JPH08306392A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH08306392A
JPH08306392A JP7111447A JP11144795A JPH08306392A JP H08306392 A JPH08306392 A JP H08306392A JP 7111447 A JP7111447 A JP 7111447A JP 11144795 A JP11144795 A JP 11144795A JP H08306392 A JPH08306392 A JP H08306392A
Authority
JP
Japan
Prior art keywords
aluminum
stainless
negative electrode
lithium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111447A
Other languages
Japanese (ja)
Inventor
Toshihiko Ikehata
敏彦 池畠
Nobuharu Koshiba
信晴 小柴
Yoko Ogasawara
陽子 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7111447A priority Critical patent/JPH08306392A/en
Publication of JPH08306392A publication Critical patent/JPH08306392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To facilitate processing and improve joint strength of aluminum with stainless for stabilizing characteristics by providing soft metal material of ductility between rigid aluminum and stainless to compose a negative electrode. CONSTITUTION: In forming a negative electrode 5, clad material is formed of hoop material of a three-layer structure comprising soft aluminum foil provided between rigid aluminum and stainless steel by cold rolling under reduced pressure, it is punched in a specified size, the stainless layer side is pressurized to be tightly applied to an inner surface of a sealing plate 2, and it is jointed by resistance welding. Next, lithium foil is crimped to the surface of the aluminum layer, and it is alloyed after assembling of a battery to form lithium- aluminum alloy. By thus providing the soft metal material, characteristics of rigid aluminum can be maintained while rolling work of a clad is facilitated, the peeling of the aluminum layer and the stainless layer can be prevented, the and reduction of a charge/discharge cycle life can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動用直流電源、バッ
クアップ用電源などに用いる有機電解液二次電池の負極
の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the constitution of a negative electrode of an organic electrolyte secondary battery used as a mobile DC power source, a backup power source and the like.

【0002】[0002]

【従来の技術】一般に有機電解液電池は、エネルギー密
度が高く、保存性、耐漏液性などの信頼性に優れ、ま
た、小形化、軽量化が可能なことから、各種電子機器の
主電源やバックアップ用電源として、その需要は年々増
加している。これまで、この種の電池は充電ができない
一次電池が主流であったが、最近、充電可能な電池が開
発され、需要が伸びている。
2. Description of the Related Art Generally, an organic electrolyte battery has a high energy density, is highly reliable in terms of storage stability and liquid leakage resistance, and can be made compact and lightweight. The demand for backup power supplies is increasing year by year. Up to now, this type of battery has been mainly a primary battery that cannot be charged, but recently, a rechargeable battery has been developed and the demand is increasing.

【0003】充電可能な有機電解液二次電池として、負
極にリチウムとリチウムを吸蔵、放出が可能な金属との
合金(リチウム合金)を用い、電解液に有機電解液を用
い、それに種々の正極を組み合わせた電池が知られてい
る。負極にリチウム合金を用いるのは以下の理由によ
る。
As a rechargeable organic electrolyte secondary battery, a negative electrode is made of an alloy of lithium and a metal capable of absorbing and releasing lithium (lithium alloy), an organic electrolyte is used as an electrolyte, and various positive electrodes are used. A battery in which the above is combined is known. The reason why the lithium alloy is used for the negative electrode is as follows.

【0004】負極にリチウム一次電池と同様にリチウム
金属のみを用いた場合、充電時には、電解液中のリチウ
ムイオンが、負極リチウム表面上に不均一に析出し、デ
ンドライトを形成する。その結果、このデンドライトが
セパレータを貫通して内部ショートが発生したり、ま
た、放電反応が不均一となり、その際、リチウムの脱落
してしまうことによりサイクル寿命が劣化する。
When only lithium metal is used for the negative electrode as in the case of the lithium primary battery, lithium ions in the electrolytic solution are nonuniformly deposited on the surface of the negative electrode lithium during charging to form dendrites. As a result, this dendrite penetrates the separator to cause an internal short circuit, and the discharge reaction becomes non-uniform. At that time, lithium drops off, which deteriorates the cycle life.

