shown in F (Example 6), G (Example 7), and H (Example 8). The X-ray diffraction pattern of the sample synthesized in Comparative Example 3 is shown in FIG. As is clear from the figure, LiNiO 2
No peak other than the peak attributed to the crystal structure of was observed, and it was confirmed that the added third component (Co, Al) was uniformly dissolved without breaking the basic crystal structure of LiNiO 2 . The X-ray diffraction pattern of the sample synthesized in Comparative Example 1 is shown in FIG. All peaks are LiNiO
This was confirmed to belong to the crystal structure of 2 . FIG. 4 shows an X-ray diffraction pattern of the sample synthesized in Comparative Example 2. It was confirmed that all peaks belonged to the crystal structure of LiCoO 2 . FIG. 5 shows an X-ray diffraction pattern of the sample synthesized in Comparative Example 4. LiNiO 2
And LiCoO 2 were observed, indicating that they were merely a mixture of each and were not uniform compounds. ◇ symbol indicates a peak attributed to LiCoO 2 .
Therefore, even if a commercially available oxide raw material is simply mixed and fired, LiN
A high-quality crystal in which the third component was uniformly dissolved in the crystal structure of iO 2 was not obtained.

【0030】[0030]

【試験例2】(電池性能評価) 実施例1〜8及び比較例1〜5で合成したサンプルのそ
れぞれについて、アセチレンブラックとテフロンパウダ
ーを75:20:5の重量比に混ぜ、乳鉢にて5分間混
練りして得られた鱗片状の正極材を、展伸ローラーによ
り厚さ0.1mmのシートとし、16mmφに型抜きし
た後110℃で真空乾燥し試験用正極材とした。こうし
て得られた正極材と不織布(ポリプロピレン製)、セパ
レーター(ポリプロピレン製、商品名セルガード)、及
び厚さ0.2μmの金属リチウム箔をコイン型電池用セ
ル内に積層した。電解質として1モル/LのLiClO
4を溶解した体積比1:1のプロピレンカーボネートと
ジメトキシエタンの混合溶媒を用いた。このような構成
で電池を作成し、充放電試験を行った。充放電条件は定
電流で0.5mA/cm2 の電流密度で行い、充電電位
は4.3Vまで、放電電圧は3.0Vまでの電位規制で
行った。測定結果を表1に示す。このようにコバルトと
アルミニウムを第3成分として共沈法により添加/合成
することにより、コバルト酸リチウム(比較例2:15
0mAh/g)より容量が大きい175mAh/g以上
の高容量で、且つ試験例3(表2)に示すように酸素脱
離開始温度が高く安定性の高いニッケル酸リチウム正極
材を得ることができた。
Test Example 2 (Evaluation of Battery Performance) For each of the samples synthesized in Examples 1 to 8 and Comparative Examples 1 to 5, acetylene black and Teflon powder were mixed at a weight ratio of 75: 20: 5, and mixed in a mortar. The scale-like positive electrode material obtained by kneading for minutes was formed into a sheet having a thickness of 0.1 mm by a spreading roller, punched out to a diameter of 16 mm, and then dried in vacuum at 110 ° C. to obtain a positive electrode material for testing. The positive electrode material thus obtained, a nonwoven fabric (made of polypropylene), a separator (made of polypropylene, trade name: Celgard), and a lithium metal foil having a thickness of 0.2 μm were laminated in a cell for a coin-type battery. 1 mol / L LiClO as electrolyte
A mixed solvent of propylene carbonate and dimethoxyethane having a volume ratio of 1: 1 in which 4 was dissolved was used. A battery was prepared with such a configuration, and a charge / discharge test was performed. The charge and discharge conditions were a constant current and a current density of 0.5 mA / cm 2 , and the charging potential was regulated to 4.3 V and the discharge voltage was regulated to a potential of 3.0 V. Table 1 shows the measurement results. By adding / synthesizing cobalt and aluminum as the third component by the coprecipitation method, lithium cobaltate (Comparative Example 2:15)
0 mAh / g), a lithium nickel oxide cathode material having a high capacity of 175 mAh / g or more and a high stability of oxygen desorption onset temperature and high stability as shown in Test Example 3 (Table 2). Was.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【試験例3】(TPD測定) 試験例2の方法でコイン電池を作成し、4.3Vまで充
電後電池を分解し、正極材を取り出しジメトキシエタン
溶液にて良く洗浄した。これをTPD装置(昇温脱離装
置)にセットし、脱気乾燥処理後、昇温しながら酸素の
検出を行い、酸素の脱離開始温度を測定した。装置は日
本ベル製MULTI TASK TPDを用いた。測定
条件はキャリヤーガス:ヘリウム、昇温速度:2℃/
分、上限温度:250℃、検出器:Q−massとし
た。測定結果を表2に示す。LiNiO2 にコバルトを
15%置換し、LiCo0.15Ni0.852 (比較例3)
にすることにより、酸素脱離開始温度を200℃まで高
めることができるが、更にアルミニウムを2〜5%置換
することにより、酸素脱離開始温度を約230℃まで高
めることができ、コバルト酸リチウム(比較例2:23
0℃)なみの安全性を持たせることができた。
Test Example 3 (TPD Measurement) A coin battery was prepared in the same manner as in Test Example 2, and after charging to 4.3 V, the battery was disassembled, and the positive electrode material was taken out and washed well with a dimethoxyethane solution. This was set in a TPD device (thermal desorption device), and after deaeration and drying, oxygen was detected while the temperature was raised, and the desorption start temperature of oxygen was measured. The apparatus used was MULTI TASK TPD manufactured by Nippon Bell. Measurement conditions were as follows: carrier gas: helium, heating rate: 2 ° C /
Min, upper limit temperature: 250 ° C., detector: Q-mass. Table 2 shows the measurement results. LiNiO 2 was substituted with 15% of cobalt, and LiCo 0.15 Ni 0.85 O 2 (Comparative Example 3)
, The oxygen desorption initiation temperature can be increased to 200 ° C., but by further substituting 2 to 5% of aluminum, the oxygen desorption initiation temperature can be increased to about 230 ° C. (Comparative Example 2: 23
(0 ° C.), which has the same level of safety.

