JP2001118546A - Electrochemical cell - Google Patents

Electrochemical cell

Info

Publication number
JP2001118546A
JP2001118546A JP2000291062A JP2000291062A JP2001118546A JP 2001118546 A JP2001118546 A JP 2001118546A JP 2000291062 A JP2000291062 A JP 2000291062A JP 2000291062 A JP2000291062 A JP 2000291062A JP 2001118546 A JP2001118546 A JP 2001118546A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode case
stainless steel
case
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000291062A
Other languages
Japanese (ja)
Other versions
JP3576948B2 (en
Inventor
Toyoo Hayasaka
豊夫 早坂
Toyoro Harada
豊郎 原田
Tsugio Sakai
次夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000291062A priority Critical patent/JP3576948B2/en
Publication of JP2001118546A publication Critical patent/JP2001118546A/en
Application granted granted Critical
Publication of JP3576948B2 publication Critical patent/JP3576948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an improved electrochemical cell in which an aluminum layer is not provided in the inside of a positive electrode case, and oxidation of the positive electrode case is prevented and manufactured at a low cost and improve productivity. SOLUTION: In an electrochemical cell using non-aqueous electrolyte, materials for a positive case 11 are a high corrosion-resisting stainless steel or a high corrosion-resisting austenite-ferrite stainless steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、小型で大容量の電気化
学セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small and large-capacity electrochemical cell.

【0002】[0002]

【従来の技術】従来、湿式の電気化学セルの正極ケース
材料には、例えば特開昭62−94908号公報では、
前記ケース内面にアルミニウム層を設けたオーステナイ
ト・フェライト系ステンレス鋼(SUS329J1)が
使用されている(以下Al−SUSクラッド材と略
記)。
2. Description of the Related Art Conventionally, as a positive electrode case material for a wet electrochemical cell, for example, Japanese Patent Application Laid-Open No. Sho 62-94908 discloses:
Austenitic ferritic stainless steel (SUS329J1) having an aluminum layer on the inner surface of the case is used (hereinafter abbreviated as Al-SUS clad material).

【0003】図5には、従来の電気化学セルとして電気
二重層キャパシタの一構成例を示す。図中、分極性電極
2、2’として、各々の片面にアルミニウムのプラズマ
溶射法による集電体層を形成した活性炭繊維布を用い、
さらに前記活性炭繊維を例えばレーザー溶接法などで正
極ケース1及び負極ケース6に溶接していた。前記電極
2、2’をセパレータ7を介して対向させ、有機電解液
を注入後、正極ケースの上部を内方にかしめて組立てい
た。また、電解液には、非プロトン性のγ−ブチルラク
トン、エチレンカーボネイト、プロピレンカーボネイト
等にテトラアルキルアンモニウム塩やテトラアルキルホ
スホニウム塩などを溶解した溶液を使用している。
FIG. 5 shows a configuration example of an electric double layer capacitor as a conventional electrochemical cell. In the figure, as the polarizable electrodes 2 and 2 ′, an activated carbon fiber cloth having a current collector layer formed on one side of each by a plasma spraying method of aluminum was used.
Further, the activated carbon fiber is welded to the positive electrode case 1 and the negative electrode case 6 by, for example, a laser welding method. The electrodes 2, 2 'were opposed to each other with the separator 7 interposed therebetween, and after pouring the organic electrolyte, the upper part of the positive electrode case was crimped inward to assemble. Further, as the electrolytic solution, a solution in which a tetraalkylammonium salt, a tetraalkylphosphonium salt, or the like is dissolved in aprotic γ-butyl lactone, ethylene carbonate, propylene carbonate, or the like is used.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の電気化
学セルは、通常2〜2.8Vで使用されるが、正極ケー
スがステンレス鋼単体の時、前記ケース内面の陽極酸化
が起こり、金属が溶出し、そのためセルのインピーダン
スの上昇や静電容量の減少が観られるので、前記の金属
イオンの溶出を抑制するために、正極ケースの内面にア
ルミニウム層を設けているのである。
The above-mentioned conventional electrochemical cell is usually used at a voltage of 2 to 2.8 V. However, when the positive electrode case is made of stainless steel alone, anodization of the inner surface of the case occurs and the metal becomes Since elution occurs, and therefore, an increase in cell impedance and a decrease in capacitance are observed, an aluminum layer is provided on the inner surface of the positive electrode case to suppress the elution of the metal ions.

