JP2001115875A - Fuel injection control device for engine - Google Patents
Fuel injection control device for engineInfo
- Publication number
- JP2001115875A JP2001115875A JP29853299A JP29853299A JP2001115875A JP 2001115875 A JP2001115875 A JP 2001115875A JP 29853299 A JP29853299 A JP 29853299A JP 29853299 A JP29853299 A JP 29853299A JP 2001115875 A JP2001115875 A JP 2001115875A
- Authority
- JP
- Japan
- Prior art keywords
- fuel injection
- injection amount
- engine
- water temperature
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、始動時の黒煙発生
を抑えつつ始動性を良好にできるエンジンの燃料噴射制
御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an engine capable of improving startability while suppressing generation of black smoke at the time of start.
【0002】[0002]
【従来の技術】始動性を向上(エンジンストール防止、
アイドル振動防止等)し、且つ始動時のスモーク(黒
煙)の発生を防止する燃料噴射制御装置として、特開平
8−158912号公報等に記載された技術が知られて
いる。2. Description of the Related Art Startability is improved (to prevent engine stall,
As a fuel injection control device for preventing idle vibration or the like and preventing generation of smoke (black smoke) at the time of starting, a technique described in Japanese Patent Application Laid-Open No. 8-158912 is known.
【0003】この技術は、図5に示すように、アイドル
回転以下において、エンジンストール・アイドル振動等
を回避すべくエンジン回転数の低下に応じて燃料噴射量
を増量する通常時ガバナマップV1と、スタート時(イ
グニションスイッチオン時)の黒煙発生を抑制すべく一
定の燃料噴射量に保持するスタート時ガバナマップV2
と、エンジン回転数の低下に応じて燃料噴射量をマップ
V1よりも低い割合で増量する始動時ガバナマップV3
とを有する。As shown in FIG. 5, this technique uses a normal governor map V1 in which the fuel injection amount is increased in accordance with a decrease in the engine speed in order to avoid an engine stall or idle vibration at idle speed or lower. Governor map at start V2 for maintaining a constant fuel injection amount to suppress the generation of black smoke at the start (when the ignition switch is on)
And the starting governor map V3 in which the fuel injection amount is increased at a lower rate than the map V1 in accordance with the decrease in the engine speed.
And
【0004】そして、スタート時には最も噴射量が少な
いスタート時ガバナマップV2を用いて燃料噴射を行
い、その後エンジン回転数が目標アイドル回転数以下の
場合には始動時ガバナマップV3を用いて燃料噴射を行
い、エンジン回転数が目標アイドル回転数に達したなら
ば通常時ガバナマップV1を用いて燃料噴射を行う。こ
れにより、始動時の黒煙の大量発生を防止できると共に
エンジンストールを防止できる。At the start, fuel injection is performed using the start governor map V2 with the smallest injection amount, and thereafter, when the engine speed is equal to or lower than the target idle speed, fuel injection is performed using the start governor map V3. When the engine speed reaches the target idle speed, fuel injection is performed using the normal governor map V1. As a result, it is possible to prevent a large amount of black smoke from being generated at the time of starting, and to prevent engine stall.
【0005】[0005]
【発明が解決しようとする課題】しかし、この場合、始
動を確保するために用いられる始動時ガバナマップV3
は1本のみであり、エンジンの始動を確保できる噴射量
に設定する必要があるため、黒煙の発生を最小にはでき
ない。すなわち、始動時ガバナマップV3は、エンジン
ストールを確実に回避する都合上、黒煙の発生を最小に
する噴射量よりも多少濃い目に設定する必要があり、黒
煙の発生を最小にするという理想を追及できない。However, in this case, the starting governor map V3 used for securing the starting is used.
Is only one, and it is necessary to set the injection amount so as to ensure the start of the engine, so that the generation of black smoke cannot be minimized. That is, in order to reliably avoid engine stall, the governor map V3 at the start needs to be set to be slightly thicker than the injection amount for minimizing the generation of black smoke. I cannot pursue the ideal.
【0006】また、エンジンを大量生産する場合、燃料
噴射量を制御する部品、例えば燃料噴射ノズルの全てを
同じ噴射特性にすることは不可能であり、製造公差の範
囲で必ずバラツキが生じてしまう。このため、各噴射ノ
ズルを同一の始動時ガバナマップV3に基いて噴射制御
したとしても、噴射ノズルごとに燃料噴射量が多くなっ
たり或いは少なくなったりする可能性があり、始動時黒
煙悪化エンジンや始動性悪化エンジンが生産される虞が
ある。Further, when mass-producing an engine, it is impossible to make all the components for controlling the fuel injection amount, for example, all of the fuel injection nozzles to have the same injection characteristics, and variations always occur within the range of manufacturing tolerance. . For this reason, even if the injection control of each injection nozzle is performed based on the same governor map V3 at the time of start, the fuel injection amount may increase or decrease for each injection nozzle, and the black smoke deterioration engine at the time of start may increase. And an engine with poor startability may be produced.
【0007】また、エンジンの始動性や始動時の黒煙発
生は、始動時の水温や吸気温等によって変化する。この
ため、始動時の水温や吸気温等とは無関係に上記始動時
ガバナマップV3に基いて求めた燃料噴射量では、その
ときの水温や吸気温等にマッチした最適噴射量に対して
過剰または過少となる可能性があり、エンジンの始動性
向上と始動時の黒煙発生防止とを満足させることができ
ない。[0007] The startability of the engine and the generation of black smoke at the start of the engine vary depending on the water temperature and the intake air temperature at the start. For this reason, the fuel injection amount obtained based on the starting governor map V3 irrespective of the water temperature or the intake air temperature at the time of the start is excessive or excessive with respect to the optimum injection amount that matches the water temperature or the intake air temperature at that time. There is a possibility that it will be too small, and it is not possible to improve the startability of the engine and prevent the generation of black smoke at the time of start.
