JPH08222191A - Electrochemical cell - Google Patents

Electrochemical cell

Info

Publication number
JPH08222191A
JPH08222191A JP7022532A JP2253295A JPH08222191A JP H08222191 A JPH08222191 A JP H08222191A JP 7022532 A JP7022532 A JP 7022532A JP 2253295 A JP2253295 A JP 2253295A JP H08222191 A JPH08222191 A JP H08222191A
Authority
JP
Japan
Prior art keywords
positive electrode
stainless steel
current collecting
electrode current
collecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022532A
Other languages
Japanese (ja)
Inventor
Toyoo Hayasaka
豊夫 早坂
Tsugio Sakai
次夫 酒井
Kazutomi Sakai
一富 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP7022532A priority Critical patent/JPH08222191A/en
Publication of JPH08222191A publication Critical patent/JPH08222191A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE: To provide a high-performance positive electrode current collecting member by using an austenite ferrite two-phase stainless steel having the pitting corrosion resistance index (mass %) of a specific range value and containing Ni, Cr, Mo, W, Ni of specific mass % respectively as the positive electrode current collecting member of an electrochemical cell using an organic electrolyte. CONSTITUTION: An austenite ferrite two-phase stainless steel having the pitting corrosion resistance index = Cr + 3.3 × Mo + 1.65 × W + 16N (mass %) at the value of 36.1-48.4, for example, is used as the positive electrode current collecting member of an electrochemical cell using an organic electrolyte. The stainless steel contains Ni: 5.5-8.0%, Cr: 24-26%, Mo: 2.5-3.5%. W: 0.05-3.5%, and N: 0.24-0.32%. The austenite ferrite two-phase stainless steel added with W: 0.1-3.5% suppressing the promotion of the deposition and growth of an inter-metal compound (sigma phase) is used as the positive electrode current collecting material, the dissolving voltage is increased, and the withstand voltage of the cell is increased. The withstand voltage is increased without arranging an Al layer on the positive electrode current collecting member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極と有機電解液と正
極からなり、小形且つ高容量で特に高耐電圧な電気化学
セルの正極ケースや金属網などの正極集電部材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode current collecting member such as a positive electrode case or a metal net of an electrochemical cell which is composed of a negative electrode, an organic electrolyte and a positive electrode and has a small capacity, a high capacity and a particularly high withstand voltage. .

【0002】[0002]

【従来の技術】従来、湿式の電気化学セルの正極集電部
材には特開昭62−94908号公報や特開昭63−2
37349号公報に内面にアルミニウム層を設けたステ
ンレス鋼とのクラッド材が電池正極ケースとして使用さ
れている。
2. Description of the Related Art Conventionally, as a positive electrode current collecting member of a wet type electrochemical cell, Japanese Patent Application Laid-Open Nos. 62-94908 and 63-2 are used.
In 37349, a clad material made of stainless steel having an aluminum layer provided on the inner surface is used as a battery positive electrode case.

【0003】図3には、従来の電気化学セルとして、電
気二重層キャパシタの一構成例を示す。図中、分極性電
極1、1’として各々の片面にプラズマ溶射法によるア
ルミニウム集電体層2、2’を形成した活性炭繊維布を
用いて、アルミニウム層3を設けた正極ケース4及び負
極キャップ5の内底面に、前記分極性電極のアルミニウ
ム溶射面が接するように載置しレーザー溶接法などで各
々の部材(正極及び負極ユニットと呼称)に溶接してい
た。
FIG. 3 shows a constitutional example of an electric double layer capacitor as a conventional electrochemical cell. In the figure, as the polarizable electrodes 1, 1 ', a positive electrode case 4 and a negative electrode cap provided with an aluminum layer 3 by using an activated carbon fiber cloth having an aluminum current collector layer 2, 2'formed by a plasma spraying method on one surface of each. It was placed on the inner bottom surface of No. 5 such that the aluminum sprayed surface of the polarizable electrode was in contact with each other and welded to each member (referred to as a positive electrode unit and a negative electrode unit) by a laser welding method or the like.