【0005】つまり、以上の理由により、JIS規格品
SUS329J1、SUS447J1を単体として正極
ケースに使うことができないために、ステンレス鋼とア
ルミニウムの異種金属同士をラミネイトして正極ケース
としているが、アルミニウムを均一な層にすることが難
しく、またいくつかのラミネイト工程を必要とするの
で、ステンレス鋼単体の数倍のコスト高となっている。
In other words, for the above reasons, it is not possible to use JIS standard products SUS329J1 and SUS447J1 as a single unit in the positive electrode case. Therefore, different types of metals such as stainless steel and aluminum are laminated to form the positive electrode case. Because it is difficult to form layers and requires several laminating steps, the cost is several times higher than that of stainless steel alone.

【0006】さらには、正極を抜き絞り加工時に、正極
ケースの上の周縁部にアルミニウム層がかぶさってしま
う場合があり、前述したセル組立時、つまり正極ケース
1と負極ケース6を合体させ、正極ケースを内方にかし
めてセルを封口する際に正極ケースの内面のアルミニウ
ムが剥離し、その小片が負極ケース6と接触してショー
ト原因となっている。なお、正極ケースのアルミニウム
層がステンレス鋼側にかぶさらない場合にも、正極ケー
スと負極ケースの封口条件の若干のズレにより、前述し
たアルミニウムの小片によるショートが発生する。
Further, when the positive electrode is pulled out and drawn, an aluminum layer may be covered on the periphery of the positive electrode case. At the time of the above-described cell assembly, that is, the positive electrode case 1 and the negative electrode case 6 are combined, When the case is crimped inward to seal the cell, aluminum on the inner surface of the positive electrode case peels off, and small pieces thereof come into contact with the negative electrode case 6 to cause a short circuit. In addition, even when the aluminum layer of the positive electrode case does not cover the stainless steel side, short-circuiting due to the small pieces of aluminum described above occurs due to a slight deviation in sealing conditions between the positive electrode case and the negative electrode case.

【0007】本発明は、以上のように有機電解液を用い
る電気化学セルを2〜2.8Vの電圧で使用する時に、
正極ケースの内部にアルミニウム層を設けることなく陽
極酸化を抑制し、正極ケースの製造コストを低減し、さ
らにはセルの生産性向上を目的とする。
According to the present invention, when an electrochemical cell using an organic electrolyte is used at a voltage of 2 to 2.8 V as described above,
An object of the present invention is to suppress anodic oxidation without providing an aluminum layer inside the positive electrode case, reduce the manufacturing cost of the positive electrode case, and further improve cell productivity.

【0008】[0008]

【課題を解決するための手段】本発明は、正極ケースと
してNiオーステナイトステンレス鋼又は高耐食オース
テナイト・フェライト二相ステンレス鋼の鋼種の一部を
使用することで、上記の問題点を解決することを目的と
する。
The present invention solves the above problems by using a part of Ni austenitic stainless steel or a high corrosion resistant austenitic / ferritic duplex stainless steel as a positive electrode case. Aim.

【0009】[0009]

【作用】本発明は、上記手段により最高使用電圧2.8
Vを有し、生産ラインで組立が容易で安易な電気化学セ
ルを得ることができる。
According to the present invention, the maximum working voltage is 2.8 by the above means.
It is possible to obtain an electrochemical cell having V and easy to assemble in a production line and easy.