【0005】一方、負極にリチウム合金を用いることに
より、充電の際、リチウムイオンは負極合金中に電気化
学的に吸蔵されるため、負極表面にリチウムが析出する
のを防ぐことができる。リチウムと合金を形成する金属
としてはアルミニウム、鉛、ビスマス、インジウム、錫
などがある。
On the other hand, by using a lithium alloy for the negative electrode, lithium ions are electrochemically occluded in the negative electrode alloy during charging, so that lithium can be prevented from depositing on the surface of the negative electrode. Examples of metals that form an alloy with lithium include aluminum, lead, bismuth, indium, and tin.

【0006】正極には種々の物質が検討されているが、
一般に、リチウムイオンと層間化合物を形成する材料、
例えば五酸化バナジウム、五酸化ニオブ、二酸化マンガ
ン、などの金属酸化物や、リチウムと金属酸化物の複合
酸化物、また二硫化チタン、二硫化モリブデン、などの
硫化物が用いられる。また、ポリアニリン、ポリアセン
などの導電性高分子などを使用したものもある。
Various materials have been studied for the positive electrode.
Generally, materials that form intercalation compounds with lithium ions,
For example, metal oxides such as vanadium pentoxide, niobium pentoxide, and manganese dioxide, composite oxides of lithium and metal oxides, and sulfides such as titanium disulfide and molybdenum disulfide are used. In addition, there are those using a conductive polymer such as polyaniline or polyacene.

【0007】[0007]

【発明が解決しようとする課題】負極にリチウムアルミ
ニウム合金を使用した、コイン形のリチウム二次電池の
構成において、正極とケース、負極と封口板はそれぞれ
電子伝導で接触させる必要がある。正極はペレット状の
成型体であり、導電材としてカーボンを含有している。
そのためケースの内面に導電性のカーボン被膜からなる
集電体を形成することにより、電池を組み立てる際のか
しめ封口の加圧などで充分な電気的接触が得られる。
In the structure of a coin-type lithium secondary battery using a lithium aluminum alloy for the negative electrode, it is necessary to contact the positive electrode and the case, and the negative electrode and the sealing plate by electron conduction. The positive electrode is a pellet-shaped molded body and contains carbon as a conductive material.
Therefore, by forming a current collector made of a conductive carbon coating on the inner surface of the case, sufficient electrical contact can be obtained by pressing the caulking seal when assembling the battery.

【0008】次に負極のリチウムアルミニウム合金であ
るが、これの製造法としては一般にアルミニウムの表面
にリチウムを圧着しておき、電池組み立て後電解液の存
在によりアルミニウム中にリチウムを吸蔵させる方法を
採っている。従って、まずアルミニウムのみの状態で、
封口板の内面に抵抗溶接などにより接合しておけばよか
った。
Next, regarding the lithium-aluminum alloy for the negative electrode, as a method for producing this, generally, lithium is pressure-bonded to the surface of aluminum, and after the battery is assembled, the lithium is occluded in the aluminum due to the presence of the electrolytic solution. ing. Therefore, first with only aluminum,
It should have been joined to the inner surface of the sealing plate by resistance welding or the like.

【0009】しかし、アルミニウムは表面に強固な酸化
被膜が不均一に存在し、またアルミニウムとステンレス
は融点が大きく異なるなど抵抗溶接は不向きである。ま
た、抵抗溶接でアルミニウムを溶接できたとしても、溶
接部分(ナゲット)がリチウムとの合金化により脆くな
り、充放電などの使用中にはずれ、充放電サイクル寿命
が大きく劣化する場合がある。この解決策として、負極
として、アルミニウムとステンレスのクラッド材を用
い、このクラッド材のステンレス部分と封口板とを抵抗
溶接により接合した構成にしている。また、ステンレス
はリチウムを吸蔵する能力はないので、前記のように溶
接部分が充放電などにより劣化することはない。
However, aluminum has a strong oxide film nonuniformly on the surface, and aluminum and stainless steel have large melting points, which makes resistance welding unsuitable. Even if aluminum can be welded by resistance welding, the welded part (nugget) may become brittle due to alloying with lithium and may become detached during use such as charging / discharging, resulting in significant deterioration of charge / discharge cycle life. As a solution to this problem, a clad material made of aluminum and stainless steel is used as the negative electrode, and the stainless steel portion of the clad material and the sealing plate are joined by resistance welding. In addition, since stainless steel has no ability to store lithium, the welded portion will not deteriorate due to charge and discharge as described above.

