JP2001111043A - Manufacturing method of mos fet - Google Patents

Manufacturing method of mos fet

Info

Publication number
JP2001111043A
JP2001111043A JP28570699A JP28570699A JP2001111043A JP 2001111043 A JP2001111043 A JP 2001111043A JP 28570699 A JP28570699 A JP 28570699A JP 28570699 A JP28570699 A JP 28570699A JP 2001111043 A JP2001111043 A JP 2001111043A
Authority
JP
Japan
Prior art keywords
layer
drift channel
manufacturing
channel layer
valley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28570699A
Other languages
Japanese (ja)
Inventor
Minoru Nakaya
実 仲矢
Hidehisa Awataguchi
英久 粟田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP28570699A priority Critical patent/JP2001111043A/en
Publication of JP2001111043A publication Critical patent/JP2001111043A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a comb-shaped horizontal DMOS FET which can increase flexibility in voltage breakdown design while preventing increase in chip area and also in the number of its manufacturing steps. SOLUTION: In the method for manufacturing a MOS FET, a drain layer, a drift channel layer, a gate electrode and a source layer from a comb shape which has a linear part, a curved tip end and a valley part, and are formed in this order sequentially from a center so as to surround their peripheries. The drift channel layer is formed in an identical step which can individually set impurity concentrations of the linear part, tip end and valley part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MOSFETの製
造方法に関し、特に横型2重拡散MOSFET(以下、
横型DMOSFETと記す)の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOSFET, and more particularly to a lateral double diffusion MOSFET (hereinafter, referred to as a lateral double diffusion MOSFET).
Horizontal DMOSFET).

【0002】[0002]

【従来の技術】近年の携帯電子機器の普及、OA機器の
低消費電力化のため、より一層のスイッチング電源の小
型化、軽量化、低消費電力化、高信頼性が求められてい
る。このため、出力30W程度のスイッチング電源で
は、パワーMOSFETとPWM制御・保護補償機能を
集積したインテリジェントパワーICを搭載した電源装
置がある。
2. Description of the Related Art In recent years, in order to spread portable electronic devices and reduce power consumption of OA devices, further reduction in size, weight, power consumption, and reliability of switching power supplies have been required. For this reason, as a switching power supply having an output of about 30 W, there is a power supply device equipped with an intelligent power IC in which a power MOSFET and a PWM control / protection compensation function are integrated.

【0003】一般的にインテリジェントパワーICは、
スイッチングを行うパワーMOSFETとこれを制御す
る制御回路は同一シリコン基板内に作り込まれ、パワー
MOSFET自身はシリコン基板電位が接地される横型
DMOSFETが採用される。
[0003] Generally, intelligent power ICs
A power MOSFET for switching and a control circuit for controlling the power MOSFET are formed in the same silicon substrate, and the power MOSFET itself employs a horizontal DMOSFET whose silicon substrate potential is grounded.

【0004】そして、スイッチング電源に使用されるイ
ンテリジェントパワーICにおいては、横型DMOSF
ETのオン抵抗を低くする必要があるため、ゲートの幅
を長くしてドレイン電流の経路を確保するように、横型
DMOSFETを櫛形に接続した構造とする場合があ
る。
[0004] In an intelligent power IC used for a switching power supply, a horizontal DMMOS is used.
Since it is necessary to reduce the on-resistance of the ET, a structure in which a lateral DMOSFET is connected in a comb shape may be used to increase the gate width and secure a drain current path.

【0005】以下に、図面を用いて従来の横型DMOS
FETの製造方法を説明する。図5は、従来の横型DM
OSFETの構成を示す平面図であり、図6(a),図
6(b),図6(c)は、それぞれ図5のA−A‘断面
図、B−B’断面図、C−C‘断面図である。
Hereinafter, a conventional lateral DMOS will be described with reference to the drawings.
A method for manufacturing an FET will be described. FIG. 5 shows a conventional horizontal DM.
6A, 6B, and 6C are cross-sectional views taken along the line AA ', the line BB', and the line CC of FIG. 5, respectively. FIG.

【0006】図5において、横型DMOSFETは、ド
レイン電極1、ドリフトチャネル層2、ゲート電極3、
ソース電極4が、それぞれが互いの周囲を囲むように中
心より順に櫛状に形成されている。
In FIG. 5, a lateral DMOSFET includes a drain electrode 1, a drift channel layer 2, a gate electrode 3,
The source electrodes 4 are formed in a comb shape in order from the center so as to surround each other.