【0008】以上の事情を考慮して創案された本発明の
目的は、始動時の黒煙発生の抑制と良好な始動性の確保
とを確実に両立できるエンジンの燃料噴射制御装置を提
供することにある。SUMMARY OF THE INVENTION An object of the present invention, which has been made in view of the above circumstances, is to provide a fuel injection control device for an engine which can reliably suppress the generation of black smoke at the time of starting and ensure good startability. It is in.
【0009】[0009]
【課題を解決するための手段】上記目的を達成すべく本
発明に係るエンジンの燃料噴射制御装置は、始動時の燃
料噴射量を黒煙発生が問題とならない小噴射量に設定す
る始動時燃料噴射量決定手段と、始動後エンジンが自力
運転可能な所定エンジン回転数に達するまでの間、燃料
噴射量を所定量ずつ増量し続ける始動時燃料噴射量増量
手段とを備えたものである。In order to achieve the above object, a fuel injection control device for an engine according to the present invention provides a starting fuel injection amount which is set to a small injection amount at which black smoke generation is not a problem. An injection amount determining means and a starting fuel injection amount increasing means for continuously increasing the fuel injection amount by a predetermined amount until the engine reaches a predetermined engine speed at which the engine can operate on its own after the start.
【0010】本発明によれば、始動時燃料噴射量決定手
段が、始動時の燃料噴射量を黒煙発生が問題とならない
小噴射量に設定するので、始動時の黒煙発生が抑制され
る。そして、始動時燃料噴射量増量手段が、始動後エン
ジンが自力運転可能な所定エンジン回転数に達するまで
の間、燃料噴射量を所定量ずつ増量するので、良好な始
動性を確保できる。According to the present invention, since the starting fuel injection amount determining means sets the starting fuel injection amount to a small injection amount at which black smoke generation does not pose a problem, the generation of black smoke at startup is suppressed. . Then, the starting fuel injection amount increasing means increases the fuel injection amount by a predetermined amount until the engine reaches a predetermined engine speed at which the engine can operate by itself after the start, so that good startability can be ensured.
【0011】また、上記始動時燃料噴射量増量手段は、
水温・吸気温が高いとき上記所定量を小とし、水温・吸
気温が低いとき上記所定量を大とする第1補正手段を有
することが好ましい。これによれば、第1補正手段が、
始動時の水温・吸気温に応じて最適な燃料増量(所定
量)を設定するので、「黒煙発生」と「始動性」とを高
いレベルで両立できる。Further, the starting fuel injection amount increasing means includes:
It is preferable to have a first correction means for reducing the predetermined amount when the water temperature / intake air temperature is high, and increasing the predetermined amount when the water temperature / intake air temperature is low. According to this, the first correction means:
Since the optimal fuel increase (predetermined amount) is set according to the water temperature and the intake air temperature at the time of starting, "black smoke generation" and "startability" can both be achieved at a high level.
【0012】また、上記始動時燃料噴射量増量手段は、
水温が高いとき上記所定エンジン回転数を小とし、水温
が低いとき上記所定エンジン回転数を大とする第2補正
手段を有することが好ましい。これによれば、第2補正
手段が、始動時の水温に応じて最適な所定エンジン回転
数(自力運転可能な回転数)を設定するので、「黒煙発
生」と「始動性」とを高いレベルで両立できる。Further, the starting fuel injection amount increasing means includes:
It is preferable to have a second correction means for decreasing the predetermined engine speed when the water temperature is high, and increasing the predetermined engine speed when the water temperature is low. According to this, since the second correction means sets the optimum predetermined engine speed (the speed at which the vehicle can operate on its own) in accordance with the water temperature at the time of starting, "black smoke generation" and "startability" are improved. Can be compatible at the level.
【0013】[0013]
【発明の実施の形態】本発明の一実施形態を添付図面に
基いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the accompanying drawings.
【0014】図4は、本実施形態にかかるエンジンの燃
料噴射制御装置が適用されたコモンレール式燃料噴射シ
ステムの概要図である。図示するように、このシステム
にあっては、燃料タンク1内の燃料は、フィルタ2およ
びフィードポンプ3を介して高圧ポンプ4に供給され、
高圧ポンプ4によって高圧(数十〜数百MPa)に昇圧
された後、通路5を介してコモンレール6と呼ばれる蓄
圧容器に供給される。コモンレール6内の燃料は、通路
7を介して各インジェクタ8に供給される。FIG. 4 is a schematic diagram of a common rail fuel injection system to which the engine fuel injection control device according to the present embodiment is applied. As shown, in this system, the fuel in the fuel tank 1 is supplied to a high-pressure pump 4 via a filter 2 and a feed pump 3,
After the pressure is increased to a high pressure (several tens to several hundreds MPa) by the high pressure pump 4, the pressure is supplied to a pressure accumulating vessel called a common rail 6 through a passage 5. Fuel in the common rail 6 is supplied to each injector 8 via a passage 7.