【0010】しかし、前記のアルミニウムはサイクル寿
命などの特性を考慮すると硬質のものがよいが、片方の
ステンレスも硬質であるためクラッド材とすることは製
造的に困難である。さらに、アルミニウムにリチウムが
吸蔵、放出した場合、アルミニウムの体積膨張があるた
め、接合強度が弱いと充放電などの使用中にアルミニウ
ム層とステンレス層がはがれ、内部抵抗の上昇や、サイ
クル寿命の低下などが発生する場合がある。
However, the aluminum is preferably hard in consideration of characteristics such as cycle life, but it is difficult to manufacture it as a clad material because one of the stainless steels is also hard. Furthermore, when lithium is occluded and released in aluminum, the volume expansion of aluminum causes the aluminum layer and the stainless steel layer to peel off during use such as charging / discharging because of weak joint strength, increasing internal resistance and reducing cycle life. Etc. may occur.

【0011】本来クラッド材は、硬質の金属材料と延性
のある軟質の材料を圧延により加工するものが多く、例
えばステンレスと軟質のアルミニウム材などである。さ
らに圧延中は焼鈍処理をして、加工硬化による歪みなど
を取り除きながら圧延加工することから、クラッドにす
る材料の初期の物性が変化する。さらに、両方とも硬質
の材料である場合はさらに困難となり、同様な処理を行
っても必要な接合強度が得られない場合が多い。一方、
サイクル寿命の点から硬質のものが特性が良いが、硬質
のアルミニウムは加熱すると焼鈍効果により軟化し、そ
の結果サイクル特性が劣化する。
Originally, many clad materials are made by rolling a hard metal material and a ductile soft material by rolling, and are, for example, stainless steel and soft aluminum material. Furthermore, during rolling, an annealing treatment is performed to remove strains due to work hardening and rolling is performed, so that the initial physical properties of the material used for the cladding change. Furthermore, when both are hard materials, it becomes more difficult, and even if the same treatment is performed, the required bonding strength is often not obtained. on the other hand,
From the viewpoint of cycle life, hard ones have better characteristics, but when hard aluminum is heated, it softens due to the annealing effect, and as a result, cycle characteristics deteriorate.

【0012】本発明は上記課題を解決するものであり、
安定した特性を発揮することができる有機電解液二次電
池を得ることを目的とする。
The present invention solves the above-mentioned problems.
It is an object to obtain an organic electrolyte secondary battery that can exhibit stable characteristics.

【0013】[0013]

【課題を解決するための手段】この課題を解決するため
に本発明は、硬質アルミニウムと軟質のアルミニウム箔
とステンレスのクラッド材を負極に用い、このクラッド
材は減圧下で冷間圧延されたものである構成である。
In order to solve this problem, the present invention uses a hard aluminum / soft aluminum foil and a stainless clad material as a negative electrode, and the clad material is cold-rolled under reduced pressure. It is a structure that is.

【0014】[0014]

【作用】本発明は、上記構成により硬質アルミニウムと
ステンレスの間に延性のある軟質の金属材料を介在させ
ることにより、硬質アルミニウムの物性を維持できるた
めに、クラッドの圧延加工を容易とし、加熱処理を行わ
なくても冷間圧延にて接合強度の優れたクラッド材料を
得ることができる。
The present invention makes it possible to maintain the physical properties of hard aluminum by interposing a soft metallic material having ductility between the hard aluminum and the stainless steel according to the above-mentioned constitution, thereby facilitating the rolling process of the clad and performing the heat treatment. It is possible to obtain a clad material having excellent bonding strength by cold rolling without performing the above.