【0007】そして、櫛状の横型DMOSFETは、平
面上に曲率を有する半円状の先端部5と中心部が欠落し
た半円状の谷部6、そして先端部5と谷部6との間に直
線部7を形成している。
The comb-shaped lateral DMOSFET has a semicircular tip 5 having a curvature on a plane, a semicircular valley 6 with a missing central portion, and a gap between the tip 5 and the valley 6. The linear part 7 is formed.

【0008】図5、図6(a)〜(c)において、ま
ず、低濃度のP型(以下P-と記す)半導体基板8に、
低濃度のN型(以下N-と記す)のドリフトチャネル層
2をイオン注入することによって櫛状に形成し、次にP
型の半導体層であるPベース20をイオン注入によって
ドリフトチャネル層2を取り囲むように離間して櫛状に
形成する。
In FIGS. 5 and 6A to 6 C, first, a low-concentration P-type (hereinafter referred to as P ) semiconductor substrate 8 is
A low-concentration N-type (hereinafter referred to as N ) drift channel layer 2 is formed in a comb shape by ion implantation,
A P-type base 20, which is a semiconductor layer of a mold, is formed in a comb shape by ion implantation so as to be spaced around the drift channel layer 2.

【0009】次に、P-のPドリフト層21を、谷部の
ドリフトチャネル層2とPベース20の間に、中心部が
欠落した半円状にイオン注入することによって形成す
る。
Next, a P P drift layer 21 is formed between the drift channel layer 2 at the valley portion and the P base 20 by ion implantation in a semicircular shape with a central portion missing.

【0010】次に、選択酸化により厚い酸化膜であるL
OCOS22を、先端部5と直線部7においてはドリフ
トチャネル層2の上部に、谷部6においてはドリフトチ
ャネル層2とPベース20の間に櫛状に形成し、ゲート
酸化膜30とゲート電極3をPベース20上に順次形成
する。
Next, L which is a thick oxide film by selective oxidation is formed.
The OCOS 22 is formed in a comb shape between the drift channel layer 2 and the P base 20 in the valley 6 at the tip portion 5 and the straight portion 7, and in the valley 6, the gate oxide film 30 and the gate electrode 3 are formed. Are sequentially formed on the P base 20.

【0011】そして、N+のソース層40と、このソー
ス層40を半導体基板8にショートさせるP+半導体層
41とを、Pベース20の表面にイオン注入によって谷
部6で曲率を持つように櫛状に形成し(2重拡散)、N
+のドレイン層10をドリフトチャネル層2の表面にイ
オン注入によって先端部で曲率を持つように櫛状に形成
する。
Then, the N + source layer 40 and the P + semiconductor layer 41 for short-circuiting the source layer 40 to the semiconductor substrate 8 are ion-implanted into the surface of the P base 20 so as to have a curvature at the valley 6. Formed in a comb shape (double diffusion), N
The + drain layer 10 is formed in a comb shape by ion implantation into the surface of the drift channel layer 2 so as to have a curvature at the tip.

【0012】そして、ソース電極4をソース層40の上
に、ドレイン電極1をドレイン層10の上に、例えばス
パッタリングしたアルミなどをフォトエッチングするこ
とにより形成する。
Then, the source electrode 4 is formed on the source layer 40 and the drain electrode 1 is formed on the drain layer 10 by, for example, photo-etching of sputtered aluminum or the like.

【0013】[0013]

【発明が解決しようとする課題】しかし、このような櫛
型の横型DMOSFETの製造方法においては次のよう
な問題点があった。
However, the method of manufacturing such a comb-shaped lateral DMOSFET has the following problems.

【0014】先端部5ではドレイン層10の曲率の影響
でドリフトチャネル層2の濃度が低い場合はドレイン層
10の近傍で電界集中を起こしやすい。従って、先端部
5のドリフトチャネル長Ldを、直線部7のドリフトチ
ャネル長Lよりも長くして、このドレイン層10の近傍
の電界集中を回避し、ソースとドレイン間の耐圧(以
下、耐圧と記す)を確保している。
At the tip 5, when the concentration of the drift channel layer 2 is low due to the influence of the curvature of the drain layer 10, electric field concentration is likely to occur near the drain layer 10. Therefore, the drift channel length Ld of the tip portion 5 is made longer than the drift channel length L of the linear portion 7 to avoid the electric field concentration near the drain layer 10 and to withstand the voltage between the source and the drain (hereinafter referred to as the withstand voltage). Note) is secured.