【0015】各インジェクタ8に供給された高圧の燃料
は、電子制御ユニット9(以下ECUという)からの信
号に応じて各インジェクタ8が開閉制御されるに伴っ
て、夫々噴孔から各シリンダ内の燃焼室に噴射される。
そして、余剰な燃料は、通路10を介して燃料タンク1
内に戻る。また、ECU9は、コモンレール6に取り付
けられた圧力センサ11で検出されたコモンレール圧に
基いて高圧ポンプ4の出口圧力を制御し、コモンレール
圧すなわちインジェクタ8の噴射圧力をフィードバック
制御する。The high-pressure fuel supplied to each of the injectors 8 is opened and closed in accordance with a signal from an electronic control unit 9 (hereinafter referred to as an ECU). It is injected into the combustion chamber.
Excess fuel is supplied to the fuel tank 1 via the passage 10.
Return inside. The ECU 9 controls the outlet pressure of the high-pressure pump 4 based on the common rail pressure detected by the pressure sensor 11 attached to the common rail 6, and performs feedback control of the common rail pressure, that is, the injection pressure of the injector 8.
【0016】ECU9には、エンジンの回転速度センサ
12、水温センサ13、吸気温センサ14、スタータス
イッチセンサ15、タイマー16などが接続されてい
る。回転速度センサ12は、エンジンのクランク軸また
はカム軸の回転数(NE:RPM)を検出する。水温セ
ンサ13は、ラジエータの出口部の水温THWを検出す
る。吸気温センサ14は、吸気管内の温度THAを検出
する。スタータスイッチセンサ15は、スタータスイッ
チのオンオフを検出する。タイマー16は、スタータス
イッチオンからの経過時間Tを検出する。The ECU 9 is connected to an engine speed sensor 12, a water temperature sensor 13, an intake air temperature sensor 14, a starter switch sensor 15, a timer 16, and the like. The rotation speed sensor 12 detects the rotation speed (NE: RPM) of the engine crankshaft or camshaft. The water temperature sensor 13 detects a water temperature THW at an outlet of the radiator. The intake air temperature sensor 14 detects the temperature THA in the intake pipe. The starter switch sensor 15 detects ON / OFF of a starter switch. The timer 16 detects an elapsed time T from when the starter switch is turned on.
【0017】ECU9内には、仮に噴射ノズル8が製造
公差の上限値であっても、始動時の燃料噴射量QSTを
黒煙発生が問題とならない小噴射量に設定する始動時燃
料噴射量決定手段17が、プログラムとして内蔵されて
いる。始動時の黒煙発生は、始動時の水温THWおよび
エンジン回転数NEによって変動する。このため、始動
時燃料噴射量決定手段17は、図1のステップ4および
図3に示すように、始動時燃料噴射量QSTをエンジン
回転数NEと水温THWとによって求めるマップ18を
有する。マップ18には、水温THWの低・高に応じて
始動時燃料噴射量QSTを大・小と変化させ、エンジン
回転数NEの低・高に応じて始動時燃料噴射量QSTを
大・小と変化させる特性が書き込まれている。In the ECU 9, even if the injection nozzle 8 is at the upper limit of the manufacturing tolerance, the fuel injection amount QST at the start is set to a small injection amount at which black smoke generation does not matter. Means 17 is incorporated as a program. The generation of black smoke at the time of startup varies depending on the water temperature THW at the time of startup and the engine speed NE. Therefore, the start-time fuel injection amount determining means 17 has a map 18 for obtaining the start-time fuel injection amount QST from the engine speed NE and the coolant temperature THW, as shown in steps 4 and 3 in FIG. The map 18 shows that the starting fuel injection amount QST is changed between large and small according to the low and high water temperature THW, and the starting fuel injection amount QST is set to large and small according to the low and high engine speed NE. The characteristic to be changed is written.
【0018】ECU9内には、始動後エンジンが自力運
転可能な所定エンジン回転数NE1に達するまでの間、
燃料噴射量QSTを所定量ΔQSTずつ増量し続ける始
動時燃料噴射量増量手段19が、プログラムとして内蔵
されている。「始動後エンジンが自力運転可能な所定エ
ンジン回転数NE1」とは、スタータによるクランキン
グ回転からエンジンに火が入り自力運転と判断できる回
転(400〜500rpm程度)のことをいう。In the ECU 9, after the engine is started, a period until the engine reaches a predetermined engine speed NE 1 at which the engine can run on its own.
Start-up fuel injection amount increasing means 19 which continuously increases the fuel injection amount QST by a predetermined amount ΔQST is incorporated as a program. The “predetermined engine speed NE1 at which the engine can be operated by itself after the start” refers to a rotation (about 400 to 500 rpm) at which the engine is ignited from cranking rotation by the starter and the engine can be judged to be operated by itself.
【0019】上記所定量ΔQSTは、始動時の水温TH
Wおよび吸気温THAによって変動させることが望まし
い。このため、始動時燃料噴射量増量手段19は、図1
のステップ8に示すように、上記所定量ΔQSTを吸気
温THAと水温THWとによって決定する第1補正手段
20を有する。第1補正手段20は、吸気温THAの低
・高に応じて所定量ΔQSTを大・小と変化させ、水温
THWの低・高に応じて所定量ΔQSTを大・小と変化
させる特性が書き込まれたマップ(図示せず)を有す
る。The predetermined amount ΔQST is determined by the water temperature TH at the time of starting.