【0033】[0033]

【表2】 [Table 2]

【0034】Li Ni O2 にCo のみを添加したもの
(比較例3)は、サイクル特性はLiNi O2 (比較例
1)に比べて向上し、Li Co O2 (比較例2)と同等
であるものの、保存特性/安全性はLi Co O2 と同等
にすることは出来なかった。Li Ni O2 にAlのみを
添加したもの(比較例5)は、Ni :Al=0.85:
0.15程度にしないと保存特性/安全性改良効果がな
いので放電量が劣る。
The material obtained by adding Co only Li Ni O 2 (Comparative Example 3), the cycle characteristics were improved as compared with LiNi O 2 (Comparative Example 1), equivalent to Li Co O 2 (Comparative Example 2) despite, storage characteristics / safety could not be equal to the Li Co O 2. A material obtained by adding Al only Li Ni O 2 (Comparative Example 5), Ni: Al = 0.85:
Unless it is not about 0.15, there is no effect of improving storage characteristics / safety, so that the discharge amount is inferior.

【0035】なお実施例及び比較例で使用した原料(試
薬)の分子式、分子量及び純度を表3に示した。
Table 3 shows the molecular formula, molecular weight and purity of the raw materials (reagents) used in the examples and comparative examples.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】放電量が大きく且つ充電/放電の繰り返
しによる電池特性の低下が少なくサイクル特性が優れて
いると共に、充電後、正極材分解によるガス発生が抑え
られ、保存性/安全性が向上したリチウム電池正極材が
得られる。
EFFECTS OF THE INVENTION A large amount of discharge, little deterioration in battery characteristics due to repeated charge / discharge, and excellent cycle characteristics, gas generation due to decomposition of the positive electrode material after charging is suppressed, and storage stability / safety is improved. Thus, a lithium battery positive electrode material is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4で合成したサンプルのX線回折パ
ターンを示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of a sample synthesized in Examples 1 to 4.

【図2】実施例5〜8で合成したサンプルのX線回折パ
ターンを示す図である。
FIG. 2 is a view showing an X-ray diffraction pattern of a sample synthesized in Examples 5 to 8.

【図3】比較例1及び3で合成したサンプルのX線回折
パターンを示す図である。
FIG. 3 is a view showing an X-ray diffraction pattern of a sample synthesized in Comparative Examples 1 and 3.