【0010】本発明で使用する高Niオーステナイトス
テンレス鋼は高Cr高Moオーステナイトステンレス鋼
で、一例としてJIS規格品SUS317J4Lは苛酷
な環境下でも優れた耐食性を示す。表1に高クロム高モ
リブデンオーステナイトステンレス鋼SUS317J4
Lの化学的成分表を示す。
The high Ni austenitic stainless steel used in the present invention is a high Cr high Mo austenitic stainless steel. For example, JIS standard SUS317J4L exhibits excellent corrosion resistance even in a severe environment. Table 1 shows the high chromium and high molybdenum austenitic stainless steel SUS317J4.
2 shows a chemical composition table of L.

【0011】[0011]

【表1】 [Table 1]

【0012】また、25Cr−6Ni−3.5Moで代
表されるオーステナイト・フェライト系の二相組織を有
するステンレス鋼の鋼種の一部であるSUS329J4
Lもまた前者のSUS317J4Lよりも若干劣るが、
同様に優れた耐食性を示す。この二相ステンレス鋼SU
S329J4Lの化学成分を表2に示す。
SUS329J4 which is a part of stainless steel having an austenitic / ferritic dual phase structure represented by 25Cr-6Ni-3.5Mo.
L is also slightly inferior to the former SUS317J4L,
It also shows excellent corrosion resistance. This duplex stainless steel SU
Table 2 shows the chemical components of S329J4L.

【0013】[0013]

【表2】 [Table 2]

【0014】以上の二種類の材料で作製した各々の正極
ケースを用いた電気化学セルにおいて、その内面が有機
電解液や正極と直接触れても、高耐食性のため有機電解
液への溶解が抑制される。
In an electrochemical cell using each of the positive electrode cases made of the above two types of materials, even if the inner surface is in direct contact with the organic electrolyte or the positive electrode, dissolution in the organic electrolyte is suppressed due to high corrosion resistance. Is done.

【0015】[0015]

【実施例】以下に、本発明の実施例を図面を参照しなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)まず、水溶液中での種々ステ
ンレス鋼の腐食テストを行った。塩化物を含む水溶液中
での、各種温度における孔食電位の測定したものを図2
に示した。図2中、aおよびbが本発明に用いるSUS
317J4LとSUS329J4Lであり、cがSUS
329J1がそれぞれの特性である。aは温度を上げて
も孔食電位が変化せず、bは温度の上昇とともに電位は
下がってくるが、a、bともに耐孔食性に優れている。
cは温度の上昇とともに急激に電位が下がりはじめ、耐
孔食性に劣る。
(Example 1) First, corrosion tests of various stainless steels in an aqueous solution were performed. Figure 2 shows the measured pitting potential at various temperatures in an aqueous solution containing chloride.
It was shown to. In FIG. 2, a and b are SUS used in the present invention.
317J4L and SUS329J4L, where c is SUS
329J1 is each characteristic. In the case of a, the pitting potential does not change even when the temperature is increased, and in the case of b, the potential decreases as the temperature rises. However, both a and b have excellent pitting resistance.
In the case of c, the potential starts to drop sharply as the temperature rises, and is inferior in pitting resistance.

【0017】(実施例2)次に、有機電解液中で種々の
ステンレス鋼のアノード側及びカソード側のCi/Ci
+ 参照電極に対する電圧/電流特性を測定した。なお、
電解液は四フッ化ホウ酸テトラエチルアンモニウム
((C254 NBF4 )をプロピレンカーボネイト
に溶解したものを用いた。
(Example 2) Next, Ci / Ci on the anode side and the cathode side of various stainless steels in an organic electrolytic solution.
+ Voltage / current characteristics with respect to the reference electrode were measured. In addition,
The electrolyte used was a solution of tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) dissolved in propylene carbonate.