【0015】しかし、先端部5のドリフトチャネル長L
dを直線部7のドリフトチャネル長Lよりも長くするこ
とは、チップ面積を増大させ、結果としてコストを高め
てしまうという問題点があった。
However, the drift channel length L of the tip 5
Making d longer than the drift channel length L of the linear portion 7 increases the chip area, and consequently raises the cost.

【0016】また、谷部6では、ドリフトチャネル層2
を先端部5と同様に配置し、オン抵抗を下げるためにそ
の濃度を高くすると、ソース層40の曲率の影響によ
り、ソース層40の近傍で電界集中を起こしやすく、耐
圧が低下する。この影響を除去することを目的に、Pド
リフト層21を設けて、ソース層40近傍の電界集中を
緩和している。
In the valley 6, the drift channel layer 2
Are arranged in the same manner as the tip portion 5, and when the concentration is increased in order to reduce the on-resistance, electric field concentration is likely to occur near the source layer 40 due to the influence of the curvature of the source layer 40, and the breakdown voltage is reduced. For the purpose of removing this effect, the P drift layer 21 is provided to reduce the electric field concentration near the source layer 40.

【0017】しかし、Pドリフト層21は、他の領域と
同時に形成することができず、単独の製造工程を追加し
て形成されるため、結果としてコストが高くなるという
問題点があった。
However, the P drift layer 21 cannot be formed at the same time as the other regions, and is formed by adding a single manufacturing process. As a result, there is a problem that the cost is increased.

【0018】さらに、図7を用いて従来の横型DMOS
FETの問題点を説明する。図7は、ドリフトチャネル
層2へのイオン注入量と先端部5、谷部6、直線部7そ
れぞれの場所における耐圧の関係をコンピューターシミ
ュレーションした結果を示す特性曲線図である。
Further, referring to FIG. 7, a conventional horizontal DMOS
The problem of the FET will be described. FIG. 7 is a characteristic curve diagram showing the result of computer simulation of the relationship between the amount of ions implanted into the drift channel layer 2 and the breakdown voltage at each of the tip 5, valley 6, and linear portion 7.

【0019】シミュレーション条件は、半導体基板8の
不純物濃度は5×1013[cm-3]で、Pベース20の表
面濃度は約1×1017[cm-3]で、その接合深さは5u
mである。また、谷部6のソース層40の曲率は20、
先端部5のドレイン層10の曲率は15である。
The simulation conditions are as follows: the impurity concentration of the semiconductor substrate 8 is 5 × 10 13 [cm −3 ], the surface concentration of the P base 20 is about 1 × 10 17 [cm −3 ], and the junction depth is 5 u.
m. The curvature of the source layer 40 in the valley 6 is 20,
The curvature of the drain layer 10 at the tip 5 is 15.

【0020】図7において、先端部5ではイオン注入量
が2.1×1012[cm-3]、谷部6では2.35×10
12[cm-3]、直線部7では1.2×1012[cm-3]、の
ポイントでそれぞれの場所における耐圧の最大値が存在
することが分かる。
In FIG. 7, the amount of ion implantation is 2.1 × 10 12 [cm −3 ] at the tip 5 and 2.35 × 10 2 at the valley 6.
12 [cm -3], the linear portion 7 at 1.2 × 10 12 [cm -3] , it can be seen that at the point of presence is the maximum value of the withstand voltage at each location.

【0021】従って、ドリフトチャネル層2へのイオン
注入を先端部5、谷部6、直線部7、の3回に分けて行
い、それぞれの不純物濃度を個別に設定すれば、素子全
体の耐圧をより高くすることができ、上述のようなチッ
プ面積の増大を防ぐことができる。
Therefore, if the ion implantation into the drift channel layer 2 is performed in three steps of the tip part 5, the valley part 6, and the linear part 7, and the respective impurity concentrations are individually set, the breakdown voltage of the entire device can be reduced. The height can be increased, and the increase in the chip area as described above can be prevented.