It is desirable to vary with W and the intake air temperature THA. For this reason, the fuel injection amount increasing means 19 at the time of startup is
As shown in step 8, the first correction means 20 for determining the predetermined amount ΔQST based on the intake air temperature THA and the water temperature THW is provided. The first correction means 20 writes the characteristic of changing the predetermined amount ΔQST between large and small according to the low / high of the intake air temperature THA, and changing the predetermined amount ΔQST between large and small according to the low / high of the water temperature THW. (Not shown).
【0020】上記所定エンジン回転数NE1(始動後エ
ンジンが自力運転可能となる回転数)は、始動時の水温
THWによって変動する。このため、始動時燃料噴射量
増量手段19は、図1のステップ6に示すように、上記
所定エンジン回転数NE1を水温THWによって決定す
る第2補正手段21を有する。第2補正手段21は、水
温THWの低・高に応じて所定エンジン回転数NE1を
大・小と変化させる特性が書き込まれたマップ(図示せ
ず)を有する。The predetermined engine speed NE1 (the speed at which the engine can operate on its own after starting) fluctuates depending on the water temperature THW at the time of starting. For this reason, the start-time fuel injection amount increasing means 19 has a second correction means 21 for determining the predetermined engine speed NE1 based on the water temperature THW, as shown in step 6 of FIG. The second correction means 21 has a map (not shown) in which characteristics for changing the predetermined engine speed NE1 between large and small in accordance with the low / high water temperature THW are written.
【0021】ECU9内には、エンジンの始動を検出す
る始動検出手段22が、プログラムとして書き込まれて
いる。始動検出手段22は、図2に示すように、水温T
HWが始動時モード突入水温KTWQSTLより小さい
こと、スタータスイッチST/SWがオンであること、
エンジン回転数NEが500rpm以下であること、の3要件
が満たされたときに始動モードであると判断し、いずれ
かの要件が満たされないときは始動モードではないと判
断する(図1ステップ2参照)。A start detecting means 22 for detecting the start of the engine is written in the ECU 9 as a program. As shown in FIG. 2, the start detecting means 22 detects the water temperature T.
HW is smaller than the starting mode inrush water temperature KTWQSTL, the starter switch ST / SW is on,
It is determined that the engine is in the start mode when the three requirements that the engine speed NE is 500 rpm or less are satisfied, and it is determined that the engine is not in the start mode when any of the requirements is not satisfied (see step 2 in FIG. 1). ).
【0022】以上の構成からなる本実施形態を図1に基
いて説明する。The present embodiment having the above configuration will be described with reference to FIG.
【0023】図1に示すフローチャートは、ECU9内
にプログラムとして書き込まれたものである。まず、ス
テップ1にて、イグニッションキーによりスタータスイ
ッチがオンされてスタートすると、ステップ2にて、始
動検出手段22が図2に基き始動モードであるか否かを
判断する。始動モードであればステップ3に向かい、始
動モードでなければステップ10に向かう。ステップ1
0では、通常運転モードによる噴射量Qの演算が行わ
れ、その噴射量Qで燃料が噴射される。The flowchart shown in FIG. 1 is written as a program in the ECU 9. First, in step 1, when the starter switch is turned on by the ignition key to start, in step 2, it is determined whether or not the start detecting means 22 is in the start mode based on FIG. If it is in the start mode, the procedure proceeds to step 3; otherwise, it proceeds to step 10. Step 1
At 0, the calculation of the injection amount Q in the normal operation mode is performed, and the fuel is injected at the injection amount Q.
【0024】始動モードであると判定された場合に向か
うステップ3では、スタータスイッチがオンされてから
所定時間T1が経過したか否かが、タイマー16の出力
に基いて判断される。所定時間T1は、例えば 0.5〜2
秒程度が設定される。そして、所定時間T1が経過して
なければステップ4に向かい、所定時間T1が経過して
いればステップ6(後述)に向かう。ステップ4では、
図3に示すマップ18により、始動時燃料噴射量QST
が水温THWとエンジン回転数NEとに基いて決定され
る。In step 3 where it is determined that the engine is in the start mode, it is determined based on the output of the timer 16 whether or not a predetermined time T1 has elapsed since the starter switch was turned on. The predetermined time T1 is, for example, 0.5 to 2
Seconds are set. If the predetermined time T1 has not elapsed, the procedure proceeds to step 4, and if the predetermined time T1 has elapsed, the procedure proceeds to step 6 (described later). In step 4,
From the map 18 shown in FIG. 3, the starting fuel injection amount QST
Is determined based on the water temperature THW and the engine speed NE.
【0025】始動時燃料噴射量QSTは、前述したよう
に、噴射ノズル8が製造公差の上限値であっても始動時
の黒煙発生が問題とならない小噴射量(例えば 100〜 1
50mm3 /st)に設定されている。そして、噴射量QST
は、水温THWの低・高またはエンジン回転数NEの低
・高に応じ、大・小と補正される。この補正により、黒
煙の発生が的確に抑制される。この噴射量QSTで燃料
が噴射される。そして、ステップ5にて、今回の始動時
燃料噴射量QSTが前回の始動時燃料噴射量QST(-1)
と置き換えられ、ステップ2に戻る。As described above, the starting fuel injection amount QST is a small injection amount (for example, 100 to 1) in which black smoke generation at the start does not matter even if the injection nozzle 8 is at the upper limit of the manufacturing tolerance.
50 mm 3 / st). And the injection amount QST
Is corrected to be large or small according to the low / high water temperature THW or the low / high engine speed NE. With this correction, the generation of black smoke is accurately suppressed. Fuel is injected with this injection amount QST. Then, in step 5, the current start-time fuel injection amount QST is changed to the previous start-time fuel injection amount QST (-1).