【0018】図3中、本発明AがSUS317J4L、
BがSUS329J4Lがステンレス鋼単体、従来の比
較例として、CがSUS329J1にアルミニウムをラ
ミネートしたもの、DがSUS329J1のステンレス
鋼単体の電圧/電流特性である。金属の溶解反応は、ア
ノード側であり(セルとしてはカソード側)電圧をスイ
ープさせると、本発明のAは1.6V、Bは1.7V、
従来Cは+2.6V、Dは+1.2V近辺より、溶解反
応が大きくなる。前述の各々の電圧は、電流密度1μA
/cm2 の時の電圧とした。
In FIG. 3, the present invention A is SUS317J4L,
B is SUS329J4L for stainless steel alone, as a comparative example, C is SUS329J1 laminated with aluminum, and D is SUS329J1 stainless steel alone for voltage / current characteristics. The metal dissolution reaction is on the anode side (cathode side as a cell). When the voltage is swept, A of the present invention is 1.6 V, B is 1.7 V,
In the conventional C, the dissolution reaction becomes larger than at +2.6 V and at D around +1.2 V. Each of the aforementioned voltages has a current density of 1 μA
/ Cm 2 .

【0019】尚、図3はスイープ繰り返し、12回目の
プロフィールである。セルの最高使用電圧2.8Vの場
合、セルのカソード側(図3中ではアノード側)にかか
る最大電圧は+1.2Vを実測としていることから(ち
なみにアトード側は1.6V)A,Bいづれもセルカソ
ード側電圧より大きいので、正極ケース内の溶解反応が
起こらない。また、Dは+1.2Vより溶解反応が開始
することから、セルのカソード側にかかる電圧1.2V
と同じなため、ステンレス鋼単体での使用には問題があ
る。Cについては、電圧スイープにより、アルミニウム
表面に酸化膜を形成することから、溶解反応開始電圧が
高くなっている。
FIG. 3 shows the profile of the twelfth sweep. In the case where the maximum operating voltage of the cell is 2.8 V, the maximum voltage applied to the cathode side (the anode side in FIG. 3) of the cell is actually measured at +1.2 V (note that 1.6 V is used for the atodo side). Is higher than the cell cathode side voltage, so that no dissolution reaction occurs in the positive electrode case. Further, since the dissolution reaction starts from +1.2 V at D, the voltage applied to the cathode side of the cell is 1.2 V.
Therefore, there is a problem in using stainless steel alone. As for C, since the oxide film is formed on the aluminum surface by the voltage sweep, the dissolution reaction start voltage is high.

【0020】一般的にステンレス鋼の耐食性は、Cr,
Moの量に大きく作用され、他にNi,Cu,Nも耐食
性を上げる成分といわれている。耐食性の指標として、
ピッティングインデックス(PI)があり、PI=Cr
%+3×Mo%+16+N%で表3に表わされ、高い
程、耐食性に優れている。
Generally, the corrosion resistance of stainless steel is Cr,
It is greatly affected by the amount of Mo, and Ni, Cu, and N are also said to be components that increase corrosion resistance. As an index of corrosion resistance,
There is a pitting index (PI), PI = Cr
% + 3 × Mo% + 16 + N% are shown in Table 3. The higher the value, the better the corrosion resistance.

【0021】[0021]

【表3】 [Table 3]

【0022】しかし、PI値45〜50以上になると材
料の加工性や機械的特性が悪くなり正極ケースとしての
仕様を十分満足できない。
However, when the PI value is 45 to 50 or more, the workability and mechanical properties of the material are deteriorated, and the specifications as the positive electrode case cannot be sufficiently satisfied.

【0023】また、PI値と類似した耐食性の評価は、
J.Kolts, J. B. C. Wu. P. E. Manning, and A. I. Asp
hahani, "Highly Alloyed Austenitic Material for Co
rrosion Resistance", Corrosion Reviews, 6(4), P279
〜326(1986).に記載されている。
The evaluation of the corrosion resistance similar to the PI value is as follows.
J.Kolts, JBC Wu.PE Manning, and AI Asp
hahani, "Highly Alloyed Austenitic Material for Co
rrosion Resistance ", Corrosion Reviews, 6 (4), P279
326 (1986).