【0022】しかし、ドリフトチャネル層2へのイオン
注入を複数回に分けて行った場合は、その製造工程が増
えてしまう。従って、従来はドリフトチャネル層2の先
端部5、谷部6、直線部7を全て同一の不純物濃度とな
るように1回のイオン注入で形成していた。
However, if the ion implantation into the drift channel layer 2 is performed in a plurality of times, the number of manufacturing steps increases. Therefore, conventionally, the tip portion 5, the valley portion 6, and the straight portion 7 of the drift channel layer 2 are formed by one ion implantation so as to have the same impurity concentration.

【0023】その結果、素子の耐圧は、設定されたイオ
ン注入量に対する先端部5、谷部6、直線部7の最低耐
圧で決定され、耐圧を設計する自由度が小さくなるとい
う問題点があった。
As a result, the breakdown voltage of the element is determined by the minimum breakdown voltage of the tip 5, the valley 6, and the linear portion 7 with respect to the set ion implantation amount, and there is a problem that the degree of freedom in designing the breakdown voltage is reduced. Was.

【0024】例えば、図7において、イオン注入量を
1.2×1012[cm-3]とした場合の耐圧は、先端部5
では約720V、谷部6では約780V、直線部では約
700Vとなり、そのそし最低耐圧である約700V
が、その素子の耐圧となる。
For example, in FIG. 7, when the ion implantation amount is 1.2 × 10 12 [cm −3 ], the breakdown voltage is
About 720V, about 780V at the valley 6 and about 700V at the straight section, and the minimum withstand voltage of about 700V
Is the breakdown voltage of the element.

【0025】本発明は上述した問題点を解決するために
なされたものであり、同一工程において、ドリフトチャ
ネル層の先端部5、谷部6、直線部7の不純物濃度を個
別に設定するプロセスを実現することにより、チップ面
積を増大させず、またその製造工程を増加させずに耐圧
設計の自由度を増した櫛型の横型DMOSFETの製造
方法を提供することを目的とする。
The present invention has been made in order to solve the above-described problems. In the same step, a process for individually setting the impurity concentrations of the tip portion 5, the valley portion 6, and the linear portion 7 of the drift channel layer is described. An object of the present invention is to provide a method of manufacturing a comb-type lateral DMOSFET in which the degree of freedom in withstand voltage design is increased without increasing the chip area and without increasing the number of manufacturing steps.

【0026】[0026]

【課題を解決するための手段】本発明の請求項1におい
ては、ドレイン層、ドリフトチャネル層、ゲート電極、
ソース層が直線部と曲率を有する先端部及び谷部とを有
する櫛状をなし、互いの周囲を囲むように中心より順に
前記ドレイン層、前記ドリフトチャネル層、前記ゲート
電極、前記ソース層を形成するMOSFETの製造方法
において、前記ドリフトチャネル層を、前記直線部と前
記先端部と前記谷部の不純物濃度が個別に設定可能な同
一工程で形成することを特徴とするMOSFETの製造
方法である。
According to the first aspect of the present invention, a drain layer, a drift channel layer, a gate electrode,
The source layer has a comb shape having a linear portion and a tip portion and a valley portion having a curvature, and the drain layer, the drift channel layer, the gate electrode, and the source layer are formed in order from the center so as to surround each other. The drift channel layer is formed in the same step in which the impurity concentration of the linear portion, the tip portion, and the valley portion can be individually set.

【0027】本発明の請求項2においては、前記同一工
程は、部分的に半透明なフォトマスクを使用したフォト
工程を含むことを特徴とする請求項1記載のMOSFE
Tの製造方法である。
According to a second aspect of the present invention, the same step includes a photostep using a partially translucent photomask.
This is a manufacturing method of T.

【0028】本発明の請求項3においては、前記フォト
マスクは、部分的に遮光性部材をモザイク上に配置して
なることを特徴とする請求項2記載のMOSFETの製
造方法である。
According to a third aspect of the present invention, there is provided the method for manufacturing a MOSFET according to the second aspect, wherein the photomask has a light-shielding member partially arranged on a mosaic.

【0029】本発明の請求項4においては、前記同一工
程は、前記ドリフトチャネル層の前記直線部を形成する
直線形成部が半透明であるフォトマスクを使用したフォ
ト工程を含むことを特徴とする請求項1記載のMOSF
ETの製造方法である。
According to a fourth aspect of the present invention, the same step includes a photo step using a photomask in which a straight line forming portion forming the straight line portion of the drift channel layer is translucent. MOSF according to claim 1
It is a manufacturing method of ET.

