JPH02174070A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH02174070A
JPH02174070A JP63332863A JP33286388A JPH02174070A JP H02174070 A JPH02174070 A JP H02174070A JP 63332863 A JP63332863 A JP 63332863A JP 33286388 A JP33286388 A JP 33286388A JP H02174070 A JPH02174070 A JP H02174070A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
battery
electrode current
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332863A
Other languages
Japanese (ja)
Inventor
Toshihiko Ikehata
敏彦 池畠
Nobuharu Koshiba
信晴 小柴
Kenichi Takada
高田 堅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63332863A priority Critical patent/JPH02174070A/en
Publication of JPH02174070A publication Critical patent/JPH02174070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the deterioration in battery characteristic caused by a long-term overdischarge at a high temperature by using stainless steel containing specific quantities of molybdenum and chromium respectively for a negative electrode current collector. CONSTITUTION:A case 1 concurrently serving as a positive electrode terminal is made of stainless steel, and a sealing plate 2 concurrently serving as a negative electrode terminal is made of the same material. A positive electrode 4 is made of powder of vanadium pentaoxide, acetylene black and fluororesin, a negative electrode 5 is made of a lithium alloy, and aluminum and lithium are melted in the argon atmosphere into an alloy. Steel containing molybdenum 1-3wt.% and chromium 15-18wt.% is used for a negative electrode current collector 6, and it is pressurized integrally with a stainless net. A material with a very high potential is used for a positive electrode active material, and the deterioration of a battery due to the corrosion of the negative electrode current collector can be suppressed at a long-term overdischarge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は移動用直流電源、バックアップ用電源などに用
いる有機電解液二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic electrolyte secondary battery used as a mobile DC power source, a backup power source, or the like.

従来の技術 一般に有機電解液電池は高エネルギー密度を有し、小形
化、軽量化が可能であり、漏液しにぐいため、他の電池
に代り、小形電卓、電子ウォッチ等の精密機器の電源と
して幅広く用いられている。
Conventional technology Organic electrolyte batteries generally have high energy density, can be made smaller and lighter, and are resistant to leakage, so they are used as power sources for precision equipment such as small calculators and electronic watches instead of other batteries. It is widely used as

これら有機電解液電池には一次電池と充電可能な二次電
池がある。充電可能な二次電池として、負極にリチウム
吸蔵合金、電解液に有機電解液を用い、それに種々の正
極を組合せた電池が知られている。負極にリチウム吸蔵
合金を用いるのは以下の理由による。負極にリチウム金
属のみを用いた場合、充電の際、負極リチウム表面に、
電解液中のリチウムイオンが樹脂状に析出し、それがセ
パレータを貫通し、正極と接触し、内部ショートを起こ
すことにより、電池が劣化する。負極にリチウム吸蔵合
金を用いることにより、充電の際、リチウムイオンが負
極合金中に電気化学的に合金化するため負極表面にリチ
ウムが析出するのを防ぐことができる。具体的なリチウ
ム吸蔵合金として、アルミニウム、鉛、ビスマス、イン
ジウム、アンチモンなどがある。・これらの合金を封口
板と電気的に接触させ、用いるわけであるが、封口板内
面に載置するだけでも電池構成時のかしめ封口によシ、
合金と封口板内面が圧接され十分な接触が保たれる。し
かし、さらに確実に接触させるためには、合金を封口板
内面に溶接するのが好ましい。しかし、これらの合金の
電気抵抗は非常に小さいため、抵抗溶接などの溶接が困
難である。
These organic electrolyte batteries include primary batteries and rechargeable secondary batteries. BACKGROUND ART As a rechargeable secondary battery, a battery is known in which a lithium storage alloy is used as a negative electrode, an organic electrolyte is used as an electrolyte, and various positive electrodes are combined therewith. The reason for using a lithium storage alloy for the negative electrode is as follows. When only lithium metal is used for the negative electrode, during charging, the surface of the negative electrode lithium,
Lithium ions in the electrolyte precipitate in the form of a resin, which penetrates the separator and comes into contact with the positive electrode, causing an internal short circuit, which deteriorates the battery. By using a lithium storage alloy for the negative electrode, lithium ions are electrochemically alloyed into the negative electrode alloy during charging, thereby preventing lithium from depositing on the negative electrode surface. Specific examples of lithium storage alloys include aluminum, lead, bismuth, indium, and antimony.・These alloys are used in electrical contact with the sealing plate, but simply placing them on the inner surface of the sealing plate can be used as a caulking seal when constructing a battery.
The alloy and the inner surface of the sealing plate are pressed together and sufficient contact is maintained. However, for more reliable contact, it is preferable to weld the alloy to the inner surface of the sealing plate. However, since the electrical resistance of these alloys is very low, welding such as resistance welding is difficult.