【0024】図4は、この文献から抜粋された図で、F
e−Ni−Cr−Mo合金の組成とピッティングの臨界
温度の関係を示している。Fe−Ni−Cr−Mo合金
の腐食は4%NaCl+1%Fe2 (SO43 +0.
01MHCl液中で調べられた。
FIG. 4 is a diagram extracted from this document.
The relationship between the composition of the e-Ni-Cr-Mo alloy and the critical temperature of pitting is shown. The corrosion of the Fe—Ni—Cr—Mo alloy is 4% NaCl + 1% Fe 2 (SO 4 ) 3 +0.
Investigated in 01M HCl solution.

【0025】この図4からCr%+2.4Mo%の合計
値が高いほど孔食温度が高くなっている。このグラフか
ら本発明のSUS317J4LとSUS329J4Lの
それぞれのCr%とMo%で Picting Temperatune (孔
食温度) を試算してみると、55〜70℃となり、腐食
はかなり高温側にあることが推定される。
From FIG. 4, the higher the total value of Cr% + 2.4Mo%, the higher the pitting temperature. From this graph, when Picting Temperatune (pitting temperature) is calculated for Cr% and Mo% of SUS317J4L and SUS329J4L of the present invention, respectively, it is 55 to 70 ° C., and it is presumed that the corrosion is considerably higher. .

【0026】(実施例3)高Niオーステナイトステン
レス鋼板(厚さ0.2mm)のSUS317J4Lおよ
び高耐食オーステナイト・フェライト系二相ステンレス
鋼板(厚さ0.2mm)のSUS329J4Lを抜き絞
り加工して、正極ケースを作製した。また比較例とし
て、図6に示すように、Al−SUS329J1でアル
ミニウム層40μm、SUS329J1層0.16mm
及びSUS329J1ステンレス鋼単体0.2mmの正
極ケースを作製した。上記の正極ケースを用いて図1に
示す電気化学セル(電気二重層キャパシタ)を組立て
た。さらに、詳述すると分極性電極12、12’の活性
炭繊維布(比表面積2000m2 /g)をディスク状に
打ち抜いておき、次に前述した正極ケース11と負極ケ
ース16の各々の内底部に導電ペースト13、13’を
塗布した後、前記のディスク状活性炭繊維布を挿入し、
圧着後100℃で2時間乾燥した。このようにして得た
正極に200℃で30分乾燥したガラス繊維口紙からな
るディスク状セパレータ14を載置し、有機電解液とし
て1モルのテトラエチルリン酸のホウフッ化塩を溶解し
たプロピレンカーボネイトの所定量を注入し、負極ケー
スにはポリピロレン製のガスケット15を押し込んだ
後、正極ケースと負極ケースを合体させ、セルを組立て
た。
(Example 3) SUS317J4L of a high Ni austenitic stainless steel plate (thickness: 0.2 mm) and SUS329J4L of a high corrosion resistant austenitic ferritic duplex stainless steel plate (thickness: 0.2 mm) were drawn and drawn. A case was made. As a comparative example, as shown in FIG. 6, Al-SUS329J1 has an aluminum layer of 40 μm and a SUS329J1 layer of 0.16 mm.
And a positive electrode case of SUS329J1 stainless steel single piece of 0.2 mm. The electrochemical cell (electric double layer capacitor) shown in FIG. 1 was assembled using the above positive electrode case. More specifically, the activated carbon fiber cloth (specific surface area: 2000 m 2 / g) of the polarizable electrodes 12 and 12 ′ is punched in a disk shape. After applying the pastes 13 and 13 ', the disk-shaped activated carbon fiber cloth is inserted,
It dried at 100 degreeC after compression bonding for 2 hours. A disk-shaped separator 14 made of glass fiber paper dried at 200 ° C. for 30 minutes was placed on the positive electrode thus obtained, and propylene carbonate in which 1 mol of borofluoride of tetraethylphosphoric acid was dissolved as an organic electrolyte was prepared. After injecting a predetermined amount, a gasket 15 made of polypyrrolene was pushed into the negative electrode case, and then the positive electrode case and the negative electrode case were combined to assemble the cell.