【0030】本発明の請求項5においては、前記フォト
マスクは、前記ドリフトチャネル層の前記直線部を形成
する直線形成部に遮光性部材をモザイク状に配置してな
ることを特徴とする請求項4記載のMOSFETの製造
方法である。
According to a fifth aspect of the present invention, in the photomask, a light-shielding member is arranged in a mosaic shape in a straight line forming portion of the drift channel layer that forms the straight line portion. 5. A method for manufacturing a MOSFET according to item 4.

【0031】[0031]

【発明の実施の形態】次に、本発明の実施例について図
面を用いて説明する。尚、以下の図面において、図5〜
図7と重複する部分は同一番号を付してその説明は適宜
に省略する。図1は、本発明の一実施例の構成を示すド
リフトチャネル層形成用のフォトマスクの平面図であ
る。図2は、本発明により製造された横型DMOSFE
Tの平面図である。図3は、図2に示した横型DMOS
FETのb−b‘断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. In the following drawings, FIGS.
The same parts as those in FIG. 7 are denoted by the same reference numerals, and the description thereof will be appropriately omitted. FIG. 1 is a plan view of a photomask for forming a drift channel layer showing the configuration of one embodiment of the present invention. FIG. 2 shows a lateral DMOSFE manufactured according to the present invention.
It is a top view of T. FIG. 3 shows the horizontal DMOS shown in FIG.
It is bb 'sectional drawing of FET.

【0032】図1において、ドリフトチャネル層2の先
端部5を形成するフォトマスクの先端形成部50は、中
心部が欠落した半円状に白抜きとなっており、ドリフト
チャネル層2の直線部7を形成する直線形成部70は、
四角形の遮光性部材12がモザイク状に配置されてお
り、半透明になっている。尚、遮光性部材12の形状は
四角形に限定されるものではなく、任意の形状とするこ
とができる。そして、先端形成部50の幅d1と直線形
成部70の幅d2の長さは等しくなっている。
In FIG. 1, the tip forming portion 50 of the photomask forming the tip 5 of the drift channel layer 2 is outlined in a semicircular shape with a center portion missing, and the straight portion of the drift channel layer 2 is formed. 7, the straight line forming part 70
The rectangular light-shielding members 12 are arranged in a mosaic shape and are translucent. The shape of the light-shielding member 12 is not limited to a quadrangle, but may be any shape. The width d1 of the tip forming portion 50 and the length d2 of the straight line forming portion 70 are equal.

【0033】そして、ドリフトチャネル層2の谷部6を
形成するフォトマスクの谷形成部60は、ドレイン形成
部11と接する部分が、中心部が欠落して幅d3を持っ
た半円状に白抜きとなっており、ドレイン形成部11
と、先端形成部50と、谷形成部60と、直線形成部7
0とを取り囲む領域には遮光性部材12が高密度に形成
されており、全面的に遮光性を持たせている。
In the trough forming portion 60 of the photomask forming the trough 6 of the drift channel layer 2, the portion in contact with the drain forming portion 11 is formed in a semicircular white shape having a width d 3 with a center portion being omitted. The drain forming portion 11
, Tip forming section 50, valley forming section 60, and straight line forming section 7
The light-shielding member 12 is formed at a high density in a region surrounding 0 and has light-shielding properties over the entire surface.

【0034】このようなフォトマスクを使用したフォト
工程により、半導体基板8上に先端部5が白抜きで、直
線部7が半透明で、谷部6はその一部が白抜きとなって
いるイオン注入用のマスク(図示しない)を作成する。
そして、このマスク越しに半導体基板8にイオン注入を
一回行うことにより、図2に示した横型DMOSFET
のドリフトチャネル層の先端部5、谷部6、直線部7を
同時に形成する。
By the photo process using such a photomask, the tip 5 is hollow, the linear portion 7 is translucent, and the valley 6 is partially hollow on the semiconductor substrate 8. A mask (not shown) for ion implantation is formed.
Then, ion implantation into the semiconductor substrate 8 is performed once through the mask, thereby forming the lateral DMOSFET shown in FIG.
Of the drift channel layer, a valley 6 and a straight line 7 are simultaneously formed.