【図4】比較例2で合成したサンプルのX線回折パター
ンを示す図である。
FIG. 4 is a view showing an X-ray diffraction pattern of a sample synthesized in Comparative Example 2.

【図5】比較例4で合成したサンプルのX線回折パター
ンを示す図である。
FIG. 5 is a view showing an X-ray diffraction pattern of a sample synthesized in Comparative Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水沢 浩二 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 前田 誠 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 戸井田 努 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 坂口 正巳 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Mizusawa, Inventor Koji Mizusawa 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture Inside JGC Chemicals Research Laboratory (72) Inventor Makoto Maeda 1-26, Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. (72) Inventor Tsutomu Toida, 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. Inside (72) Inventor Masami Sakaguchi 1-26, Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. Inside the company development laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式Liw Nix Coy Alz2
示される複合酸化物よりなるリチウム電池正極材。 但し w=0.90〜1.10 x=0.80〜0.95 y=0.04〜0.19 z=0.01〜0.16 x+y+z=1.0
1. A lithium battery cathode material comprising a composite oxide represented by the general formula Li w Ni x Co y Al z O 2 . However, w = 0.90 to 1.10 x = 0.80 to 0.95 y = 0.04 to 0.19 z = 0.01 to 0.16 x + y + z = 1.0
【請求項2】 Ni:Co:Alの原子比が下記のx:
y:zになる比率でNiの硝酸塩又は硫酸塩の水溶液、
Coの硝酸塩又は硫酸塩の水溶液、Al化合物の水溶液
及びアルカリ水溶液を混合して生成する沈殿物を濾過、
洗浄、乾燥、焼成してNi 、Co 及びAlを含む酸化物
とし、この酸化物に、Li/(Ni +Co+Al)の原
子比が0.90〜1.10になる比率でLi 化合物を添
加混合して、酸素雰囲気で650〜850℃で焼成して
複合酸化物とすることよりなる一般式Liw Nix Co
y Alz2 で示されるリチウム電池正極材の製法。 但し w=0.90〜1.10 x=0.80〜0.95 y=0.04〜0.19 z=0.01〜0.16 x+y+z=1.0
2. The method according to claim 1, wherein the atomic ratio of Ni: Co: Al is x:
an aqueous solution of Ni nitrate or sulfate in a ratio of y: z,
A precipitate formed by mixing an aqueous solution of a nitrate or sulfate of Co, an aqueous solution of an Al compound and an aqueous alkaline solution is filtered,
The oxide containing Ni, Co and Al is washed, dried and fired to form an oxide containing Li, (Ni + Co + Al), and a Li compound is added to the oxide at a ratio of 0.90 to 1.10. General formula Li w Ni x Co comprising firing at 650 to 850 ° C. in an oxygen atmosphere to form a composite oxide
Preparation of lithium battery cathode materials represented by y Al z 0 2. However, w = 0.90 to 1.10 x = 0.80 to 0.95 y = 0.04 to 0.19 z = 0.01 to 0.16 x + y + z = 1.0
【請求項3】 Al化合物が、アルミン酸ソーダ、アル
ミン酸カリ、硝酸アルミニウム及び硫酸アルミニウムか
らなる群から選ばれる少なくとも1種又は2種以上であ
る請求項2の方法。
3. The method according to claim 2, wherein the Al compound is at least one or more selected from the group consisting of sodium aluminate, potassium aluminate, aluminum nitrate and aluminum sulfate.
【請求項4】 Niの硝酸塩又は硫酸塩の水溶液、Co
の硝酸塩又は硫酸塩の水溶液、アルカリ水溶液及びAl
化合物の水溶液を同時に注加混合して沈殿物を生成させ
る請求項2の方法。
4. An aqueous solution of Ni nitrate or sulfate of Ni, Co
Aqueous solution of nitrate or sulfate, alkaline aqueous solution and Al
3. The method of claim 2 wherein an aqueous solution of the compound is simultaneously poured and mixed to form a precipitate.
【請求項5】 Li 化合物がLi OHである請求項2の
方法。
5. The method according to claim 2, wherein the Li compound is LiOH.
【請求項6】 Li OH添加後の焼成をロータリーキル
ンで行う請求項2の方法。
6. The method according to claim 2, wherein the calcination after the addition of LiOH is performed in a rotary kiln.
JP9126673A 1997-05-16 1997-05-16 Lithium battery positive electrode material and its manufacture Pending JPH10321224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9126673A JPH10321224A (en) 1997-05-16 1997-05-16 Lithium battery positive electrode material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9126673A JPH10321224A (en) 1997-05-16 1997-05-16 Lithium battery positive electrode material and its manufacture