【0027】上記のセルについて、70℃の雰囲気中で
2.8Vを印加し、500時間後の容量減少率と交流内
部抵抗(1kHzで測定)の上昇率を測定した結果と、
上記セルの正極ケース及び負極ケースを合体させて、正
極ケースを内方にかしめて封口する際に発生する前記ケ
ースの周縁部のステンレス鋼又はアルミニウムのバリ発
生率を次表に示す。AがSUS317J4L、BがSU
S329J4L、CがAl/SUS329JI、DがS
US329JIを正極ケースとして使用した電気化学セ
ルを示す。
With respect to the above-mentioned cell, 2.8 V was applied in an atmosphere of 70 ° C., and after 500 hours, the capacity reduction rate and the rise rate of the AC internal resistance (measured at 1 kHz) were measured.
The following table shows the rate of occurrence of burrs of stainless steel or aluminum at the peripheral portion of the case, which is generated when the positive electrode case and the negative electrode case of the above cell are combined, and the positive electrode case is caulked inward and sealed. A is SUS317J4L, B is SU
S329J4L, C is Al / SUS329JI, D is S
1 shows an electrochemical cell using US329JI as a positive electrode case.

【0028】[0028]

【表4】 [Table 4]

【0029】表4の結果をみると、本発明は正極ケース
にアルミニウム層がなくとも、アルミニウム層があるC
と比較すると同等以上の結果が得られている。また従来
のアルミニウム層がない正極ケースでは変化率が顕著と
なり、信頼性に乏しくなる。
As can be seen from the results shown in Table 4, the present invention shows that even if the positive electrode case does not have an aluminum layer,
As compared with, the same or better results were obtained. In the case of the conventional positive electrode without an aluminum layer, the rate of change becomes remarkable, and the reliability is poor.

【0030】また、セル封口時のバリは本発明のA,B
と比較例には無く、Cについてはアルミニウム層の剥離
によるアルミニウムのバリ発生率が10%程度みられ
た。
The burrs at the time of closing the cell are the same as those of A and B of the present invention.
And Comparative Example, and about C, about 10% of the burr generation rate of aluminum due to peeling of the aluminum layer was observed.

【0031】(実施例4)電極として、有機半導体であ
るポリアセンを正極及び負極に用いて実施例3と同様に
してセルを組立てた。また、これ等のセルの実施例3と
同様の特性値を表4に示す。なお、表中A,B,C,D
は各々実施例3と同じ正極ケースを用いている。
Example 4 A cell was assembled in the same manner as in Example 3 except that polyacene, which was an organic semiconductor, was used as the positive electrode and the negative electrode as electrodes. Table 4 shows characteristic values of these cells similar to those of Example 3. In the table, A, B, C, D
Use the same positive electrode case as in Example 3.

【0032】[0032]

【表5】 [Table 5]

【0033】(実施例5)電極として、正極にポリアセ
ン、負極にリチウムイオンをドーピングしたポリアセン
と有機電解液として0.5モルの過塩酸リチウムを溶解
したプロピレンカーボネイトを用いて実施例3と同様に
してセルを組立てた。また、これ等のセルについて、6
0℃の雰囲気中で3.3Vを印加し、500時間後の容
量減少率交流内部抵抗(1kHzで測定)の上昇率及び
バリ発生率について表6に示す。なお、表中のA,B,
C,Dは各々実施例3と同じ正極ケースを用いている。
Example 5 The same procedure as in Example 3 was carried out except that polyacene was used for the positive electrode, polyacene doped with lithium ions for the negative electrode, and propylene carbonate in which 0.5 mol of lithium perhydrochloride was dissolved as the organic electrolyte. The cell was assembled. Also, for these cells, 6
3.3 V is applied in an atmosphere of 0 ° C., and the capacity reduction rate after 500 hours. The rise rate of AC internal resistance (measured at 1 kHz) and the burr generation rate are shown in Table 6. In the table, A, B,
C and D each use the same positive electrode case as in the third embodiment.