【0004】前記の電極が1体化されたユニットの一方
にポリプロピレン製のガスケット6を挿入した後、電解
液として非プロトン性のエチレンカーボネイト、プロピ
レンカーボネイト、γ−ブチルラクトン等にテトラアル
キルアンモニウム塩やテトラアルキルホスホニウム塩な
どを溶解した溶液を注入する。一方、正極部材にも同様
に電解液を注入しセパレータ7を載置後、該正極及び負
極ユニットを合体させて正極ユニットの上端部を内方に
かしめセルを組立てていた。
After inserting the polypropylene gasket 6 into one of the units in which the above-mentioned electrodes are integrated, an aprotic ethylene carbonate, propylene carbonate, γ-butyl lactone or the like tetraalkylammonium salt or A solution in which a tetraalkylphosphonium salt or the like is dissolved is injected. On the other hand, in the same manner, the electrolytic solution was injected into the positive electrode member, the separator 7 was placed, and then the positive electrode and the negative electrode unit were united to assemble the cell by caulking the upper end of the positive electrode unit inward.

【0005】[0005]

【発明が解決しようとする課題】前述した従来の電気化
学セルは、通常2〜3Vの高い電圧で使用されることが
多く、この種のセルの耐電圧は電解液や導電性電極に大
きく依存している。例えば、正極集電部材をSUS30
4(オーステナイト系)やSUS430(フェライト
系)などのステンレス鋼を用いた場合前記集電部材はア
ノード分極すると、金属が溶出し、腐食電流が流れる。
The above-mentioned conventional electrochemical cell is usually used at a high voltage of 2-3 V, and the withstand voltage of this type of cell largely depends on the electrolytic solution and the conductive electrode. are doing. For example, the positive electrode current collecting member may be SUS30.
When stainless steel such as 4 (austenite type) or SUS430 (ferrite type) is used, the current collecting member undergoes anodic polarization, the metal is eluted, and a corrosion current flows.

【0006】該電流が流れ始める電位(溶解電圧と呼
称)は、電解液の分解電圧や電極のアノード酸化電位で
決定される電位よりも小さいため、セルの耐電圧が小さ
く規制されていた。このように、溶解電流が流れ始める
と、セルの内部抵抗が次第に大きくなって、電気容量の
減少やさらには電気容量がまったく取り出せないことが
発生していた。
Since the potential at which the current starts to flow (referred to as the dissolution voltage) is smaller than the potential determined by the decomposition voltage of the electrolytic solution and the anodic oxidation potential of the electrode, the withstand voltage of the cell is regulated to be small. As described above, when the melting current starts to flow, the internal resistance of the cell gradually increases, resulting in a decrease in the electric capacity or even the electric capacity cannot be taken out at all.

【0007】また、SUS329J1(オーステナイト
・フェライト系二相ステンレス鋼)は前述のSUS30
4やSUS430よりは溶解電圧が高いが、それでも使
用電圧が2.5 〜3.0 Vでは溶解電流が発生する。そこで
従来より、正極集電部材のステンレス鋼の片側(例:正
極ケースの内面)にアルミニウム層を配設(例:アルミ
ニウム−ステンレス鋼クラッド)してステンレス鋼の溶
解を防止していた。この場合のアルミニウム層の防食効
果は、アノード分極時にアルミニウム表面に不働体層
(酸化被膜)が形成されるためである。
SUS329J1 (austenitic / ferritic duplex stainless steel) is the above-mentioned SUS30.
4 and SUS430 have a higher melting voltage, but still a melting current occurs at a working voltage of 2.5 to 3.0 V. Therefore, conventionally, an aluminum layer is provided on one side of the stainless steel of the positive electrode current collecting member (eg, the inner surface of the positive electrode case) (eg, aluminum-stainless steel clad) to prevent melting of the stainless steel. The anticorrosion effect of the aluminum layer in this case is because a passivation layer (oxide film) is formed on the aluminum surface during anodic polarization.