And returns to step 2.
【0026】そして、ステップ2にて、図2に示す始動
検出手段22に基き、エンジン回転数NEが500rpm以上
の場合には、ステップ10に向かい、通常運転モードに
よる噴射量Qの燃料噴射が行われ、エンジン回転数NE
が500rpm未満の場合には、ステップ3に向かう。そし
て、ステップ3、4、5、2のループが所定時間T1ま
で繰り返される間に、ステップ2にて、始動検出手段2
2がエンジン回転数NE=500rpm以上を検出しなけれ
ば、ステップ3からステップ6に向かう。In step 2, based on the start detecting means 22 shown in FIG. 2, if the engine speed NE is 500 rpm or more, the routine proceeds to step 10 where fuel injection of the injection amount Q in the normal operation mode is performed. The engine speed NE
If is less than 500 rpm, go to step 3. Then, while the loop of steps 3, 4, 5, and 2 is repeated until the predetermined time T1, in step 2, the start detecting means 2
If the engine 2 does not detect the engine speed NE = 500 rpm or more, the process proceeds from step 3 to step 6.
【0027】ステップ6では、始動後エンジンが自力運
転可能となる所定エンジン回転数NE1を、水温THW
に基いて決定する。所定エンジン回転数NE1は、前述
したように、例えば400 〜500rpm程度が設定され、水温
THWの低・高に応じ、大・小と補正される。この補正
により、エンスト・アイドル振動等が的確に防止され
る。そして、ステップ7に向かう。ステップ7では、実
際のエンジン回転数NEが所定エンジン回転数NE1以
上であるか否かを判断する。In step 6, a predetermined engine speed NE1 at which the engine can be operated on its own after the start is determined by the water temperature THW.
Determined based on As described above, the predetermined engine speed NE1 is set to, for example, about 400 to 500 rpm, and is corrected to be large or small according to the low / high water temperature THW. By this correction, engine stall / idle vibration and the like are accurately prevented. Then, the procedure proceeds to step 7. In step 7, it is determined whether or not the actual engine speed NE is equal to or higher than the predetermined engine speed NE1.
【0028】ステップ7にて、NE≧NE1がイエスで
あれば、エンジンの始動が適正に完了したことを意味す
る。よって、この場合、後述する燃料噴射量の増量は行
わず、ステップ4に向かい、噴射量QSTで燃料が噴射
される。次に、ステップ5およびステップ2に向かい、
ステップ2(図2参照)にて始動モード判定がNOとな
るまで噴射量QSTの燃料噴射が行われ、始動モード判
定がNOとなればステップ10に向かい、以降ステップ
10とステップ2とを循環し、ステップ10における通
常運転モードによる噴射量Qの燃料噴射が行われる。If it is determined in step 7 that NE ≧ NE1 is YES, it means that the engine has been properly started. Therefore, in this case, the fuel injection amount described below is not increased, and the process proceeds to step 4 and the fuel is injected at the injection amount QST. Next, go to Step 5 and Step 2,
In step 2 (see FIG. 2), fuel injection of the injection amount QST is performed until the start mode determination is NO, and if the start mode determination is NO, the process proceeds to step 10, and thereafter, the flow of steps 10 and 2 is circulated. The fuel injection of the injection amount Q in the normal operation mode in step 10 is performed.
【0029】他方、ステップ7にて、NE≧NE1がノ
オであれば(NE<NE1であれば)、エンジンは始動
せずクランキング状態であることを意味する。この場
合、ステップ8に向かう。ステップ8では、燃料噴射量
増量(所定量)ΔQSTを吸気温THAと水温THWと
に基いて決定する。所定量ΔQSTは、例えば 0.2〜1m
m 3 /stが設定され、吸気温THAの低・高または水温
THWの低・高に応じ、大・小と補正される。この補正
により、黒煙発生の防止と始動時間の短縮とが的確に防
止される。On the other hand, in step 7, if NE ≧ NE1 is NO (if NE <NE1), it means that the engine is not started and is in a cranking state. In this case, go to step 8. In step 8, the fuel injection amount increase (predetermined amount) ΔQST is determined based on the intake air temperature THA and the water temperature THW. The predetermined amount ΔQST is, for example, 0.2 to 1 m
m 3 / st is set, and is corrected to be large or small according to whether the intake air temperature THA is low or high or the water temperature THW is low or high. By this correction, the prevention of the generation of black smoke and the shortening of the starting time are accurately prevented.
【0030】そして、ステップ9に向かう。ステップ9
では、前回の始動時燃料噴射量QST(-1)に上記所定量
ΔQSTを加算し、今回の始動時燃料噴射量QSTを算
出する。詳しくは、単位時間(サンプリングインターバ
ル)当たり、QST(-1)にΔQSTを加えてQSTを算
出し、そのQSTによって燃料噴射を行う。単位時間に
は、例えば16msec(固定)が用いられる。そして、ステ
ップ5を介してステップ2に向かい、始動モード判定
(図2参照)がなされる。ここでエンジン回転数が500r
pm以上であれば、ノオ判定となってステップ10に向か
い、以降通常運転モードによる噴射量Qの噴射が行われ
る。Then, the procedure proceeds to step 9. Step 9
Then, the predetermined amount ΔQST is added to the previous start-time fuel injection amount QST (−1) to calculate the current start-time fuel injection amount QST. Specifically, QST is calculated by adding ΔQST to QST (−1) per unit time (sampling interval), and fuel injection is performed by the QST. As the unit time, for example, 16 msec (fixed) is used. Then, the process proceeds to step 2 via step 5, and a start mode determination (see FIG. 2) is performed. Where the engine speed is 500r
If it is not less than pm, a NO determination is made and the routine proceeds to step 10, whereafter the injection of the injection amount Q in the normal operation mode is performed.