【0034】[0034]

【表6】 [Table 6]

【0035】(実施例6)電極として、正極に二酸化マ
ンガン、負極にリチウム金属と有機電解液として、1モ
ルの過塩素酸リチウムを溶解したプロピレンカーボネイ
トとDMEの混合溶液を用いて実施例3と同様にしてセ
ルを組立てた。また、これ等のセルについて、60℃雰
囲気中で500時間保存後の特性値について、表7に示
す。なお、表中のA,B,C,Dは各々実施例3と同じ
正極ケースを用いている。
Example 6 A mixture of propylene carbonate and DME in which 1 mol of lithium perchlorate was dissolved as manganese dioxide for the positive electrode, lithium metal for the negative electrode and an organic electrolytic solution for the negative electrode was used. A cell was assembled in the same manner. Table 7 shows the characteristic values of these cells after storage in a 60 ° C. atmosphere for 500 hours. A, B, C, and D in the table each use the same positive electrode case as in the third embodiment.

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【発明の効果】本発明により、低コストの高耐食性の材
料でかつセルの生産性を高め、しかも高耐圧性の電気化
学セルを得ることができる。
According to the present invention, it is possible to obtain an electrochemical cell which is made of a low-cost, high-corrosion-resistant material, has high cell productivity, and has a high pressure resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学セルを示す半縦断面図であ
る。
FIG. 1 is a semi-longitudinal sectional view showing an electrochemical cell of the present invention.

【図2】各種ステンレス鋼の孔食電位の温度依存性であ
る。
FIG. 2 shows the temperature dependence of the pitting potential of various stainless steels.

【図3】各種金属の電圧?電流曲線を示す図である。FIG. 3 is a diagram showing voltage-current curves of various metals.

【図4】文献より引用されたCr及びMo含有率と孔食
温度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the Cr and Mo contents quoted from the literature and the pitting temperature.

【図5】従来の電気化学セルの一例の電気二重層キャパ
シタの半縦断面図である。
FIG. 5 is a half longitudinal sectional view of an electric double layer capacitor as an example of a conventional electrochemical cell.

【図6】従来の正極ケースの縦断面図と一部拡大図であ
る。
FIG. 6 is a longitudinal sectional view and a partially enlarged view of a conventional positive electrode case.

【符号の説明】[Explanation of symbols]

1 正極ケース 2、2’電極 3、3’集電体 5 ガスケット 6 負極ケース 7 セパレータ 11 正極ケース 12、12’電極 13、13’導電性ペースト 14 セパレータ 15 ガスケット 16 負極ケース REFERENCE SIGNS LIST 1 positive electrode case 2, 2 ′ electrode 3, 3 ′ current collector 5 gasket 6 negative electrode case 7 separator 11 positive electrode case 12, 12 ′ electrode 13, 13 ′ conductive paste 14 separator 15 gasket 16 negative electrode case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極が内蔵されている負極ケース及び正
極ケースとセパレータと非水電解液とから構成された電
気化学セルにおいて、前記正極ケースがNi24.00
〜26.00%、Cr22.00〜24.00%、Mo
5.00〜6.00%、N0.170〜0.220%、
Mn≦1.00%、Si≦1.00%、C≦0.030
%である高Niオーステナイトステンレス鋼であること
を特徴とする電気化学セル。
1. An electrochemical cell comprising a negative electrode case and a positive electrode case in which electrodes are incorporated, a separator and a non-aqueous electrolyte, wherein the positive electrode case is Ni24.00.
~ 26.00%, Cr22.00 ~ 24.00%, Mo
5.00 to 6.00%, N 0.170 to 0.220%,
Mn ≦ 1.00%, Si ≦ 1.00%, C ≦ 0.030
% Of high Ni austenitic stainless steel.
【請求項2】 電極が内蔵されている負極ケース及び正
極ケースとセパレータと非水電解液とから構成された電
気化学セルにおいて、前記正極ケースがNi5.50〜
7.50%、Cr24.00〜26.00%、Mo2.
50〜3.50%、N0.08〜0.20%、Mn≦
1.50%、Si≦1.00%、C≦0.030%であ
るオーステナイト・フェライトの二相ステンレス鋼であ
ることを特徴とする電気化学セル。
2. An electrochemical cell comprising a negative electrode case and a positive electrode case in which electrodes are incorporated, a separator, and a non-aqueous electrolyte, wherein the positive electrode case has Ni of 5.50 or more.
7.50%, Cr 24.0 to 26.00%, Mo2.
50 to 3.50%, N 0.08 to 0.20%, Mn ≦
An electrochemical cell comprising an austenitic ferrite duplex stainless steel having 1.50%, Si ≦ 1.00%, and C ≦ 0.030%.
JP2000291062A 1992-11-26 2000-09-25 Electrochemical cell Expired - Lifetime JP3576948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000291062A JP3576948B2 (en) 1992-11-26 2000-09-25 Electrochemical cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31729692 1992-11-26
JP4-317296 1992-11-26
JP2000291062A JP3576948B2 (en) 1992-11-26 2000-09-25 Electrochemical cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24159393A Division JP3195475B2 (en) 1992-11-26 1993-09-28 Electrochemical cell