【0035】このようなマスクを使用した場合、マスク
のd1とd2の長さが等しいので、先端部5のドリフト
チャネル長Ldと直線部7のドリフトチャネル長Lは等
しくなる。
When such a mask is used, since the lengths d1 and d2 of the mask are equal, the drift channel length Ld of the tip portion 5 and the drift channel length L of the linear portion 7 are equal.

【0036】また、イオン注入量を例えば2.0×10
12[cm-3]とした場合、先端部5と谷部6の一部には、
2.0×1012[cm-3]のイオンが全て注入され、直線
部7においては、マスクが半透明であるので、注入量は
2.0×1012[cm-3]よりも少なく、例えば約1.4
0×1012[cm-3]の注入量となる。また、直線部7の
イオン注入量を、モザイクの密度を変化させることによ
り任意に調整することが可能である、
The ion implantation amount is set to, for example, 2.0 × 10
In the case of 12 [cm -3 ], the tip 5 and a part of the valley 6
All ions of 2.0 × 10 12 [cm −3 ] are implanted, and the mask is translucent in the linear portion 7. Therefore, the implantation amount is smaller than 2.0 × 10 12 [cm −3 ]. For example, about 1.4
The injection amount is 0 × 10 12 [cm −3 ]. Further, the ion implantation amount of the linear portion 7 can be arbitrarily adjusted by changing the density of the mosaic.

【0037】そして、谷部6においては、イオン注入用
のマスクの一部が白抜きとなって半導体基板8が露出す
るので、図3に示すように、ドリフトチャネル層2は、
ドレイン層10からPベース20の方向にD3の長さ分
だけ張り出して形成される。
Then, in the valley 6, a part of the mask for ion implantation becomes hollow and the semiconductor substrate 8 is exposed. Therefore, as shown in FIG.
It is formed to extend from the drain layer 10 toward the P base 20 by the length of D3.

【0038】図4は、谷部でのドリフトチャネル長と耐
圧との関係を示す特性曲線図である。図4に示すように
図1のd3の長さを変えることにより、谷部におけるド
リフトチャネル長D3を調整し、谷部6における耐圧を
最適値に設定することができる。例えば、図4において
は、谷部6におけるドリフトチャネル長D3が25um
となるポイントで耐圧を最大にすることができる。
FIG. 4 is a characteristic curve showing the relationship between the drift channel length at the valley and the breakdown voltage. By changing the length of d3 in FIG. 1 as shown in FIG. 4, the drift channel length D3 in the valley can be adjusted, and the breakdown voltage in the valley 6 can be set to an optimum value. For example, in FIG. 4, the drift channel length D3 in the valley 6 is 25 μm.
The pressure resistance can be maximized at the following points.

【0039】上記の条件でイオン注入を行い、谷部6で
のドリフトチャネル長D3を25umとした場合は、図
7に示したシミュレーション結果によれば、先端部5と
直線部7での耐圧は約830V、谷部6での耐圧は約9
00Vとなり、素子全体としては約830Vの耐圧を得
ることができると考えられる。
When the ion implantation is performed under the above conditions and the drift channel length D3 at the valley 6 is set to 25 μm, according to the simulation result shown in FIG. About 830V, withstand voltage at valley 6 is about 9
00V, and it is considered that a withstand voltage of about 830 V can be obtained for the entire device.

【0040】このように、ドリフトチャネル層の先端部
5、谷部6、直線部7の不純物濃度を個別に設定するよ
うにしたので、耐圧を設計する自由度が増し、先端部5
のドリフトチャネル長Ldと直線部のドリフトチャネル
長Lを等しくすることができる。従って、結果としてチ
ップ面積の増大を防ぐことができる。
As described above, since the impurity concentrations of the tip portion 5, the valley portion 6, and the straight portion 7 of the drift channel layer are individually set, the degree of freedom in designing the withstand voltage increases, and the tip portion 5
And the drift channel length L of the linear portion can be made equal. Therefore, as a result, an increase in chip area can be prevented.

【0041】また、同一の工程でドリフトチャネル層2
の先端部5、谷部6、直線部7を形成することができる
ので、その製造工程が増えることはなく、結果としてコ
ストを下げることができる。
The drift channel layer 2 is formed in the same process.
Since the front end portion 5, the valley portion 6, and the straight portion 7 can be formed, the number of manufacturing steps does not increase, and as a result, the cost can be reduced.