Publications (1)

Publication Number Publication Date
JPH10321224A true JPH10321224A (en) 1998-12-04

Family

ID=14941037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9126673A Pending JPH10321224A (en) 1997-05-16 1997-05-16 Lithium battery positive electrode material and its manufacture

Country Status (1)

Country Link
JP (1) JPH10321224A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118567A (en) * 1999-10-20 2001-04-27 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2001243952A (en) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
WO2005036680A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Non-aqueous electrolyte secondary cell
JP2007238435A (en) * 2007-04-20 2007-09-20 Mitsubishi Chemicals Corp Manufacturing process of lithium transition metal complex oxide
JP2008195610A (en) * 1997-05-19 2008-08-28 Showa Denko Kk Lithium-containing compound metal oxide and its production and use
KR100959115B1 (en) * 2002-03-08 2010-05-25 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
WO2011016334A1 (en) * 2009-08-04 2011-02-10 Agcセイミケミカル株式会社 Process for production of positive electrode material for lithium ion secondary batteries
WO2011108596A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108598A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014503942A (en) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing transition metal composite oxide precursor
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
CN105702952A (en) * 2014-12-09 2016-06-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2019107160A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
EP3439084A4 (en) * 2016-03-30 2019-06-19 Basf Toda Battery Materials LLC Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2021065164A1 (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195610A (en) * 1997-05-19 2008-08-28 Showa Denko Kk Lithium-containing compound metal oxide and its production and use
JP2001118567A (en) * 1999-10-20 2001-04-27 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP4649691B2 (en) * 1999-10-20 2011-03-16 株式会社豊田中央研究所 Positive electrode for lithium secondary battery
JP2001243952A (en) * 2000-02-29 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
KR100959115B1 (en) * 2002-03-08 2010-05-25 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP2004087492A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method
US7527896B2 (en) 2003-10-07 2009-05-05 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2005036680A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Non-aqueous electrolyte secondary cell
JP4720505B2 (en) * 2003-10-07 2011-07-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2007238435A (en) * 2007-04-20 2007-09-20 Mitsubishi Chemicals Corp Manufacturing process of lithium transition metal complex oxide
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
WO2011016334A1 (en) * 2009-08-04 2011-02-10 Agcセイミケミカル株式会社 Process for production of positive electrode material for lithium ion secondary batteries
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108598A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102782913A (en) * 2010-03-04 2012-11-14 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
TWI423508B (en) * 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5923036B2 (en) * 2010-03-04 2016-05-24 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011108596A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014503942A (en) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing transition metal composite oxide precursor
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
CN105702952A (en) * 2014-12-09 2016-06-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
US11228034B2 (en) 2014-12-09 2022-01-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery
CN105702952B (en) * 2014-12-09 2021-09-28 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
US11018339B2 (en) 2016-03-30 2021-05-25 Basf Toda Battery Materials Llc Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
EP3439084A4 (en) * 2016-03-30 2019-06-19 Basf Toda Battery Materials LLC Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
JPWO2019107160A1 (en) * 2017-11-30 2020-12-03 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery
CN111344885A (en) * 2017-11-30 2020-06-26 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2019107160A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN111344885B (en) * 2017-11-30 2023-05-12 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2021065164A1 (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
CN114450833A (en) * 2019-09-30 2022-05-06 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPH10321224A (en) Lithium battery positive electrode material and its manufacture
JP7012721B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a method for producing the precursor, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
US8546018B2 (en) Li—Ni-based composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
CA2672072C (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
CA2552375C (en) Electrode active material powder with size dependent composition and method to prepare the same
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
EP2833445B1 (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPWO2011078389A1 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4774661B2 (en) Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP2001076728A (en) Manufacture of positive electrode active material for lithium secondary battery
JP2002343356A (en) Lithium manganese double oxide particle, its manufacturing method and secondary battery