Publications (2)

Publication Number Publication Date
JP2001118546A true JP2001118546A (en) 2001-04-27
JP3576948B2 JP3576948B2 (en) 2004-10-13

Family

ID=26568981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291062A Expired - Lifetime JP3576948B2 (en) 1992-11-26 2000-09-25 Electrochemical cell

Country Status (1)

Country Link
JP (1) JP3576948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064028A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Material of case for storage cell
JP2006179840A (en) * 2004-11-25 2006-07-06 Matsushita Electric Ind Co Ltd Coin-shaped electrochemical element and its manufacturing method
EP1986255A3 (en) * 2007-04-20 2010-04-28 Nissan Motor Co., Ltd. Secondary battery with non-aqueous electrolyte and corrosion-resistant collector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064028A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Material of case for storage cell
CN100449025C (en) * 2003-12-26 2009-01-07 松下电器产业株式会社 Material of case for storage cell
US7515395B2 (en) 2003-12-26 2009-04-07 Panasonic Corporation Material of case for storage cell
JP2006179840A (en) * 2004-11-25 2006-07-06 Matsushita Electric Ind Co Ltd Coin-shaped electrochemical element and its manufacturing method
JP4665513B2 (en) * 2004-11-25 2011-04-06 パナソニック株式会社 Method for producing coin-type electrochemical device
EP1986255A3 (en) * 2007-04-20 2010-04-28 Nissan Motor Co., Ltd. Secondary battery with non-aqueous electrolyte and corrosion-resistant collector

Also Published As

Publication number Publication date
JP3576948B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP3195475B2 (en) Electrochemical cell
US4709303A (en) Electric double layer capacitor
KR101119832B1 (en) Electrode terminal of secondary battery, fabrication method thereof and secondary battery having the same
US3945852A (en) Current collector for organic electrolyte batteries
JP3576948B2 (en) Electrochemical cell
CN1905103B (en) Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor
JPH08222191A (en) Electrochemical cell
JP2006032129A (en) Lithium battery
JP2002063906A (en) Flat nonaqueous electrolyte secondary battery
KR20040084116A (en) Pouch type lithium secondary battery and method for fabricating the same
JP2001313011A (en) Lithium secondary battery
JP2001143667A (en) Non-aqueous cell
JPH1040960A (en) Nonaqueous electrolyte secondary battery
JPS62272458A (en) Non-aqueous electrolytic solution cell
JP4033377B2 (en) Non-aqueous electrolyte battery
JPH07122467A (en) Electric double layer capacitor
JP3635949B2 (en) Flat organic electrolyte battery
JPS585967A (en) Battery
JP3973384B2 (en) Lithium secondary battery
JPS60263418A (en) Electric double layer capacitor
JPH10284020A (en) Alkaline battery
JPH0426106A (en) Electric double layer capacitor
JPH02174070A (en) Organic electrolyte secondary battery
JPH08306392A (en) Organic electrolyte secondary battery
JP2003178753A (en) Lithium battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term