【0042】また、谷部6においては、耐圧が最適とな
るようにドリフトチャネル長D3を調整したので、従来
のPドリフト層21を形成する必要がなくなり、その製
造工程を削減することができる。
In the valley portion 6, the drift channel length D3 is adjusted so that the breakdown voltage is optimized. Therefore, it is not necessary to form the conventional P drift layer 21, and the number of manufacturing steps can be reduced.

【0043】[0043]

【発明の効果】以上説明したように、本発明の請求項1
から請求項5によれば、同一工程において、ドリフトチ
ャネル層2の先端部5、谷部6、直線部7の不純物濃度
を個別に設定可能としているため、チップ面積を増大さ
せず、またその製造工程を増加させずに耐圧設計の自由
度を増した櫛型の横型DMOSFETの製造方法を提供
することができる。
As described above, according to the first aspect of the present invention,
According to the fifth aspect, in the same step, since the impurity concentrations of the tip portion 5, the valley portion 6, and the linear portion 7 of the drift channel layer 2 can be individually set, the chip area is not increased, and It is possible to provide a method of manufacturing a comb-type lateral DMOSFET in which the degree of freedom in withstand voltage design is increased without increasing the number of steps.

【0044】[0044]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示すフォトマスクの
平面図である。
FIG. 1 is a plan view of a photomask showing a configuration of one embodiment of the present invention.

【図2】本発明により製造された横型DMOSFETの
平面図である。
FIG. 2 is a plan view of a lateral DMOSFET manufactured according to the present invention.

【図3】図2に示した横型DMOSFETのb−b‘断
面図である。
FIG. 3 is a cross-sectional view of the horizontal DMOSFET shown in FIG.

【図4】谷部でのドリフトチャネル長と耐圧の関係を示
す特性曲線図である
FIG. 4 is a characteristic curve diagram showing a relationship between a drift channel length and a breakdown voltage in a valley.

【図5】従来の横型DMOSFETの構成を示す平面図
である。
FIG. 5 is a plan view showing a configuration of a conventional lateral DMOSFET.

【図6】図5に示した横型DMOSFETの断面図であ
る。
6 is a cross-sectional view of the lateral DMOSFET shown in FIG.

【図7】イオン注入量と耐圧との関係を示す特性曲線図
である。
FIG. 7 is a characteristic curve diagram showing a relationship between an ion implantation amount and a breakdown voltage.

【符号の説明】[Explanation of symbols]

1 ドレイン電極 2 ドリフトチャネル層 3 ゲート電極 4 ソース電極 5 先端部 6 谷部 7 直線部 8 半導体基板 10 ドレイン層 20 Pベース 30 ゲート酸化膜 40 ソース層 12 遮光性部材 50 先端形成部 60 谷形成部 70 直線形成部 DESCRIPTION OF SYMBOLS 1 Drain electrode 2 Drift channel layer 3 Gate electrode 4 Source electrode 5 Tip part 6 Valley part 7 Linear part 8 Semiconductor substrate 10 Drain layer 20 P base 30 Gate oxide film 40 Source layer 12 Light shielding member 50 Tip formation part 60 Valley formation part 70 Straight line forming part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ドレイン層、ドリフトチャネル層、ゲー
ト電極、ソース層が直線部と曲率を有する先端部及び谷
部とを有する櫛状をなし、互いの周囲を囲むように中心
より順に前記ドレイン層、前記ドリフトチャネル層、前
記ゲート電極、前記ソース層を形成するMOSFETの
製造方法において、 前記ドリフトチャネル層を、前記直線部と前記先端部と
前記谷部の不純物濃度が個別に設定可能な同一工程で形
成することを特徴とするMOSFETの製造方法。
1. A drain layer, a drift channel layer, a gate electrode, and a source layer having a comb shape having a linear portion, a tip portion having a curvature, and a valley portion, and the drain layer is arranged in order from the center so as to surround each other. A method of manufacturing a MOSFET for forming the drift channel layer, the gate electrode, and the source layer, wherein the drift channel layer is configured such that impurity concentrations of the linear portion, the tip portion, and the valley portion can be individually set. A method for manufacturing a MOSFET, comprising:
【請求項2】 前記同一工程は、部分的に半透明なフォ
トマスクを使用したフォト工程を含むことを特徴とする
請求項1記載のMOSFETの製造方法。
2. The method according to claim 1, wherein the same step includes a photo step using a partially translucent photo mask.
【請求項3】 前記フォトマスクは、部分的に遮光性部
材をモザイク上に配置してなることを特徴とする請求項
2記載のMOSFETの製造方法。
3. The method for manufacturing a MOSFET according to claim 2, wherein the photomask is formed by partially arranging a light shielding member on a mosaic.
【請求項4】 前記同一工程は、前記ドリフトチャネル
層の前記直線部を形成する直線形成部が半透明であるフ
ォトマスクを使用したフォト工程を含むことを特徴とす
る請求項1記載のMOSFETの製造方法。
4. The MOSFET according to claim 1, wherein the same step includes a photo step using a photomask in which a straight line forming portion forming the straight line portion of the drift channel layer is translucent. Production method.
【請求項5】 前記フォトマスクは、前記ドリフトチャ
ネル層の前記直線部を形成する直線形成部に遮光性部材
をモザイク状に配置してなることを特徴とする請求項4
記載のMOSFETの製造方法。
5. The photomask according to claim 4, wherein light-shielding members are arranged in a mosaic shape in a straight line forming part of the drift channel layer forming the straight line part.
A manufacturing method of the MOSFET described above.
JP28570699A 1999-10-06 1999-10-06 Manufacturing method of mos fet Withdrawn JP2001111043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28570699A JP2001111043A (en) 1999-10-06 1999-10-06 Manufacturing method of mos fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28570699A JP2001111043A (en) 1999-10-06 1999-10-06 Manufacturing method of mos fet