【0008】しかし、アルミニウム−ステンレス鋼クラ
ッド材は、貼り合わせの圧延工程でアルミニウム表面に
異物が付着することがあり特に微細な金属粉が圧着され
た場合などは、後工程の洗浄で除去できないことがあっ
た。このような金属不純物が付着したアルミニウム−ス
テンレス鋼クラッド材を使用した正極ケースを用いる
と、前述したステンレス鋼単体を正極ケースとした時と
同様にセルの内部抵抗の上昇と電気容量の減少を招く原
因となっていた。さらに、アルミニウム−ステンレス鋼
クラッド材はクラッド工程が煩雑なためコスト高となる
要因となっている。又、アルミニウム−ステンレス鋼ク
ラッド材の正極ケースを使って図1に示す電気化学セル
を組立てるさいに、該ケース上端周縁部を内方にかしめ
るとアルミニウム層がステンレス鋼から剥離することが
あり、この剥離した小片が負極キャップ5と接触し、セ
ルのショートの原因となることもあった。
[0008] However, the aluminum-stainless steel clad material may not be removed by washing in the subsequent step, especially when fine metal powder is pressure-bonded because foreign substances may adhere to the aluminum surface in the rolling step of bonding. was there. When the positive electrode case using the aluminum-stainless steel clad material to which such metal impurities are attached is used, the internal resistance of the cell is increased and the electric capacity is decreased as in the case where the stainless steel alone is used as the positive electrode case. It was the cause. Further, the aluminum-stainless steel clad material is a factor of increasing the cost because the clad process is complicated. Further, when the electrochemical cell shown in FIG. 1 is assembled using the positive electrode case of aluminum-stainless steel clad material, the aluminum layer may be separated from the stainless steel by caulking the upper edge of the case inward. The peeled small pieces may come into contact with the negative electrode cap 5 and cause a short circuit of the cell.

【0009】本発明は、以上のような欠点を解決した小
形で且つ高容量で特に高耐電圧な電気化学セルを実用化
するため、該電気化学セルに好適な正極集電部材を提供
することである。更に本発明は、正極集電部材の低コス
ト化さらには該電気化学セルの生産性を向上させて経済
的な電気化学セルを提供することにある。
The present invention provides a positive electrode current collecting member suitable for an electrochemical cell in order to put into practical use an electrochemical cell having a small capacity, a high capacity and a particularly high withstand voltage, which solves the above drawbacks. Is. Another object of the present invention is to provide an economical electrochemical cell by reducing the cost of the positive electrode current collecting member and improving the productivity of the electrochemical cell.

【0010】[0010]

【課題を解決するための手段】本発明者等は、有機電解
液を用いる電気化学セルの正極集電部材として耐孔食指
標=クロム+3.3 ×モリブデン+1.65×タングステン+
16×チッ素(質量%)が36.1〜48.4でニッケル5.5 〜8.
0 %、クロム24〜26%、モリブデン2.5 〜3.5%、タン
グステン0.05〜3.5 %及びチッ素0.24〜0.32%であるオ
ーステナイト・フェライト系二相ステンレス鋼を使用し
アルミニウム層を配設することなく、前述の課題を達成
した。
Means for Solving the Problems The present inventors have found that a pitting corrosion resistance index = chromium + 3.3 × molybdenum + 1.65 × tungsten + as a positive electrode current collecting member of an electrochemical cell using an organic electrolytic solution.
16 x Nitrogen (mass%) is 36.1 to 48.4 and nickel is 5.5 to 8.
Austenite / ferrite duplex stainless steels containing 0%, 24 to 26% chromium, 2.5 to 3.5% molybdenum, 0.05 to 3.5% tungsten and 0.24 to 0.32% nitrogen without using an aluminum layer. Achieved the task.