【0015】さらに圧延の際、減圧下で行うことにより
空気分子などを巻き込むことがなく、さらに圧延加工を
容易とすることができ、接合強度を向上させることがで
きる。その結果、充放電時のアルミニウム層とステンレ
ス層のはがれを防ぎ、また硬質アルミニウムの硬度を圧
延後も維持できることから充放電サイクル寿命の低下を
防止できる。
Further, when rolling is performed under reduced pressure, air molecules and the like are not entrained, rolling can be further facilitated, and bonding strength can be improved. As a result, peeling between the aluminum layer and the stainless steel layer during charging / discharging can be prevented, and the hardness of the hard aluminum can be maintained even after rolling, so that reduction in charge / discharge cycle life can be prevented.

【0016】[0016]

【実施例】以下、本発明を図及び表を参照して説明す
る。
The present invention will be described below with reference to the drawings and tables.

【0017】図1は本発明の一実施例による有機電解液
二次電池の断面図である。図1において1は正極端子を
兼ねるケースで耐食性に優れたステンレス鋼からなって
いる。2は負極端子を兼ねる封口板で、ケース1と同じ
材質からなっている。3はケースと封口板を絶縁するポ
リプロピレン製ガスケット、4は正極で、五酸化バナジ
ウムと導電材であるカーボンブラック及び結着剤である
フッ素樹脂の粉末を混合し、直径15mm、厚み1mm
のペレット状に成型した後、200℃中で12時間乾燥
した。5は負極のリチウムアルミニウム合金で、まず、
硬質アルミニウムと、封口板と同材質のステンレス鋼の
クラッド材の間に軟質のアルミニウム箔を介在させた3
層構成のフープ材料を、減圧下(10mHg以下)及び
25℃にて冷間圧延でクラッド材を作成した。このクラ
ッド材の構造を図2に示す。また、この時の圧延率は約
5%であり、圧延前後においてアルミニウム材の硬度
(ビッカース硬度)は殆ど変化していない。なお、圧延
前の硬質アルミニウム、軟質アルミニウム箔、ステンレ
スの厚みはそれぞれ200μm、20μm、及び50μ
mである。
FIG. 1 is a sectional view of an organic electrolyte secondary battery according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a case which also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance. Reference numeral 2 denotes a sealing plate that also serves as a negative electrode terminal, and is made of the same material as the case 1. 3 is a polypropylene gasket that insulates the case and the sealing plate, 4 is a positive electrode, which is a mixture of vanadium pentoxide, carbon black which is a conductive material, and fluororesin powder which is a binder, and has a diameter of 15 mm and a thickness of 1 mm.
After being molded into pellets, the mixture was dried at 200 ° C. for 12 hours. 5 is a lithium aluminum alloy for the negative electrode.
A soft aluminum foil was interposed between hard aluminum and a stainless steel clad material of the same material as the sealing plate. 3
A clad material was prepared by cold rolling the layered hoop material under reduced pressure (10 mHg or less) and 25 ° C. The structure of this clad material is shown in FIG. The rolling ratio at this time was about 5%, and the hardness (Vickers hardness) of the aluminum material was hardly changed before and after rolling. The thicknesses of the hard aluminum, soft aluminum foil, and stainless steel before rolling are 200 μm, 20 μm, and 50 μm, respectively.
m.