Publications (1)

Publication Number Publication Date
JP2001111043A true JP2001111043A (en) 2001-04-20

Family

ID=17694982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28570699A Withdrawn JP2001111043A (en) 1999-10-06 1999-10-06 Manufacturing method of mos fet

Country Status (1)

Country Link
JP (1) JP2001111043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170821A (en) * 2013-03-04 2014-09-18 Lapis Semiconductor Co Ltd Method of manufacturing semiconductor device, and development support system
CN111710720A (en) * 2020-07-10 2020-09-25 杰华特微电子(杭州)有限公司 Lateral double-diffused transistor and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170821A (en) * 2013-03-04 2014-09-18 Lapis Semiconductor Co Ltd Method of manufacturing semiconductor device, and development support system
CN111710720A (en) * 2020-07-10 2020-09-25 杰华特微电子(杭州)有限公司 Lateral double-diffused transistor and manufacturing method thereof
CN111710720B (en) * 2020-07-10 2022-07-19 杰华特微电子股份有限公司 Lateral double diffused transistor and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5430316A (en) VDMOS transistor with improved breakdown characteristics
JP4772843B2 (en) Semiconductor device and manufacturing method thereof
US6977414B2 (en) Semiconductor device
TWI402967B (en) Semiconductor device
JPH11284174A (en) Field connection-type power mosfet bus architecture using trench technology
JPH03270273A (en) Semiconductor device and its manufacture
JP2009016482A (en) Semiconductor device, and manufacturing method thereof
CN100580928C (en) Composite field effect transistor structure and manufacturing method thereof
JP2003008009A (en) Semiconductor device
US7619280B2 (en) Current sense trench type MOSFET with improved accuracy and ESD withstand capability
TWI383489B (en) Semiconductor device
JP2003347546A (en) Vertical dmos element and manufacturing method therefor
JPH02154469A (en) Vertical field effect transistor
JP2004104003A (en) Semiconductor element
JP2006526287A (en) Termination structure for semiconductor device and method of manufacturing the structure
US6492663B1 (en) Universal source geometry for MOS-gated power devices
JP2926962B2 (en) Semiconductor device having MIS type field effect transistor
JPH1041499A (en) Dmos fet of high breakdown voltage
KR100316723B1 (en) Power MOSFET having low on-resistance and high ruggedness
JP2001111043A (en) Manufacturing method of mos fet
JP2926969B2 (en) Semiconductor device having MIS type field effect transistor
JP4666708B2 (en) Field effect transistor
KR101076667B1 (en) Semiconductor device
JPH09129878A (en) Semiconductor device
JP2013201451A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061012

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061024