【0031】他方、ステップ2にて、エンジン回転数が
500rpm未満であれば、イエス判定となってステップ3に
向かい、前回すでにT1を越えているのでステップ6に
向かい、再び、水温THWから所定エンジン回転数NE
1を求める。そして、ステップ7にて、再び、実際のエ
ンジン回転数NEが所定エンジン回転数NE1以上であ
るか否かを判断する(NE≧NE1)。これがイエスな
ら、エンジンの始動は適正に完了したことを意味するの
で、この場合、所定量ΔQSTによる増量は行わずステ
ップ4に向かい、噴射量QSTで燃料が噴射される。次
に、ステップ5およびステップ2に向かい、ステップ2
(図2参照)にて始動モード判定がNOとなるまで噴射
量QSTの燃料噴射が行われ、始動モード判定がNOと
なればステップ10に向かい、以降通常運転モードによ
る噴射量Qの噴射が行われる。On the other hand, in step 2, the engine speed is
If it is less than 500 rpm, the determination is yes and the process proceeds to step 3, and since it has already exceeded T1, the process proceeds to step 6, and the predetermined engine speed NE is again determined from the water temperature THW.
Find 1 Then, in step 7, it is determined again whether the actual engine speed NE is equal to or higher than the predetermined engine speed NE1 (NE ≧ NE1). If this is the case, it means that the start of the engine has been properly completed. In this case, the fuel is injected at the injection amount QST without going up to the predetermined amount ΔQST and proceeding to step 4. Next, go to step 5 and step 2 and step 2
In FIG. 2, the fuel injection of the injection amount QST is performed until the start mode determination is NO, and if the start mode determination is NO, the process proceeds to step 10 and thereafter the injection of the injection amount Q in the normal operation mode is performed. Will be
【0032】ステップ7にて、NE≧NE1がノオなら
(NE<NE1なら)、エンジンは未だ始動せずクラン
キング状態であることを意味するので、この場合、ステ
ップ8に向かい、再び燃料噴射量増量(所定量)ΔQS
T( 0.2〜1mm 3 /st)を吸気温THAと水温THWと
に基いて決定する。そして、ステップ9にて、再び前回
の始動時燃料噴射量QST(-1)に上記所定量ΔQSTを
加算し、今回の始動時燃料噴射量QSTを算出し、その
QSTによって燃料噴射を行う。そして、ステップ5を
介してステップ2に向かい、始動モード判定(図2参
照)がなされる。ここでエンジン回転数が500rpm以上で
あれば、ノオ判定となってステップ10に向かい、以降
通常運転モードによる噴射量Qの噴射が行われる。In step 7, if NE ≧ NE1 is NO (if NE <NE1), it means that the engine has not started yet and is in the cranking state. Increase (predetermined amount) ΔQS
T (0.2 to 1 mm 3 / st) is determined based on the intake air temperature THA and the water temperature THW. Then, in step 9, the above-mentioned predetermined amount ΔQST is again added to the previous start-time fuel injection amount QST (-1) to calculate the current start-time fuel injection amount QST, and fuel injection is performed based on the QST. Then, the process proceeds to step 2 via step 5, and a start mode determination (see FIG. 2) is performed. If the engine speed is 500 rpm or more, a NO determination is made, and the routine proceeds to step 10, whereafter the injection of the injection amount Q in the normal operation mode is performed.
【0033】ステップ2にて、エンジン回転数が500rpm
未満であれば、イエス判定となってステップ3に向か
い、前回すでにT1を越えているので再びステップ6に
向かい、以降、ステップ7、8、9、5、2、3、6の
ループが、ステップ2にて始動モード判定がノオとなる
か又はステップ7にてNE≧NE1がイエスとなるまで
繰り返される。これにより、エンジンが始動するまで、
ステップ9に則って燃料噴射量QSTが前回噴射量QS
T(-1)に所定量ΔQSTが加算され続ける。このため、
最終的には、必ずエンジンが始動可能な燃料噴射量とな
る。In step 2, the engine speed is 500 rpm
If the difference is less than T1, the procedure goes to step 3 and the procedure has already exceeded T1, so the procedure goes to step 6 again. Thereafter, the loop of steps 7, 8, 9, 5, 2, 3, and 6 is repeated The process is repeated until the start mode determination is NO at 2 or NE ≧ NE1 is YES at step 7. This allows the engine to start
According to step 9, the fuel injection amount QST is
The predetermined amount ΔQST continues to be added to T (−1). For this reason,
Ultimately, the fuel injection amount is such that the engine can be started.