【0018】次に、このクラッド材を直径15mmに打
ち抜き、封口板の内面にクラッド材のステンレス層側を
加圧密着させ、封口板のステンレス部分とクラッド材の
ステンレス部分を抵抗溶接にて接合した。次にアルミニ
ウム層の表面にリチウム箔を圧着させ、電池組み立て
後、電解液の存在下で合金化させ、リチウムアルミニウ
ム合金を形成した。6はポリプロピレン製不織布からな
るセパレータ、7は正極集電体で、導電性カーボン被膜
である。また、電解液はプロピレンカーボネートと1,
2−ジメトキシエタンとの等容積混合溶媒に、過塩素酸
リチウムを1モル/lの割合で溶解したものを用いた。
この電池をAとした。
Next, this clad material was punched out to a diameter of 15 mm, the stainless layer side of the clad material was pressure-bonded to the inner surface of the sealing plate, and the stainless portion of the sealing plate and the stainless portion of the clad material were joined by resistance welding. . Next, a lithium foil was pressure-bonded to the surface of the aluminum layer, and after the battery was assembled, it was alloyed in the presence of an electrolytic solution to form a lithium aluminum alloy. 6 is a separator made of polypropylene non-woven fabric, 7 is a positive electrode current collector, which is a conductive carbon film. The electrolyte is propylene carbonate and 1,
A solution obtained by dissolving lithium perchlorate at a ratio of 1 mol / l in a mixed solvent having an equal volume with 2-dimethoxyethane was used.
This battery was designated as A.

【0019】また、比較として、本実施例と同材質で、
厚み200μmのアルミニウムと、同じく本実施例と同
材質の厚み50μmのステンレスを本実施例と同様な製
造法でクラッド材とし、その他の構成は本実施例と全く
同じものを作成し、電池Bとした。
For comparison, the same material as in this embodiment is used,
Aluminum having a thickness of 200 μm and stainless steel having a thickness of 50 μm, which is also the same material as that of this embodiment, were used as clad materials by the same manufacturing method as that of this embodiment, and other configurations were exactly the same as those of this embodiment. did.

【0020】次に、電池Bと同じ負極構成でクラッド材
の製造法として、工程中300℃で焼鈍処理しながら作
成したクラッド材を使用し、その他の構成は本実施例と
全く同じ構成の電池をCとした。ここで、電池Cにおけ
るクラッド材のアルミニウムの部分の硬度(ビッカース
硬度)は、圧延加工前のそれに比べて約半分の値であっ
た。
Next, as a method of producing a clad material with the same negative electrode structure as the battery B, a clad material prepared by annealing at 300 ° C. was used in the process, and the other structure was the same as that of this embodiment. Was designated as C. Here, the hardness (Vickers hardness) of the aluminum portion of the clad material in Battery C was about half the value before the rolling process.

【0021】次に、電池Aと同じ負極構成で、クラッド
材の製造法として、25℃、常圧下で圧延を行ったクラ
ッド材を負極に使用し、その他の構成は本実施例と全く
同じものを作成し、電池Dとした。
Next, in the same negative electrode structure as the battery A, as a method for producing the clad material, the clad material rolled at 25 ° C. under normal pressure was used for the negative electrode, and the other structures were exactly the same as those of this example. Was prepared as a battery D.

【0022】なお、いずれの電池も設計上、直径20m
m、厚さ2mmで容量は3Vから2.5Vまでで20m
Ahである。これら電池A,B,C,Dを各100個ず
つ組み立て、常温で1週間保存した後、電池の開回路電
圧と内部抵抗(1kHz,交流法)を測定した。その平
均値と標準偏差を(表1)に示す。
The design of each battery is 20 m in diameter.
m, thickness 2mm, capacity from 3V to 2.5V 20m
It is Ah. Each of 100 batteries A, B, C and D was assembled and stored at room temperature for 1 week, and then the open circuit voltage and internal resistance (1 kHz, AC method) of the batteries were measured. The average value and standard deviation are shown in (Table 1).

【0023】次に、これらの電池を1mAの定電流に
て、2.5V〜3.5Vの間で充放電サイクルを繰り返
した。そして、放電容量が初期(1サイクルめ)の容量
の50%に劣化するまでの回数を測定し、同様に(表
1)に示した。
Next, these batteries were repeatedly charged and discharged at a constant current of 1 mA between 2.5 V and 3.5 V. Then, the number of times until the discharge capacity deteriorated to 50% of the initial (first cycle) capacity was measured, and similarly shown in (Table 1).

【0024】[0024]

【表1】 [Table 1]

【0025】電池B、C、Dは本実施例の電池Aに比べ
て充放電回数が低下する。各サイクルにおける充放電カ
ーブをみると、電池B,Dについては充放電カーブが乱
れるものがあり、また充放電途中に内部抵抗が急激に上
昇するものもあった。これについて、サイクル寿命の低
下した電池を分解調査した結果、充放電の繰り返しと共
にアルミニウム層のみが膨張することにより、アルミニ
ウム層とステンレス層がはがれ、これにより、電池内部
における電気的接触が不充分となり、充放電サイクル寿
命が劣化したと考えられる。これに対し、本実施例では
アルミニウム層とステンレス層の接合強度が強く、この
ような現象は見られなかった。また電池Cは分解調査の
結果、負極の構成上の異常はないことから、アルミニウ
ムの硬度が低下したためにサイクル寿命が低下したもの
と考えられる。
Batteries B, C, and D have a lower number of charge / discharge cycles than battery A of this embodiment. Looking at the charge / discharge curves in each cycle, in some batteries B and D, the charge / discharge curve was disturbed, and in some cases, the internal resistance rapidly increased during charge / discharge. About this, as a result of disassembling and examining the battery with reduced cycle life, only the aluminum layer expands with repeated charging and discharging, and the aluminum layer and the stainless steel layer are peeled off, which results in insufficient electrical contact inside the battery. It is considered that the charge / discharge cycle life has deteriorated. On the other hand, in the present example, the bonding strength between the aluminum layer and the stainless layer was strong, and such a phenomenon was not observed. As a result of disassembling and examining the battery C, there was no abnormality in the structure of the negative electrode, and it is considered that the cycle life was shortened because the hardness of aluminum was reduced.

【0026】なお、上記の実施例では正極材料として五
酸化バナジウムを用いたが、これ以外に二硫化チタン、
二硫化モリブデン、三酸化モリブデン、二酸化マンガ
ン、リチウム複合酸化物、ポリアニリン、ポリアセチレ
ン、ポリアセン等を用いても同様に適用できる。
Although vanadium pentoxide was used as the positive electrode material in the above examples, titanium disulfide,
The same applies when molybdenum disulfide, molybdenum trioxide, manganese dioxide, lithium composite oxide, polyaniline, polyacetylene, polyacene or the like is used.