そこで、ステンレス製のネットなどを負極集電体として
合金と一体化させ、集電体を封口板の内面に溶接する方
法を採っている。
Therefore, a method is adopted in which a stainless steel net or the like is integrated with the alloy as a negative electrode current collector, and the current collector is welded to the inner surface of the sealing plate.

次に正極には、リチウムイオンと層間化合物を形成可能
な金属酸化物などが用いられる。つまり、放電、充電に
よりリチウムイオンが出入りしても、結晶構造、体積膨
張の極めて少い物質が用いられている。また、電池電圧
は高い方が工業的利用価値も高いことから、正極材料と
しては五酸化バナジウム、二酸化マンガン、7ツ化銅、
酸化クロムなどが用いられている。
Next, for the positive electrode, a metal oxide or the like that can form an interlayer compound with lithium ions is used. In other words, even when lithium ions enter and exit due to discharging and charging, a material is used that has a crystal structure and extremely little volumetric expansion. In addition, since the higher the battery voltage, the higher the industrial value, the positive electrode materials include vanadium pentoxide, manganese dioxide, copper heptadide,
Chromium oxide etc. are used.

発明が解決しようとする課題 その結果、金属酸化物など高電位を有する活物質を正極
に用いた有機電解液二次電池は、同様に高電圧を有する
有機電解液−次電池と同様に、正極と直接あるいはリー
ドを介して電気的に接しているケースなどには、耐食性
の優れた材料を用隠いている。これは、電池を保存中に
、ケースが高電位のため腐食し、その結果、電池性能が
劣化するのを防止するためである。具体的な材料として
、耐食性に効果のあるクロムを多く含み、ニッケルを殆
んど含まないステンレス鋼を用いている。これに対し負
極と直接接触している負極集電体は、正極よりかなり電
位が卑な状態にあるため、耐食性については、正極ケー
ス程配慮する必要はなく、その構成部材として一般的な
有機電解液−次電池などに多く使用されているステンレ
ス鋼、例えばOrを18重量係程度、Niを8重量係程
度含むJIS規格のS U S 304を使用していた
Problems to be Solved by the Invention As a result, an organic electrolyte secondary battery using an active material with a high potential such as a metal oxide as a positive electrode, as well as an organic electrolyte secondary battery also having a high voltage, has a positive electrode. A material with excellent corrosion resistance is used to hide the case, etc., which is in electrical contact with the battery, either directly or through leads. This is to prevent the case from corroding due to the high potential while the battery is being stored, thereby preventing the battery performance from deteriorating. The specific material used is stainless steel, which contains a lot of chromium, which is effective in corrosion resistance, and contains almost no nickel. On the other hand, the negative electrode current collector, which is in direct contact with the negative electrode, has a considerably lower potential than the positive electrode, so corrosion resistance does not need to be given as much consideration as the positive electrode case. Stainless steel, which is often used in liquid batteries and the like, was used, for example, SUS 304 according to the JIS standard, which contains Or about 18% by weight and Ni about 8% by weight.

この従来の構成からなる有機電解液二次電池において種
々の特性評価を行った結果、例えば60°C中で、10
にΩで定抵抗放電を2ケ月行うなど長期にわたって電池
を放電状態(電池電圧はほぼOV)に保つ(以下長期過
放電と呼ぶ)と、充電による復帰性能が劣化し電池性能
が著しく低下することが判明した。この劣化した電池を
分解し、解析を行った結果、負極活気質と接触している
負極集電体の表面が腐食し、溶解した金属がイオン化傾
向の差から各構成材料表面に析出し、その結果、各活物
質の反応が著しく損われ、電池が劣化したことが判明し
た。この腐食は以下の理由による。すなわち電池を放電
した時の、正極及び負極の単極電位は第1図のようにな
る。負極の電位は放電終了時には正極同様に非常に高電
位な状態になる。場合によっては転極し、負極が正極よ
り責な電位になる場合もある。従って長期過放電によっ
てこの様な状態が続くと、耐食性の弱い8U8304か
らなる負極集電体の腐食が起こると考えられる。また、
この現象は高温における程、顕著であることが判った。
As a result of various characteristic evaluations of this conventional organic electrolyte secondary battery, we found that, for example, at 60°C,
If the battery is kept in a discharged state (battery voltage is approximately OV) for a long period of time (hereinafter referred to as long-term overdischarge), such as by performing constant resistance discharge at Ω for two months, the recovery performance upon charging will deteriorate and the battery performance will drop significantly. There was found. As a result of disassembling and analyzing this deteriorated battery, it was found that the surface of the negative electrode current collector in contact with the negative electrode active material corroded, and dissolved metal precipitated on the surface of each constituent material due to the difference in ionization tendency. As a result, it was found that the reaction of each active material was significantly impaired and the battery deteriorated. This corrosion is due to the following reasons. That is, when the battery is discharged, the unipolar potentials of the positive and negative electrodes are as shown in FIG. At the end of discharge, the potential of the negative electrode reaches a very high potential, similar to the positive electrode. In some cases, the polarity may be reversed, and the negative electrode may have a higher potential than the positive electrode. Therefore, if such a state continues due to long-term overdischarge, it is thought that corrosion of the negative electrode current collector made of 8U8304, which has poor corrosion resistance, will occur. Also,
It was found that this phenomenon is more pronounced at higher temperatures.

一般に高電圧を示す有機電解液−次電池においては放電
末期に電解液が消耗し、枯渇するため負極の電位が上昇
しても前述の様な腐食が起こることはない。従って前述
の問題は、正極に非常に責な電位を有する活物質を使用
した二次電池特有の間醜である。
Generally, in organic electrolyte-based batteries exhibiting high voltage, the electrolyte is consumed and depleted at the end of discharge, so even if the potential of the negative electrode increases, corrosion as described above does not occur. Therefore, the above-mentioned problem is peculiar to a secondary battery using an active material having a very negative potential in the positive electrode.

本発明は、前述の長期過放電による電池の劣化を改善す
ることを目的とする。
An object of the present invention is to improve the deterioration of a battery due to long-term overdischarge described above.

課題を解決するだめの手段 この問題を解決するためには、負極活物質と電気的に接
触する負極集電体の構成部材ををケースと同様に耐食性
に優れた材料を用いる必要がある。
Alternative Means to Solve the Problem In order to solve this problem, it is necessary to use a material with excellent corrosion resistance, similar to the case, for the constituent members of the negative electrode current collector that are in electrical contact with the negative electrode active material.

具体的には、前述したケースの構成部材であるニッケル
を殆んど含まないクロム鋼で負極集電体を形成する必要
がある。しかし、クロムを多量に含む鋼材は硬く加工性
が悪いという欠点がある。前述したように負極集電体は
、ネット状のものあるいは、ラス状のものが使われるた
め、加工性が悪い材料は不向きである。耐食性について
はクロム量とともにモリブデンの少量添加による効果が
大きいため、モリブデンを数チ含有しておれば、ニッケ
ルが多少存在していても、耐食性において殆んど問題な
いことが判明した。またクロムの含有曾が減り、ニッケ
ルの添加が可能なため硬度が下がり、加工性もよい。
Specifically, it is necessary to form the negative electrode current collector from chromium steel, which is a component of the case described above and contains almost no nickel. However, steel materials containing a large amount of chromium have the disadvantage of being hard and having poor workability. As mentioned above, a net-like or lath-like material is used as the negative electrode current collector, so materials with poor workability are not suitable. Regarding corrosion resistance, the addition of a small amount of molybdenum as well as the amount of chromium has a large effect, so it has been found that as long as a few grams of molybdenum are contained, there is almost no problem in corrosion resistance even if some nickel is present. In addition, the chromium content is reduced and nickel can be added, resulting in lower hardness and better workability.

以上のことから本発明は負極集電体としてモリブデンを
1〜3重量係、クロムを15〜18重量係含む鋼を用い
ることを特徴としたものである。
From the above, the present invention is characterized by using steel containing 1 to 3 parts by weight of molybdenum and 15 to 18 parts by weight of chromium as a negative electrode current collector.