【0011】本発明において使用するオーステナイト・
フェライト系ステンレス鋼とは、その顕微鏡組織がオー
ステナイト及びフェライトの二相組織を有する高耐食ス
テンレス鋼であって25Cr−6Ni−3.5 Moで代表さ
れる組成にタングステン0.05〜3.5 %含有したものであ
る。表1に本発明に係る二相ステンレス鋼の成分を示
す。
The austenite used in the present invention
The ferritic stainless steel is a highly corrosion-resistant stainless steel whose microstructure has a two-phase structure of austenite and ferrite, and contains 0.05 to 3.5% of tungsten in a composition represented by 25Cr-6Ni-3.5Mo. Table 1 shows the components of the duplex stainless steel according to the present invention.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【実施例】【Example】

(実施例1)有機電解液中での各種材料の安定性を調査
するため、アノード側及びカソード側のLi/Li+
照電極に対する電圧/電流特性を測定した。なお、電解
液は四フッ化ホウ酸テトラエチルアンモニウム((C2
5)4 NBF4)をプロピレンカーボネイトに溶解したも
のを用いた。
(Example 1) In order to investigate the stability of various materials in an organic electrolytic solution, voltage / current characteristics with respect to a Li / Li + reference electrode on the anode side and the cathode side were measured. The electrolytic solution is tetraethylammonium tetrafluoroborate ((C 2
A solution obtained by dissolving H 5 ) 4 NBF 4 ) in propylene carbonate was used.

【0014】図2中、本発明Aがクロム25.1%、ニッケ
ル6.9 %、モリブデン3.2 %、タングステン2.1 %、チ
ッ素0.28%からなるオーステナイト・フェライト系二相
ステンレス鋼板、比較例としてBがSUS304鋼板、
Cがアルミニウム板である。金属の溶解反応はアノード
側であり(セルではカソード側)、電圧をスイープさせ
ると、本発明Aは1.8 V、比較例Bは0.6 Vより開始す
る。
In FIG. 2, the invention A is an austenite / ferrite type duplex stainless steel sheet composed of chromium 25.1%, nickel 6.9%, molybdenum 3.2%, tungsten 2.1%, and nitrogen 0.28%. As a comparative example, B is SUS304 steel sheet,
C is an aluminum plate. The dissolution reaction of the metal is on the anode side (cathode side in the cell), and when the voltage is swept, the present invention A starts at 1.8 V and the comparative example B starts at 0.6 V.

【0015】そして比較例Cは最初0.65Vでその後2.8
V近辺より溶解反応が顕著となる。なお、前述の各々の
電圧は電流密度0.5 μA/cm2 の時の電圧とした。
今、セルの最高使用電圧3.0 Vの場合、セルのカソード
側(図2中ではアノード側)にかかる最大電圧は+1.5
Vであり、Aが溶解する電圧はこれよりプラス側(+1.
8 V)にあるので実用上問題とならない。ところが、図
2中の従来例Bは+0.6 Vから溶解が始まるのでSUS
304単体による正極集電部材は使用できない。
Comparative Example C was initially 0.65 V and then 2.8.
The dissolution reaction becomes more pronounced near V. Each of the above voltages was a voltage at a current density of 0.5 μA / cm 2 .
If the maximum operating voltage of the cell is 3.0 V, the maximum voltage applied to the cell's cathode side (anode side in Fig. 2) is +1.5.
The voltage at which A melts is the positive side (+1.
Since it is 8 V), there is no practical problem. However, in Conventional Example B in FIG. 2, melting starts at +0.6 V, so SUS
The positive electrode current collecting member made of 304 alone cannot be used.

【0016】従来例Cは高電位(+2.8 V)で安定な材
料であるが、図2中0.65〜0.80Vで小さな溶解が観察さ
れる。これは、前述したアルミニウムをクラッドにする
際には付着した金属粉と考えられる。尚、図2は標準水
素電極電位を基準に換算したグラフである。
Conventional Example C is a stable material at a high potential (+2.8 V), but a small dissolution is observed at 0.65-0.80 V in FIG. This is considered to be the metal powder attached when the aluminum is used as the clad. Note that FIG. 2 is a graph in which the standard hydrogen electrode potential is converted as a reference.

【0017】一般的にオーステナイト系やフェライト系
ステンレス鋼の耐食性は、クロム、モリブデンの含有量
に大きく作用され、他にニッケル、銅、チッ素も耐食性
を上げる成分といわれている。一方、オーステナイト・
フェライト系二相ステンレス鋼は前記のオーステナイト
系やフェライト系ステンレス鋼よりクロムとモリブデン
量を増やすことによりさらに耐孔食性を高めているもの
の、高い電圧で使用する電気化学セルの正極集電部材に
使用すると溶解が起こる。そこで、本発明者等は、従来
のオーステナイト・フェライト系二相ステンレス鋼に金
属間化合物(シグマ相)の析出や成長の促進を抑制する
タングステン0.1 〜3.5 %を添加したものを正極集電部
材として用いると溶解電圧が大きくなりセルの耐電圧が
向上することが分かった。
Generally, the corrosion resistance of austenitic and ferritic stainless steels is greatly affected by the contents of chromium and molybdenum, and nickel, copper and nitrogen are also said to be components that improve the corrosion resistance. On the other hand, austenite
Although ferritic duplex stainless steel has improved pitting corrosion resistance by increasing the amount of chromium and molybdenum compared to the above austenitic and ferritic stainless steels, it is used for the positive electrode current collector of electrochemical cells used at high voltage. Then dissolution occurs. Therefore, the present inventors have used a conventional austenitic / ferritic duplex stainless steel with 0.1 to 3.5% of tungsten added to suppress the promotion of precipitation and growth of intermetallic compounds (sigma phase) as a positive electrode current collecting member. It was found that when used, the melting voltage was increased and the withstand voltage of the cell was improved.

【0018】次式は、タングステンを含んだ二相ステン
レス鋼の耐孔食指標=クロム+3.3×モリブデン+1.65
×タングステン+16N(質量%)で通常、塩化物環境下
であてはめられるものだが、この指標は図1に示すよう
な有機電解質中で電圧をスイプさせると出現する溶解電
位に近似正相関があることが分かった。
The following equation is an index of pitting corrosion resistance of duplex stainless steel containing tungsten = chromium + 3.3 × molybdenum + 1.65
X Tungsten + 16N (mass%), which is usually applied in a chloride environment, but this index has an approximate positive correlation with the dissolution potential that appears when the voltage is swept in an organic electrolyte as shown in Fig. 1. Do you get it.

【0019】耐孔食指標は高い程耐食性に優れている
が、タングステン3.5 %以上になるとシグマ相以外の金
属間化合物相の析出を促進してしまい、時効硬化が大き
くなり材料の加工性や機械的特性が悪くなって正極集電
部材としての仕様を十分満足できない。
The higher the pitting corrosion index is, the better the corrosion resistance is. However, when the content of tungsten is 3.5% or more, precipitation of intermetallic compound phase other than sigma phase is promoted, and age hardening becomes large, resulting in material workability and mechanical properties. Characteristics are deteriorated and the specifications as the positive electrode current collecting member cannot be sufficiently satisfied.

【0020】(実施例2)本発明のオーステナイト・フ
ェライト系二相ステンレス鋼(クロム25.1%、ニッケル
6.9 %、モリブデン3.2 %、タングステン2.1 %、チッ
素0.28%、耐孔食指標43.6)の厚さ0.15mmを抜き絞り
加工して、正極ケースを作製した。該正極ケースを用い
て図1に示す電気化学セルを組立てた。詳述すると、あ
らかじめ導電性ゴムシート8、8’を片面に貼り付けた
分極性電極の活性炭繊維布1、1’(比表面積2000
2 /g)をディスク状に打ち抜いておき、正極ケース
4及び負極キャップ5の内底面に導電性ゴムシート面
8、8’がくるように載置し、熱圧着を行い、その後1
00℃で2時間乾燥した。このようにして得た正極ユニ
ットにあらかじめ100℃で1時間乾燥したガラス繊維
製のディスク状セパレータ7を載置し、電解液(プロピ
レンカーボネイトに1モルの四フッ化ホウ酸テトラエチ
ルアンモニウムを溶解)の所定量を注入し、負極ユニッ
トにはポリプロピレン製のガスケット6を押し込んだ
後、正極及び負極ユニットを合体させ、正極ユニットの
上端部を内方にかしめ、セルを組立てた。
Example 2 Austenite / ferrite duplex stainless steel of the present invention (chromium 25.1%, nickel
6.9%, molybdenum 3.2%, tungsten 2.1%, nitrogen 0.28%, and pitting corrosion resistance of 43.6) with a thickness of 0.15 mm were punched and drawn to form a positive electrode case. The electrochemical cell shown in FIG. 1 was assembled using the positive electrode case. More specifically, the activated carbon fiber cloths 1 and 1 ′ of the polarizable electrode having the conductive rubber sheets 8 and 8 ′ pasted on one side in advance (specific surface area 2000
m 2 / g) is punched out in a disk shape and placed so that the conductive rubber sheet surfaces 8 and 8 ′ come on the inner bottom surfaces of the positive electrode case 4 and the negative electrode cap 5, and thermocompression bonding is performed.
It was dried at 00 ° C. for 2 hours. On the positive electrode unit thus obtained, a disk-shaped disk-shaped separator 7 previously dried at 100 ° C. for 1 hour was placed, and an electrolyte solution (dissolving 1 mol of tetraethylammonium tetrafluoroammonium tetraborate in propylene carbonate) was used. After injecting a predetermined amount and pressing the gasket 6 made of polypropylene into the negative electrode unit, the positive electrode and the negative electrode unit were united, and the upper end of the positive electrode unit was caulked inward to assemble the cell.

【0021】比較例として、従来のアルミニウム−ステ
ンレス鋼クラッド材を用いて図3に示すセルを組立て
た。上述した本発明と従来の電気化学セルについて、7
0℃の雰囲気中で3.0 Vを印加し500時間後の電気容
量減少率と交流内部抵抗(1kHzで測定)の上昇率を
測定した。また、正極及び負極ユニットを合体させた
後、該正極ユニットの上端を内方にかしめてセルを封口
する際に発生する正極ユニットの上端周縁部のアルミニ
ウム層の剥離片の発生率を表2に示す。
As a comparative example, a cell shown in FIG. 3 was assembled using a conventional aluminum-stainless steel clad material. Regarding the above-described present invention and the conventional electrochemical cell, 7
3.0 V was applied in an atmosphere of 0 ° C., and the rate of decrease in electric capacity and the rate of increase in AC internal resistance (measured at 1 kHz) after 500 hours were measured. Table 2 shows the rate of occurrence of peeled pieces of the aluminum layer at the upper edge of the positive electrode unit, which occurs when the positive electrode unit and the negative electrode unit are combined and the upper end of the positive electrode unit is swaged inward to seal the cell. Show.

【0022】[0022]

【表2】 (実施例3)正極及び負極活物質に有機半導体であるポ
リアセンを用いて、実施例2と同様にして本発明の二相
ステンレス鋼と従来のアルミニウム−ステンレス鋼の正
極ケースを用い実施例2と同様のセルを組立てた。
[Table 2] (Example 3) Polyacene, which is an organic semiconductor, was used as the positive electrode and the negative electrode active material, and the positive electrode case of the duplex stainless steel of the present invention and the conventional aluminum-stainless steel was used in the same manner as in Example 2 and Example 2 was used. A similar cell was assembled.

【0023】尚、前記ポリアセンとケース4およびキャ
ップ5はカーボンを含んだ導電ペースト8、8’を用い
て接着した。表3に上記セルの実施例2と同様の特性値
を示す。
The polyacene, the case 4 and the cap 5 were adhered by using conductive pastes 8 and 8'containing carbon. Table 3 shows the same characteristic values as in Example 2 of the above cell.

【0024】[0024]

【表3】 (実施例4)正極活物質として有機半導体であるポリア
セン、負極活物質としてリチウムイオンをドーピングし
た有機半導体ポリアセンと有機電解液として0.5 モルの
過塩素酸リチウムを溶解したプロピレンカーボネイトを
用いて以下実施例3と同様にセルを組立てた。
[Table 3] Example 4 Polyacene, which is an organic semiconductor, was used as a positive electrode active material, lithium ion-doped organic semiconductor polyacene was used as a negative electrode active material, and propylene carbonate in which 0.5 mol of lithium perchlorate was dissolved was used as an organic electrolytic solution. A cell was assembled in the same manner as 3.

【0025】このセルの特性値を表4に示す。Table 4 shows the characteristic values of this cell.

【0026】[0026]

【表4】 表2、表3及び表4の結果から、本発明は従来と比べて
特性値の変化率が小さく、改善されていることは明らか
である。つまり、正極ケースに本発明の二相ステンレス
鋼を使うことにより、セルの耐電圧が大きくなった。
尚、実施例4の従来例であるアルミニウム−ステンレス
鋼クラッド材は、過塩素酸塩を溶質とした電解液を用い
ると、アルミニウム表面に不働体層(酸化被膜)が形成
されないので、特性の変化率が大きくなると推定され
る。ところが二相ステンレス鋼は塩化物に対しては耐食
性が強いので過塩素酸を溶質とする電解液を用いたセル
には特に変化率が小さく良好な結果が得られたものと考
えられる。
[Table 4] From the results of Table 2, Table 3 and Table 4, it is clear that the present invention has a smaller rate of change in the characteristic value than the conventional one and is improved. That is, the withstand voltage of the cell was increased by using the duplex stainless steel of the present invention for the positive electrode case.
In the conventional aluminum-stainless steel clad material of Example 4, when an electrolytic solution containing perchlorate as a solute was used, a passivation layer (oxide film) was not formed on the aluminum surface, so that the characteristics changed. It is estimated that the rate will increase. However, since the duplex stainless steel has a strong corrosion resistance to chlorides, it is considered that a cell using an electrolyte solution containing perchloric acid as a solute has a small change rate and a good result can be obtained.

【0027】さらに、本発明は、封口時の正極ケースの
切片なども発生しなかった。
Further, according to the present invention, a piece of the positive electrode case at the time of sealing is not generated.

【0028】[0028]

【発明の効果】以上のように、本発明によれば正極集電
部材にアルミニウム層を配設することなく、耐電圧の大
きな低コストの電気化学セルが得られる。
As described above, according to the present invention, a low-cost electrochemical cell having a large withstand voltage can be obtained without disposing an aluminum layer on the positive electrode current collecting member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気化学セルを示す半縦断面図であ
る。
FIG. 1 is a semi-longitudinal sectional view showing an electrochemical cell of the present invention.

【図2】各種金属の電圧−電流曲線を示す図である。FIG. 2 is a diagram showing voltage-current curves of various metals.

【図3】従来の電気化学セルを示す半縦断面図である。FIG. 3 is a semi-longitudinal sectional view showing a conventional electrochemical cell.

【符号の説明】[Explanation of symbols]

1、1’ 電極 2、2’ 集電体層 3 正極集電部材内面のアルミニウム層 4 正極集電部材 5 負極集電部材 6 ガスケット 7 セパレータ 8、8’ 導電性ゴムシート又は導電ペースト 1, 1'electrode 2, 2'collector layer 3 aluminum layer on inner surface of positive electrode current collector member 4 positive electrode current collector member 5 negative electrode current collector member 6 gasket 7 separator 8, 8'conductive rubber sheet or conductive paste

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/66 H01M 4/66 A // C25B 11/04 C25B 11/04 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01M 4/66 H01M 4/66 A // C25B 11/04 C25B 11/04 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極物質と電気的に連結されている正極
及び負極集電部材において、前記正極集電部材が耐孔食
指標=クロム+3.3 ×モリブデン+1.65×タングステン
+16×チッ素(質量%)が36.1〜48.4であるオーステナ
イト・フェライト系二相ステンレス鋼であることを特徴
とする電気化学セル。
1. A positive electrode and a negative electrode current collecting member electrically connected to an electrode material, wherein the positive electrode current collecting member is a pitting corrosion resistance index = chrome + 3.3 × molybdenum + 1.65 × tungsten + 16 × nitrogen ( An electrochemical cell characterized by being an austenitic / ferritic duplex stainless steel having a mass% of 36.1 to 48.4.
【請求項2】 オーステナイト・フェライト系二相ステ
ンレス鋼はニッケル5.5 〜8.0 %、クロム24〜26%、モ
リブデン2.5 〜3.5 %、タングステン0.05〜3.5 %及び
チッ素0.24〜0.32%であることを特徴とする請求項1記
載の電気化学セル。
2. Austenitic / ferritic duplex stainless steel is characterized by nickel 5.5-8.0%, chromium 24-26%, molybdenum 2.5-3.5%, tungsten 0.05-3.5% and nitrogen 0.24-0.32%. The electrochemical cell according to claim 1.
JP7022532A 1995-02-10 1995-02-10 Electrochemical cell Pending JPH08222191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022532A JPH08222191A (en) 1995-02-10 1995-02-10 Electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022532A JPH08222191A (en) 1995-02-10 1995-02-10 Electrochemical cell

Publications (1)

Publication Number Publication Date
JPH08222191A true JPH08222191A (en) 1996-08-30

Family

ID=12085419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022532A Pending JPH08222191A (en) 1995-02-10 1995-02-10 Electrochemical cell

Country Status (1)

Country Link
JP (1) JPH08222191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986255A3 (en) * 2007-04-20 2010-04-28 Nissan Motor Co., Ltd. Secondary battery with non-aqueous electrolyte and corrosion-resistant collector
JP2012211397A (en) * 2005-03-09 2012-11-01 Xstrata Queensland Ltd Stainless steel electrolytic plate
JP2016219267A (en) * 2015-05-21 2016-12-22 日本電気株式会社 Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211397A (en) * 2005-03-09 2012-11-01 Xstrata Queensland Ltd Stainless steel electrolytic plate
EP1986255A3 (en) * 2007-04-20 2010-04-28 Nissan Motor Co., Ltd. Secondary battery with non-aqueous electrolyte and corrosion-resistant collector
JP2016219267A (en) * 2015-05-21 2016-12-22 日本電気株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR900003211B1 (en) Electric double layer capacitor
US5429895A (en) Nickel alloy electrodes for electrochemical devices
JP5672464B2 (en) Secondary battery and manufacturing method thereof
KR880007786A (en) Electrochemical Hydrogen Storage Alloys and Electrochemical Cells
WO1996007189A1 (en) Amorphous cobalt alloy electrodes for aqueous electrochemical devices
EP1465268A3 (en) Electrode and battery using it
JP3195475B2 (en) Electrochemical cell
US20180010255A1 (en) Methanol generation device, method for generating methanol, and electrode for generating methanol
Mihailov et al. Electrocatalytic behavior of Ni-based amorphous alloys for hydrogen evolution
US4057679A (en) Organic electrolyte batteries
JPH08222191A (en) Electrochemical cell
JPS60175375A (en) Lithium organic secondary cell
JP2015008154A (en) Battery case
CN108615618A (en) A kind of preparation method and application of high voltage composite electrode
JP3416172B2 (en) Manufacturing method of electric double layer capacitor
JP3576948B2 (en) Electrochemical cell
JPH02204976A (en) Electrochenical battery and its manufacture
JP3018771B2 (en) Button type zinc alkaline battery
JP2001028269A (en) Layered manganese dry battery
JPH0715817B2 (en) Non-aqueous electrolyte battery
JPH04293218A (en) Electric double layer capacitor
JPH0426106A (en) Electric double layer capacitor
JPH02174070A (en) Organic electrolyte secondary battery
JP2003253400A (en) Austenitic stainless steel for button-type lithium secondary battery case, and battery case using the same
JPS63124358A (en) Battery