【0027】また、クラッドの製造法として圧延率を3
0%以上行うことにより、圧着強度を高めることができ
るが、所定の厚みに加工するのが困難であり、また、長
時間の圧延加工により、場所によってアルミニウム層と
ステンレス層の厚みにバラツキが生じ、さらにアルミニ
ウムの物性などが変化するため不適当である。
Further, as a method for producing the clad, the rolling rate is set to 3
If the amount is 0% or more, the pressure bonding strength can be increased, but it is difficult to process it to a predetermined thickness, and the rolling process for a long time causes the thicknesses of the aluminum layer and the stainless layer to vary depending on the location. Furthermore, it is not suitable because the physical properties of aluminum change.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、硬質ア
ルミニウムとステンレスの間に軟質のアルミニウム箔を
介在させ、減圧下で冷間圧延されたクラッド材を有機電
解液二次電池の負極として用いることにより、圧着強度
が優れるうえ、アルミニウムの物性を損なわないクラッ
ド材を用いることができ、充放電サイクル特性において
安定な有機電解液二次電池を得ることができる。
As is clear from the above description, a soft aluminum foil is interposed between hard aluminum and stainless steel, and the clad material cold-rolled under reduced pressure is used as the negative electrode of the organic electrolyte secondary battery. As a result, a clad material that is excellent in pressure bonding strength and does not impair the physical properties of aluminum can be used, and an organic electrolyte secondary battery having stable charge-discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電池の断面図FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【図2】本発明の一実施例における負極に用いるクラッ
ド材の断面図
FIG. 2 is a cross-sectional view of a clad material used for a negative electrode in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 ガスケット 4 正極 5 負極 6 セパレータ 7 正極集電体 1 Case 2 Sealing Plate 3 Gasket 4 Positive Electrode 5 Negative Electrode 6 Separator 7 Positive Electrode Current Collector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ケース内に、正極と、硬質アルミニウムと
軟質のアルミニウム箔とステンレスのクラッド材であっ
てリチウムの吸蔵、放出が可能な負極と、有機電解液と
を備え、封口板で封口された有機電解液二次電池であっ
て、前記クラッド材のステンレスと封口板とは抵抗溶接
により接合されており、前記クラッド材は硬質アルミニ
ウムと軟質のアルミニウム箔とステンレスの3層を減圧
下で冷間圧延されたものであることを特徴とする有機電
解液二次電池。
1. A case is provided with a positive electrode, a hard aluminum / soft aluminum foil, and a negative electrode which is a clad material of stainless steel capable of inserting and extracting lithium, and an organic electrolytic solution, and is sealed with a sealing plate. In the organic electrolyte secondary battery, the stainless steel of the clad material and the sealing plate are joined by resistance welding, and the clad material is made by cooling three layers of hard aluminum, soft aluminum foil and stainless steel under reduced pressure. An organic electrolyte secondary battery characterized by being hot-rolled.
JP7111447A 1995-05-10 1995-05-10 Organic electrolyte secondary battery Pending JPH08306392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111447A JPH08306392A (en) 1995-05-10 1995-05-10 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111447A JPH08306392A (en) 1995-05-10 1995-05-10 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH08306392A true JPH08306392A (en) 1996-11-22

Family

ID=14561440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111447A Pending JPH08306392A (en) 1995-05-10 1995-05-10 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH08306392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267429A4 (en) * 2000-11-01 2003-09-03 Sony Corp Cell, cell production method, welded article production method and pedestal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267429A4 (en) * 2000-11-01 2003-09-03 Sony Corp Cell, cell production method, welded article production method and pedestal
US7037621B2 (en) 2000-11-01 2006-05-02 Sony Corporation Cell, cell production method, welded article production method and pedestal
US7588858B2 (en) 2000-11-01 2009-09-15 Sony Corporation Battery, method of manufacturing the same, method of manufacturing weldment, and pedestal
US7727672B2 (en) 2000-11-01 2010-06-01 Sony Corporation Battery, method of manufacturing the same, method of manufacturing weldment, and pedestal

Similar Documents

Publication Publication Date Title
US7132194B2 (en) Non-aqueous electrolytic battery and its manufacturing method
JP4432871B2 (en) Negative electrode, method for producing the same, and battery
WO2018180748A1 (en) Secondary battery using non-aqueous electrolyte
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP2000048822A (en) Lithium secondary battery and manufacture of positive electrode plate thereof
JP2007165248A (en) Secondary battery
JP2002237295A (en) Lithium secondary battery and its manufacturing method
US11652242B2 (en) Solid-state battery electrolyte layers
JP3168783B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and method for producing the same
JPH11144762A (en) Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JPH08293302A (en) Organic electrolytic secondary battery
JPH08306392A (en) Organic electrolyte secondary battery
JP3349362B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH09129265A (en) Organic electrolyte secondary battery
EP1009047A1 (en) Battery plate and battery
KR20050008499A (en) Negative electrode and the battery using it
JP2000149884A (en) Nonaqueous electrolyte battery
JPH1167222A (en) Current collector for battery and battery using it
JPS61208748A (en) Lithium organic secondary battery
JPH11102728A (en) Organic electrolyte secondary battery
WO2019059117A1 (en) Current collector and battery using same
JPH07105952A (en) Lithium secondary battery and its current collecting body
US20240332547A1 (en) Energy storage element and production method
JPH08162118A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH1027628A (en) Organic electrolyte secondary battery