作用 この構成によれば、正極活物質に非常に責な電位を有す
る物質を用いた有機電解液二次電池において、長期過放
電を行っても、負極集電体の腐食による電池の劣化を抑
制することができる。
Effect: According to this configuration, in an organic electrolyte secondary battery using a material with a very negative potential for the positive electrode active material, battery deterioration due to corrosion of the negative electrode current collector is suppressed even after long-term overdischarge. can do.

実施例 以下、本発明を図及び表を参照して説明する。Example The present invention will be explained below with reference to figures and tables.

第2図は本発明の有機電解液二次電池の断面(2)であ
る。図中1は正極端子を兼ねるケースで前述の耐食性の
優れたステンレス鋼から成っている。
FIG. 2 is a cross section (2) of the organic electrolyte secondary battery of the present invention. Reference numeral 1 in the figure denotes a case which also serves as a positive terminal, and is made of the aforementioned stainless steel with excellent corrosion resistance.

2は負極端子を兼ねる封口板で、ケース1と同じ材料か
ら成っている。3はケースと封口板を絶縁するポリプロ
ピレン製ガスケット、4は正極で、五酸化バナジウムと
導電材であるアセチレンブラック及びフッ素系樹脂の粉
末を混合し、直径15酎、厚み1馴のベレット状に成型
した後、200°Cの減圧下で12時間乾燥した。5は
負極のリチウム合金で、アルミニウムとリチウムをアル
ゴン雰囲気中で融解合金化し、同雰囲気中で厚さ0,1
闇に圧延した。さらに同雰囲気中で、前述した本発明の
負極集電体であるステンレス製ネット6と加圧、量体化
した。その負極集電体の組成の一例を重量百分率で示せ
ば、表1の人、Bに示す通りで、これはそれぞれJIS
規格におけるステンレス鋼の5US444.5US31
 eに相当する。
2 is a sealing plate which also serves as a negative electrode terminal, and is made of the same material as case 1. 3 is a polypropylene gasket that insulates the case and the sealing plate, and 4 is the positive electrode, which is made by mixing vanadium pentoxide, acetylene black, which is a conductive material, and fluororesin powder, and molding it into a pellet shape with a diameter of 15 mm and a thickness of 1 mm. After that, it was dried under reduced pressure at 200°C for 12 hours. 5 is a lithium alloy for the negative electrode. Aluminum and lithium are melted and alloyed in an argon atmosphere, and the thickness is 0.1 mm in the same atmosphere.
Rolled into darkness. Furthermore, in the same atmosphere, it was pressurized and massed with the stainless steel net 6 which is the negative electrode current collector of the present invention described above. An example of the composition of the negative electrode current collector in terms of weight percentage is as shown in Table 1.
Standard stainless steel 5US444.5US31
Corresponds to e.

その後、直径15−に打ち抜き、封口板2の裏面に、負
極集電体6を溶接した。7はポリフロピレン製不熾布か
らなるセパレータ、8は正極集電体で、導電性カーボン
被膜である。また電解液はプロピレンカーボネートと1
1.2−ジメトキシエタンとの等容積混合溶媒に、過塩
素酸リチウムを1モル/lの割合で溶解したものを用い
た。この電池を人、B(各電池の負極集電体の材料組成
は表1中のアルファベットに対応とした。また比較とし
て、JIS規格のS U S 304のステンレス鋼(
表中Cに組成を示す)からなる負極集電体を用いた従来
構成の電池をCとした。また表中りに示す組成のステン
レス鋼からなる負極集電体を用いた構成の電池をDとし
た。
Thereafter, it was punched out to a diameter of 15 mm, and a negative electrode current collector 6 was welded to the back surface of the sealing plate 2. 7 is a separator made of polypropylene abrasive cloth, and 8 is a positive electrode current collector, which is a conductive carbon film. In addition, the electrolyte is propylene carbonate and 1
Lithium perchlorate was dissolved in an equal volume mixed solvent with 1,2-dimethoxyethane at a ratio of 1 mol/l. This battery was made of stainless steel of SUS 304 according to JIS standard (The material composition of the negative electrode current collector of each battery corresponds to the alphabet in Table 1.
C is a battery having a conventional configuration using a negative electrode current collector consisting of (the composition is shown in C in the table). Further, a battery having a configuration using a negative electrode current collector made of stainless steel having the composition shown in the table was designated as D.

尚、いずれの電池も直径20m、厚さ2.0mで容量は
、3vから2vの範囲で約20mAh である。
Each battery has a diameter of 20 m, a thickness of 2.0 m, and a capacity of approximately 20 mAh in the range of 3 V to 2 V.

また、これらの例では負極合金に、アルミニウムを用い
たが、他にリチウムの吸蔵能力を持つ、前述の鉛、ビス
マス、インジウム、アンチモン等ヲ用いても同様に適用
できる。さらに正極材料においては、今回の例では五酸
化バナジウムを用いたが、前述した二酸化マンガン、フ
ッ化銅、酸化クロム等を用いても同様に適用できる。
Furthermore, although aluminum is used as the negative electrode alloy in these examples, other materials having lithium storage capacity such as lead, bismuth, indium, antimony, etc., as mentioned above, may also be used. Further, as for the positive electrode material, although vanadium pentoxide was used in this example, the above-mentioned manganese dioxide, copper fluoride, chromium oxide, etc. may also be used.

(以下余白) これら電池の組立直後と、60℃温度雰囲気中で10に
Ωの定抵抗放電を2ケ月行った後に、室温で各特性を測
定し、表2に示した。尚、表中の放電容量は、電池を3
.5vの一定電圧で充電を行った後、1okΩの定抵抗
放電を行い、2vカツトで測定した電気容量である。ま
た各位は電池20個の平均値である。
(Left below) Immediately after assembly of these batteries and after two months of constant resistance discharge of 10Ω in an atmosphere at 60° C., various characteristics were measured at room temperature and are shown in Table 2. In addition, the discharge capacity in the table is 3
.. After charging at a constant voltage of 5V, constant resistance discharge of 1 okΩ was performed, and the capacitance was measured with a 2V cut. Moreover, each value is an average value of 20 batteries.

(以下余白) 表から明らかなように、モリブデンを数多含み、クロム
を15〜18%含むステンレス鋼からなる負極集電体を
用いた本発明の電池ム、Bは、高温で長期過放電を行っ
た後でも、従来品Cに比べ、内部抵抗の異常増加もなく
、また充電により、初期と同等の放電容量を得ることが
できる。また電池人、B、C,D各電池を上記試験後、
分解調査を行った結果、電池C,Dの負極集電体の表面
は腐食していた。しかし電池人及び已については腐食は
みられなかった。また電池人とDの比較から耐食性にお
いて、モリブデンの添加効果が大きいことがわかる。
(Left below) As is clear from the table, battery B of the present invention, which uses a negative electrode current collector made of stainless steel that contains a large amount of molybdenum and 15 to 18% chromium, can withstand long-term overdischarge at high temperatures. Even after charging, there is no abnormal increase in internal resistance compared to conventional product C, and the same discharge capacity as the initial one can be obtained by charging. In addition, after the above test for battery B, C, and D batteries,
As a result of a disassembly investigation, the surfaces of the negative electrode current collectors of batteries C and D were found to be corroded. However, no corrosion was observed in the batteries. Furthermore, from the comparison between Battery Man and D, it can be seen that the effect of adding molybdenum is large in terms of corrosion resistance.

次に第3図にモリブデン及びクロムの含有量が異なる鋼
を前述の電解液において、リチウムに対し2.5vの電
圧を印加した状態で、70℃雰囲気中に1ケ月保存した
場合の腐食度について示す。
Next, Figure 3 shows the degree of corrosion when steels with different contents of molybdenum and chromium are stored in the above-mentioned electrolyte in an atmosphere of 70°C for one month with a voltage of 2.5V applied to lithium. show.

第3図ではモリブデンの添加量を0〜1.6重量%で示
したが、3重量%を越えると非常にもろくなり、鋼材の
圧延等の加工が非常に困難となる。この結果、モリブデ
ンの好ましい添加量は1〜3重量%であった。
In FIG. 3, the amount of molybdenum added is shown as 0 to 1.6% by weight, but if it exceeds 3% by weight, the steel becomes extremely brittle and processing such as rolling of the steel material becomes extremely difficult. As a result, the preferred amount of molybdenum added was 1 to 3% by weight.

尚、この試験に用いた鋼は市場から得られるステンレス
鋼あるいは試作的に作られた鋼を用いたもので、クロム
、モリブデン以外の不純物、例えばマンガン、炭素、ニ
ッケル、シリコンその他の不純物の量は同じではなく、
わずかに異っているものである。
The steel used in this test was commercially available stainless steel or prototype steel, and the amount of impurities other than chromium and molybdenum, such as manganese, carbon, nickel, silicon, and other impurities, was not the same,
They are slightly different.

発明の効果 以上の説明から明らかなように、電池の負極集電体にケ
ースの構成材料と同様に耐食性の強いもの、特にモリブ
デンを1〜3重量%含有し、かつクロムを16〜18重
量%含有したステンレス鋼を用いることにより、長期過
放電、特に高温中での長期過放電による電池特性の劣化
を防止することができる。
Effects of the Invention As is clear from the above explanation, the negative electrode current collector of the battery contains a material with strong corrosion resistance similar to the constituent materials of the case, in particular, 1 to 3% by weight of molybdenum and 16 to 18% by weight of chromium. By using stainless steel containing stainless steel, it is possible to prevent deterioration of battery characteristics due to long-term overdischarge, especially long-term overdischarge at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は定抵抗放電における電池の各年(至)の電位変
化を示す図、第2図は本発明の実施例における電池の縦
断面図、第3図は本発明の実施例における電池の試験結
果を示す図である。 1・・・・・・ケース、2・・・・・封口板、3・・・
・・・ガスケット、4・・・・・・正極、6・・・・・
・負極、6・・・・・・負極集電体、7・・・・・・セ
パレータ、8・・・・・・正極集電体。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名簿 図 f−ブース ターぞ:rD仄 3−−η”ス、トノY
Fig. 1 is a diagram showing the potential change of the battery in each year (towards) during constant resistance discharge, Fig. 2 is a longitudinal cross-sectional view of the battery in the embodiment of the present invention, and Fig. 3 is a diagram showing the potential change of the battery in the embodiment of the present invention. It is a figure showing a test result. 1... Case, 2... Sealing plate, 3...
...Gasket, 4...Positive electrode, 6...
- Negative electrode, 6... Negative electrode current collector, 7... Separator, 8... Positive electrode current collector. Name of agent: Patent attorney Shigetaka Awano and 1 other list: rD 3--η”su, Tono Y

Claims (1)

【特許請求の範囲】[Claims]  正極と、リチウム合金からなる負極と、非水溶媒から
なる電解液とから構成される有機電解液二次電池であっ
て、封口板内面に溶接された負極集電体の構成部材とし
て、モリブデンを1〜3重量%及びクロムを16〜18
重量%含む鋼を用いた有機電解液二次電池。
An organic electrolyte secondary battery consisting of a positive electrode, a negative electrode made of a lithium alloy, and an electrolytic solution made of a non-aqueous solvent, in which molybdenum is used as a component of the negative electrode current collector welded to the inner surface of the sealing plate. 1-3% by weight and 16-18% chromium
Organic electrolyte secondary battery using steel containing % by weight.
JP63332863A 1988-12-27 1988-12-27 Organic electrolyte secondary battery Pending JPH02174070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332863A JPH02174070A (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332863A JPH02174070A (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH02174070A true JPH02174070A (en) 1990-07-05

Family

ID=18259644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332863A Pending JPH02174070A (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH02174070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts

Similar Documents

Publication Publication Date Title
US20030124421A1 (en) Non-aqueous electrochemical cells
EP0364626B1 (en) Lithium secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH0737572A (en) Lithium battery
JPH10255796A (en) Nonaqueous electrolyte secondary battery
JPH02174070A (en) Organic electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH0425676B2 (en)
JP4462022B2 (en) Flat type non-aqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP2763561B2 (en) Organic electrolyte secondary battery
JPH02174053A (en) Organic electrolyte secondary battery
JPH08293302A (en) Organic electrolytic secondary battery
JP2002063906A (en) Flat nonaqueous electrolyte secondary battery
JPH0992240A (en) Nonaqueous electrolyte secondary battery
JPH0794212A (en) Organic electrolyte secondary battery
JPH02236972A (en) Polyaniline battery
JPS62274556A (en) Nonaqueous electrolyte battery
JPS63124358A (en) Battery
JP4687021B2 (en) Non-aqueous electrolyte primary battery
JPH03238770A (en) Organic electrolyte secondary battery
JP3306386B2 (en) Non-aqueous electrolyte secondary battery
JPH06215799A (en) Nonaqueous electrolytic secondary battery
JPH07326387A (en) Organic electrolytic battery
JPS63102158A (en) Organic electrolyte battery