【0034】以上説明したように、本実施形態によれ
ば、ECU9内の始動時燃料噴射量決定手段17が、始
動時の燃料噴射量QSTを黒煙発生が問題とならない小
噴射量に設定するので、噴射ノズル8の製造公差内のバ
ラツキに拘らず、始動時の黒煙発生が抑制される。そし
て、ECU9内の始動時燃料噴射量増量手段19が、始
動後エンジンが自力運転可能な所定エンジン回転数NE
1に達するまでの間、燃料噴射量QSTを所定量ΔQS
Tずつ増量するので、噴射ノズル8の製造公差内のバラ
ツキに拘らず、良好な始動性を確保できる。すなわち、
本実施形態によれば、従来両立させることが困難であっ
た、「始動時の黒煙発生が抑制」と「始動性の良好化」
とを、噴射ノズル8の製造公差内のバラツキに拘らず、
確実に両立させることができる。As described above, according to the present embodiment, the starting fuel injection amount determining means 17 in the ECU 9 sets the starting fuel injection amount QST to a small injection amount at which black smoke generation does not matter. Therefore, regardless of the variation in the manufacturing tolerance of the injection nozzle 8, the generation of black smoke at startup is suppressed. Then, the starting fuel injection amount increasing means 19 in the ECU 9 is provided with a predetermined engine speed NE at which the engine can be operated by itself after the start.
1 until the fuel injection amount QST reaches a predetermined amount ΔQS
Since the amount is increased by T, good startability can be ensured irrespective of the variation in the manufacturing tolerance of the injection nozzle 8. That is,
According to the present embodiment, it has been difficult to achieve both at the same time.
And irrespective of the variation within the manufacturing tolerance of the injection nozzle 8,
Both can be surely achieved.
【0035】また、上記始動時燃料噴射量増量手段19
は、水温THW・吸気温THAが高いとき上記所定量Δ
QSTを小とし、水温THW・吸気温THAが低いとき
上記所定量ΔQSTを大とする第1補正手段20を有す
るので、始動時の水温THW・吸気温THAに応じて最
適な燃料増量(所定量)ΔQSTを設定でき、前記「黒
煙発生」と「始動性」とを高いレベルで両立できる。す
なわち、水温THW・吸気温THAが低いときには、所
定量ΔQSTを大とすることにより、エンジンの始動時
間の短縮化を図り、水温THW・吸気温THAが高いと
きには、所定量ΔQSTを小とすることにより、始動時
の黒煙発生の抑制を図ることができる。Further, the starting fuel injection amount increasing means 19 is provided.
Is the predetermined amount Δ when the water temperature THW and the intake air temperature THA are high.
Since the first correction means 20 increases the predetermined amount ΔQST when the water temperature THW and the intake air temperature THA are low when the water temperature THW and the intake air temperature THA are low, an optimal fuel increase (predetermined amount) according to the water temperature THW and the intake air temperature THA at startup ) ΔQST can be set, and “the generation of black smoke” and “startability” can be compatible at a high level. That is, when the water temperature THW and the intake air temperature THA are low, the predetermined amount ΔQST is made large to shorten the engine start time, and when the water temperature THW and the intake air temperature THA are high, the predetermined amount ΔQST is made small. Accordingly, it is possible to suppress the generation of black smoke at the time of starting.
【0036】また、上記始動時燃料噴射量増量手段19
は、水温THWが高いとき上記所定エンジン回転数NE
1を小とし、水温THWが低いとき上記所定エンジン回
転数NE1を大とする第2補正手段21を有するので、
始動時の水温THWに応じて最適な所定エンジン回転数
NE1(自力運転可能な回転数)を設定でき、前記「黒
煙発生」と「始動性」とを高いレベルで両立できる。す
なわち、水温THWが低いときには、所定エンジン回転
数NE1を大とすることにより、冷間スタート時のアイ
ドル安定性を高めることができ、水温THWが高いとき
には、所定エンジン回転数NE1を小とすることによ
り、温間スタート時の黒煙発生を抑制できる。The starting fuel injection amount increasing means 19
Is the predetermined engine speed NE when the water temperature THW is high.
1 is small, and the second correction means 21 increases the predetermined engine speed NE1 when the water temperature THW is low.
The optimum predetermined engine speed NE1 (the speed at which the vehicle can operate on its own) can be set in accordance with the water temperature THW at the time of starting, and the "black smoke generation" and the "startability" can both be achieved at a high level. That is, when the water temperature THW is low, the idling stability at the time of a cold start can be increased by increasing the predetermined engine speed NE1, and when the water temperature THW is high, the predetermined engine speed NE1 is decreased. Thereby, generation of black smoke at the time of a warm start can be suppressed.
【0037】なお、本発明は、図4に示すコモンレール
式燃料噴射システムに限定されることはなく、分配式の
ディーゼル又はガソリンエンジンの燃料噴射システムに
も適用できる。The present invention is not limited to the common rail type fuel injection system shown in FIG. 4, but can be applied to a distribution type diesel or gasoline engine fuel injection system.
【0038】[0038]
【発明の効果】以上説明したように本発明に係るエンジ
ンの燃料噴射制御装置によれば、始動時の黒煙発生の抑
制と良好な始動性の確保とを、噴射ノズルの製造公差内
のバラツキに拘らず、確実に両立することができる。As described above, according to the fuel injection control apparatus for an engine according to the present invention, it is possible to suppress the generation of black smoke at the time of starting and to ensure the good startability by the variation within the manufacturing tolerance of the injection nozzle. Regardless, it is possible to reliably achieve both.
【図1】本発明の一実施形態を示すエンジンの燃料噴射
制御装置による燃料噴射の手順を示す流れ図である。FIG. 1 is a flowchart showing a procedure of fuel injection by an engine fuel injection control device according to an embodiment of the present invention.
【図2】上記燃料噴射制御装置の始動検出手段の概要図
である。FIG. 2 is a schematic diagram of a start detection unit of the fuel injection control device.
【図3】上記燃料噴射制御装置の始動時燃料噴射量QS
Tを決定するマップを示す図である。FIG. 3 is a starting fuel injection amount QS of the fuel injection control device;
It is a figure showing a map which determines T.
【図4】上記燃料噴射制御装置が適用されるコモンレー
ル式燃料噴射システムを示す概要図である。FIG. 4 is a schematic diagram showing a common rail type fuel injection system to which the fuel injection control device is applied.
【図5】従来例を示す説明図である。FIG. 5 is an explanatory view showing a conventional example.
17 始動時燃料噴射量決定手段 19 始動時燃料噴射量増量手段 20 第1補正手段 21 第2補正手段 QST 始動時燃料噴射量 ΔQST 燃料噴射増量(所定量) NE エンジン回転数 NE1 所定エンジン回転数 THW 水温 THA 吸気温 ST/SW スタータスイッチ T タイマー 17 Start-up fuel injection amount determining means 19 Start-up fuel injection amount increasing means 20 First correction means 21 Second correction means QST Starting fuel injection amount ΔQST Fuel injection increase (predetermined amount) NE engine speed NE1 predetermined engine speed THW Water temperature THA Intake temperature ST / SW Starter switch T Timer
Claims (3)
ならない小噴射量に設定する始動時燃料噴射量決定手段
と、始動後エンジンが自力運転可能な所定エンジン回転
数に達するまでの間、燃料噴射量を所定量ずつ増量し続
ける始動時燃料噴射量増量手段とを備えたことを特徴と
するエンジンの燃料噴射制御装置。1. A starting fuel injection amount determining means for setting a starting fuel injection amount to a small injection amount at which black smoke generation does not pose a problem, and a method for determining whether or not the engine reaches a predetermined engine speed at which the engine can operate on its own. A start-up fuel injection amount increasing means for continuously increasing the fuel injection amount by a predetermined amount during the period.
・吸気温が高いとき上記所定量を小とし、水温・吸気温
が低いとき上記所定量を大とする第1補正手段を有する
請求項1記載のエンジンの燃料噴射制御装置。2. The starting fuel injection amount increasing means includes first correction means for decreasing the predetermined amount when the water temperature / intake air temperature is high, and increasing the predetermined amount when the water temperature / intake air temperature is low. Item 2. An engine fuel injection control device according to Item 1.
が高いとき上記所定エンジン回転数を小とし、水温が低
いとき上記所定エンジン回転数を大とする第2補正手段
を有する請求項1乃至2記載のエンジンの燃料噴射制御
装置。3. The starting fuel injection amount increasing means includes a second correction means for reducing the predetermined engine speed when the water temperature is high, and increasing the predetermined engine speed when the water temperature is low. 3. The fuel injection control device for an engine according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29853299A JP4258077B2 (en) | 1999-10-20 | 1999-10-20 | Engine fuel injection control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29853299A JP4258077B2 (en) | 1999-10-20 | 1999-10-20 | Engine fuel injection control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001115875A true JP2001115875A (en) | 2001-04-24 |
JP4258077B2 JP4258077B2 (en) | 2009-04-30 |
Family
ID=17860957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29853299A Expired - Fee Related JP4258077B2 (en) | 1999-10-20 | 1999-10-20 | Engine fuel injection control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258077B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015113793A (en) * | 2013-12-13 | 2015-06-22 | ボルボトラックコーポレーション | Vehicle controller |
-
1999
- 1999-10-20 JP JP29853299A patent/JP4258077B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015113793A (en) * | 2013-12-13 | 2015-06-22 | ボルボトラックコーポレーション | Vehicle controller |
Also Published As
Publication number | Publication date |
---|---|
JP4258077B2 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003074397A (en) | Accumulator type fuel injection system | |
JPH08100692A (en) | Control device for starting time injection quantity for internal combustion engine | |
JP4258077B2 (en) | Engine fuel injection control device | |
JP3533989B2 (en) | Fuel injection control device for in-cylinder injection spark ignition internal combustion engine | |
JP3191741B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3864630B2 (en) | Fuel injection system for diesel engine | |
JPH08177552A (en) | Fuel injection control device for internal combustion engine | |
JP4560997B2 (en) | Engine control device | |
JP3334403B2 (en) | Start determination device for internal combustion engine | |
JP7555677B2 (en) | Control device for internal combustion engine | |
KR100746817B1 (en) | Method for controlling pre- injection of fuel of car | |
JP2011012587A (en) | Start control device for internal combustion engine | |
KR100427066B1 (en) | Cooling start improving method | |
JP3630034B2 (en) | Engine start control device | |
JPH0693903A (en) | Fuel injection controller | |
JPS6217337A (en) | Method of controlling air fuel ratio of internal-combustion engine | |
JPH05288099A (en) | Fuel control device for internal combustion engine | |
KR20000039059A (en) | Method for preventing flooding of spark plug for securing restart in case of cold engine | |
JPH055439A (en) | Fuel injection device for engine | |
KR100588543B1 (en) | A fuel injection capacity control method when acceleration of engine | |
JPH11159373A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6255433A (en) | Fuel injection controller | |
JPH1113588A (en) | Fuel injection control device for accumulator type engine | |
JP2004100592A (en) | Fuel injection control unit of internal combustion engine | |
JPH04109044A (en) | Fuel control device for engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060421 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080829 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081121 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20090113 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |