JP2003008009A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2003008009A
JP2003008009A JP2001194631A JP2001194631A JP2003008009A JP 2003008009 A JP2003008009 A JP 2003008009A JP 2001194631 A JP2001194631 A JP 2001194631A JP 2001194631 A JP2001194631 A JP 2001194631A JP 2003008009 A JP2003008009 A JP 2003008009A
Authority
JP
Japan
Prior art keywords
electrode
region
layer
semiconductor device
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001194631A
Other languages
Japanese (ja)
Other versions
JP4894097B2 (en
Inventor
Shinichi Jinbo
信一 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001194631A priority Critical patent/JP4894097B2/en
Publication of JP2003008009A publication Critical patent/JP2003008009A/en
Application granted granted Critical
Publication of JP4894097B2 publication Critical patent/JP4894097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a withstand voltage structure that hardly causes electric field concentration and can easily cope with a complicated planar pattern. SOLUTION: In this semiconductor device, thin resistance layers 7, 8, 9, 10 and 11 are formed on a selectively oxidized film 27, and loop-like metallic layers 3, 4, 5 and 6 are respectively formed on the resistance layers 7, 8, 9, 10 and 11 through interlayer insulating films 13. In addition, the electric connection between a high-potential electrode 1 and the innermost metallic layer 3, among the metallic layers 3, 4, 5 and 6, and between the outermost metallic layer 6 and a low-potential side electrode 2 are respectively made through the resistance layers 7, 8, 9, 10 and 11. In addition, the low-potential side electrode 2 is electrically connected to a rear-surface side electrode 38 at the end section of a p-type substrate 21 not shown in the figure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はプレーナ型の横型
および縦型の半導体装置に関し、特にその半導体装置の
耐圧構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar type horizontal and vertical semiconductor device, and more particularly to a breakdown voltage structure of the semiconductor device.

【0002】[0002]

【従来の技術】バイポーラトランジスタ、パワーMOS
FETおよびIGBT(絶縁ゲート型バイポーラトラン
ジスタ)に代表されるパワーデバイスにおいては、数十
から数千Vの耐圧構造(耐圧をもつ箇所の構造)が必要
とされる。また、これらのパワーデバイスを駆動するた
めに、近年、高耐圧ICの開発が盛んに行われ、この高
耐圧ICもまたパワーデバイスと同等の耐圧が要求され
る。
2. Description of the Related Art Bipolar transistor, power MOS
A power device represented by an FET and an IGBT (insulated gate bipolar transistor) requires a withstand voltage structure (a structure having a withstand voltage) of several tens to several thousands V. Further, in order to drive these power devices, a high breakdown voltage IC has been actively developed in recent years, and this high breakdown voltage IC is also required to have a breakdown voltage equivalent to that of the power device.

【0003】図15は、Double RESURF構
造と抵抗性フィールドプレート構造を組み合わせた構造
の要部断面図である。この耐圧構造は、高耐圧ICの代
表的な構造である。図15において、p基板101の表
面層にNwell領域102が設けられている。このN
well領域102の表面層にn型の高電位領域10
3、p型の低電位領域104、およびPoffset領
域105がそれぞれ形成されている。高電位領域103
上と、低電位領域104上には、高電位側電極106と
低電位側電極107がそれぞれ形成され、p基板101
上に形成される絶縁酸化膜108上に高比抵抗の抵抗性
フィールドプレートである薄膜抵抗層109が形成さ
れ、この薄膜抵抗層109により高電位側電極106と
低電位側電極107とが電気的に接続されている。ま
た、低電位側電極107と裏面側電極110は、p基板
101の終端部で電気的に接続している。
FIG. 15 is a cross-sectional view of an essential part of a structure in which the Double RESURF structure and the resistive field plate structure are combined. This breakdown voltage structure is a typical structure of a high breakdown voltage IC. In FIG. 15, an Nwell region 102 is provided on the surface layer of the p substrate 101. This N
The n-type high potential region 10 is formed on the surface layer of the well region 102.
3, a p-type low potential region 104, and a Poffset region 105 are formed. High potential region 103
A high-potential-side electrode 106 and a low-potential-side electrode 107 are formed on the top and the low-potential region 104, respectively.
A thin-film resistance layer 109, which is a resistive field plate having a high specific resistance, is formed on the insulating oxide film 108 formed above, and the thin-film resistance layer 109 electrically connects the high-potential side electrode 106 and the low-potential side electrode 107. It is connected to the. Further, the low potential side electrode 107 and the back surface side electrode 110 are electrically connected at the terminal end portion of the p substrate 101.

【0004】図16は、半導体内部の空乏層の拡がりを
示した図である。図16の空乏層の拡がりを示した半導
体装置の要部断面図は、図15(a)の要部断面図と同
一である。従って、図中の符号は図15(a)と同じで
ある。図16において、低電位側電極107と裏面側電
極110を基準にして、高電位側電極106に正電位V
Sが印加されると、逆バイアスが印加される2つのpn
接合から空乏層111、112が拡張していく。
FIG. 16 is a diagram showing the expansion of the depletion layer inside the semiconductor. The cross-sectional view of the main part of the semiconductor device showing the expansion of the depletion layer in FIG. 16 is the same as the cross-sectional view of the main part in FIG. Therefore, the reference numerals in the figure are the same as those in FIG. In FIG. 16, a positive potential V is applied to the high potential side electrode 106 with reference to the low potential side electrode 107 and the back surface side electrode 110.
Two pns with reverse bias applied when S is applied
The depletion layers 111 and 112 expand from the junction.

【0005】1つのpn接合は、Nwell領域102
とPoffset領域105、低電位領域104のpn
接合であり、もう一つのpn接合は、Nwell領域1
02とp基板101のpn接合である。一般的に、絶縁
酸化膜108と半導体界面の固定電荷の影響で、半導体
表面の空乏層内部には電界の集中が起き易く、これがデ
バイスの破壊につながる。
One pn junction is formed in the Nwell region 102.
And Poffset region 105, pn of low potential region 104
Another pn junction is the Nwell region 1
02 and the p substrate 101 are pn junctions. Generally, due to the effect of fixed charges at the interface between the insulating oxide film 108 and the semiconductor, electric field concentration is likely to occur inside the depletion layer on the semiconductor surface, which leads to device breakdown.

【0006】抵抗性フィールドプレート構造では、高電
位側電極106に電位Vsを印加すると、薄膜抵抗層1
09にも電位Vsが印加され、薄膜抵抗層109には電
位Vsと薄膜抵抗層109の抵抗値に応じた電流が流れ
る。これによって、薄膜抵抗層109に、均一な電位分
布が生じれば、この電位分布による電界が、絶縁酸化膜
108を介し、半導体層に影響を及ぼし、半導体層表面
の空乏層の中の電界集中を緩和することができる。その
結果、高い耐圧を安定して確保することができる。
In the resistive field plate structure, when the potential Vs is applied to the high potential side electrode 106, the thin film resistance layer 1
The potential Vs is also applied to 09, and a current corresponding to the potential Vs and the resistance value of the thin film resistance layer 109 flows through the thin film resistance layer 109. As a result, if a uniform potential distribution is generated in the thin film resistance layer 109, the electric field due to this potential distribution affects the semiconductor layer through the insulating oxide film 108, and the electric field is concentrated in the depletion layer on the surface of the semiconductor layer. Can be relaxed. As a result, a high breakdown voltage can be stably ensured.

【0007】従来の構造においては、高電位領域103
と低電位領域104との間に大きな漏れ電流が発生しな
いように、フィールドプレートである薄膜抵抗層109
には、数MΩcmの高比抵抗の層、例えば、ノンドープ
アモルファスシリコンやSIPOS(Semi−Ins
ulating PolycrystallineSi
licon)が使用されてきた。
In the conventional structure, the high potential region 103
The thin film resistance layer 109, which is a field plate, prevents a large leakage current from occurring between the low potential region 104 and the low potential region 104.
Is a layer having a high resistivity of several MΩcm, such as non-doped amorphous silicon or SIPOS (Semi-Ins).
ulating PolycrystallineSi
licon) has been used.

【0008】しかしながら、数MΩcmの高比抵抗の層
を安定して形成することは、この層に入り込む不純物を
極めて小さく抑制しなければならず、製造は極めて困難
である。また、場所による比抵抗の値にばらつきが発生
しやすい。この薄膜抵抗層109の抵抗値が低い場合に
は、抵抗値のばらつきは小さくなるが、大きな漏れ電流
が流れるため、発生損失が大きくなり、デバイスが破壊
しやすくなる。また、抵抗値が高すぎる場合は、抵抗値
のばらつきが発生して、漏れ電流は不均一に流れ易くな
り、高電位領域103と低電位領域104の間に、均一
な電位分布を形成することが困難となり、半導体層の空
乏層中に電界集中箇所が生じて、耐圧が低下する可能性
がある。
However, in order to stably form a layer having a high specific resistance of several MΩcm, it is necessary to suppress impurities entering the layer to a very small level, and it is extremely difficult to manufacture the layer. Moreover, the value of the specific resistance tends to vary depending on the location. When the resistance value of the thin-film resistance layer 109 is low, the fluctuation of the resistance value is small, but a large leakage current flows, the generated loss becomes large, and the device is easily broken. If the resistance value is too high, the resistance value varies, and the leakage current easily flows unevenly, and a uniform potential distribution is formed between the high potential region 103 and the low potential region 104. However, there is a possibility that the electric field is concentrated in the depletion layer of the semiconductor layer and the breakdown voltage is lowered.

【0009】これらの問題点を解決するために、前記の
薄膜抵抗層109の抵抗値を低くして、ばらつきを抑え
た、図17のような構造が、特許第3117023号に
開示されている。この構造では、前記の薄膜抵抗層を島
状のベース電極113(高電位側電極)とそれを取り囲
む外周電極114(低電位側電極)との間に、渦巻き状
に形成し、長い薄膜抵抗層(渦巻き状の薄膜抵抗層11
5)でベース電極113と外周電極114を接続するこ
とで、抵抗値を増大させている。
In order to solve these problems, a structure as shown in FIG. 17 in which the resistance value of the thin film resistance layer 109 is lowered to suppress the variation is disclosed in Japanese Patent No. 3117023. In this structure, the thin-film resistance layer is formed in a spiral shape between the island-shaped base electrode 113 (high-potential side electrode) and the peripheral electrode 114 (low-potential side electrode) surrounding the island-shaped base electrode 113 to form a long thin-film resistance layer. (Swirl-shaped thin film resistance layer 11
The resistance value is increased by connecting the base electrode 113 and the outer peripheral electrode 114 in 5).

【0010】この構造では、渦巻き状の薄膜抵抗層11
5の比抵抗を小さくして、ばらつきを抑制し、渦巻き状
の薄膜抵抗層115の端から端の間の抵抗値を大きくし
て漏れ電流を抑制している。また、ベース電極113と
外周電極114とを直線で結ぶ線上の電位分布は、渦巻
き状の薄膜抵抗層115の渦巻きの回数分だけ、階段状
に変化するが、回数を多くすれば、階段の落差は小さく
なり、平均的な電位勾配は一定となる。
In this structure, the spiral thin film resistance layer 11 is formed.
The specific resistance of No. 5 is reduced to suppress the variation, and the resistance value between the ends of the spiral thin-film resistance layer 115 is increased to suppress the leakage current. Further, the potential distribution on the line connecting the base electrode 113 and the outer peripheral electrode 114 with a straight line changes stepwise by the number of times of the spiral of the spiral thin-film resistance layer 115, but if the number of times is increased, the stairs drop Becomes smaller and the average potential gradient becomes constant.

【0011】この構造によれば、ベース電極113と外
周電極114を電気的に接続する渦巻き状の薄膜抵抗層
115の比抵抗の値を従来構造の抵抗性フィールドプレ
ートに比べ、低い値として実現できるというものであ
る。これによって、抵抗性フィールドプレートよりも抵
抗値の制御が容易になる利点を有する。
According to this structure, the specific resistance value of the spiral thin film resistance layer 115 for electrically connecting the base electrode 113 and the outer peripheral electrode 114 can be realized as a lower value than that of the resistive field plate of the conventional structure. That is. This has the advantage that the resistance value is easier to control than the resistive field plate.

【0012】[0012]

【発明が解決しようとする課題】しかし、図17のよう
な構造に対し、この渦巻き状の薄膜抵抗層115を、U
SP6124628に開示される高耐圧ICの耐圧構造
部に適用すると、この耐圧構造は、図18に示すよう
に、形状が複雑で、1周分の周囲長が4〜10mm程度
と長くなる。周囲長さが長くなると、高電位側電極に高
電圧を印加したとき、耐圧が不安定に成りやすく、安定
した耐圧を得るには、渦巻き状の薄膜抵抗層を複数本巻
くなどのレイアウト上の困難さがある。
However, in contrast to the structure shown in FIG. 17, the spiral thin film resistance layer 115 is
When applied to the withstand voltage structure portion of the high withstand voltage IC disclosed in SP6124628, this withstand voltage structure has a complicated shape as shown in FIG. 18, and the perimeter for one round becomes as long as about 4 to 10 mm. When the peripheral length becomes long, the withstand voltage tends to become unstable when a high voltage is applied to the high-potential side electrode, and in order to obtain a stable withstand voltage, it is necessary to arrange multiple spiral thin film resistance layers on the layout. There is difficulty.

【0013】これは、耐圧構造部の平面的形状が複雑な
ため、電界が集中しないように渦巻き状の薄膜抵抗層
を、ベース電極から外周電極まで、ベース電極と渦巻き
状薄膜抵抗層の距離を少しづづ変えながら配置するのが
難しいことが原因である。また、チップサイズが異なる
と、周囲長が異なるため同じ耐圧を持つデバイスでも耐
圧構造部に巻く、渦巻き状の薄膜抵抗層の形状もしくは
抵抗値を調整する必要があり、これは、縦型デバイスで
同一耐圧系列を持つシリーズで、異なる電流容量を持つ
デバイスを設計する場合に、耐圧構造をその都度設計し
なければならず、不都合である。
This is because the withstand voltage structure has a complicated planar shape, so that the spiral thin film resistance layer is provided so that the electric field is not concentrated, and the distance between the base electrode and the spiral thin film resistance layer is increased from the base electrode to the peripheral electrode. The reason is that it is difficult to place them while changing them little by little. In addition, if the chip size is different, the peripheral length is different, so even for devices with the same breakdown voltage, it is necessary to adjust the shape or resistance value of the spiral thin film resistance layer that is wound around the breakdown voltage structure part. When designing devices having different current capacities in series having the same withstand voltage series, the withstand voltage structure must be designed each time, which is inconvenient.

【0014】この発明の目的は、前記の課題を解決し
て、電界集中が発生しにくく、複雑な平面パターンにも
容易に対応できる耐圧構造を有する半導体装置を提供す
ることにある。
An object of the present invention is to solve the above problems and to provide a semiconductor device having a breakdown voltage structure in which electric field concentration is unlikely to occur and which can easily cope with a complicated planar pattern.

【0015】[0015]

【課題を解決するための手段】前記の目的を達成するた
めに、半導体基板上に形成された絶縁膜上に、互いに離
して形成された第1電極と第2電極とを有する半導体装
置であって、該第1電極を取り囲むように、該第1電極
と前記第2電極の間の前記絶縁膜上に、複数本形成され
るループ状導電膜層と、前記第1電極と該ループ状導電
膜層の間、該ループ状導電膜層の相互間、該ループ状導
電膜層と前記第2電極の間とをそれぞれ互いに電気的に
接続する薄膜抵抗層と、を有する構成とする。
To achieve the above object, there is provided a semiconductor device having a first electrode and a second electrode formed on an insulating film formed on a semiconductor substrate and separated from each other. A plurality of loop-shaped conductive film layers are formed on the insulating film between the first electrode and the second electrode so as to surround the first electrode, the first electrode and the loop-shaped conductive layer. Between the film layers, between the loop-shaped conductive film layers, and between the loop-shaped conductive film layer and the second electrode, a thin film resistance layer is electrically connected to each other.

【0016】また、前記半導体基板上に形成された第1
絶縁膜と、該第1絶縁膜上に形成される第2絶縁膜と、
該第2絶縁膜上に、互いに離して形成された前記第1電
極と前記第2電極と、該第1電極を取り囲むように、該
第1電極と前記第2電極の間の前記第2絶縁膜上に、複
数本形成されるループ状導電膜層と、前記第1電極と該
ループ状導電膜層の間、該ループ状導電膜層の相互間、
該ループ状導電膜層と前記第2電極の間とをそれぞれ互
いに電気的に接続し、前記第1絶縁膜上に形成される薄
膜抵抗層と、を有する構成とする。
The first substrate formed on the semiconductor substrate
An insulating film, and a second insulating film formed on the first insulating film,
The first electrode and the second electrode formed on the second insulating film and separated from each other, and the second insulation between the first electrode and the second electrode so as to surround the first electrode. A plurality of loop-shaped conductive film layers formed on the film, between the first electrode and the loop-shaped conductive film layer, between the loop-shaped conductive film layers,
The loop-shaped conductive film layer and the second electrode are electrically connected to each other, and a thin film resistance layer formed on the first insulating film is provided.

【0017】また、前記ループ状導電膜層の底部が、前
記薄膜抵抗層と離して、前記第1絶縁膜と接するとよ
い。また、前記ループ状導電膜層が、金属膜などの抵抗
値の低い材質で形成されるとよい。また、前記薄膜抵抗
層が、ポリシリコンで形成されるとよい。
The bottom of the loop-shaped conductive film layer may be separated from the thin-film resistance layer and contact the first insulating film. Further, it is preferable that the loop conductive film layer is formed of a material having a low resistance value such as a metal film. Further, the thin film resistance layer may be formed of polysilicon.

【0018】また、前記薄膜抵抗層のシート抵抗値が、
1×104 Ω/□以上であるとよい。また、前記薄膜抵
抗層のシート抵抗値が、5×104 Ω/□以下であると
よい。また、前記半導体基板が第1導電型であって、該
半導体基板の表面層に第1導電型の第1領域と第2導電
型の第2領域が離して形成され、前記第1領域と前記第
2領域の間の前記半導体基板の表面層に、前記第1領域
から離し、且つ、前記第2領域に接するように第2導電
型の第3領域が形成され、前記第1領域と前記第1電極
とが接続し、前記第2領域と前記第2電極とが接続する
構成とする。
The sheet resistance value of the thin film resistance layer is
It is good that it is 1 × 10 4 Ω / □ or more. Further, the sheet resistance value of the thin film resistance layer is preferably 5 × 10 4 Ω / □ or less. Further, the semiconductor substrate is of the first conductivity type, and a first region of the first conductivity type and a second region of the second conductivity type are formed separately on a surface layer of the semiconductor substrate. A third region of the second conductivity type is formed on the surface layer of the semiconductor substrate between the second regions so as to be separated from the first region and contact the second region. One electrode is connected, and the second region and the second electrode are connected.

【0019】また、前記半導体基板が第1導電型であっ
て、該半導体基板の表面層に第2導電型の第1領域と第
2領域が離してそれぞれ形成され、前記第1領域と前記
第2領域の間の前記半導体基板の表面層に前記第1領域
と前記第2領域から離して、第2導電型の第4領域が、
前記第1領域を取り囲むようにループ状に形成され、前
記第1領域と前記第1電極とが接続し、前記第2領域と
前記第2電極とが接続する構成とする。
Further, the semiconductor substrate is of the first conductivity type, and the first region and the second region of the second conductivity type are formed separately on the surface layer of the semiconductor substrate, and the first region and the second region are formed. A fourth region of the second conductivity type is provided on the surface layer of the semiconductor substrate between the two regions, apart from the first region and the second region,
The first region is formed in a loop shape so as to surround the first region, the first region and the first electrode are connected, and the second region and the second electrode are connected.

【0020】前記したように、第1電極と第2電極との
間に第1電極を取り囲むように、ループ状導電膜層を複
数本形成し、第1電極と最内周のループ状導電膜層、ル
ープ状導電膜層同士、最外周の導電膜層と第2電極をそ
れぞれ薄膜抵抗層で電気的に接続することにより、各ル
ープ状導電膜層には、第1電極の電位と第2電極の電位
の中間の電位が段階的に存在することになり、上記各ル
ープ状導電膜層の段階的な電位分布の影響で、その下に
絶縁膜を介して存在する半導体基板の電位も均一にする
ことができる。
As described above, a plurality of loop-shaped conductive film layers are formed between the first electrode and the second electrode so as to surround the first electrode, and the first electrode and the innermost loop-shaped conductive film are formed. Layer, the loop-shaped conductive film layers, and the outermost conductive film layer and the second electrode are electrically connected to each other by a thin-film resistance layer, whereby each loop-shaped conductive film layer has a potential of the first electrode and a second electrode. The intermediate potential between the potentials of the electrodes exists in a stepwise manner, and the potential of the semiconductor substrate existing thereunder via the insulating film is also uniform due to the effect of the stepwise potential distribution of each of the loop-shaped conductive film layers. Can be

【0021】これによって、これまで複雑な形状ではレ
イアウトが困難であった、渦巻き状の薄膜抵抗層のみの
構造に比べ、半導体装置の高耐圧化が容易に実現でき
る。また、同一耐圧を持つデバイスで、チップサイズが
異なる場合でも、ループ状の導電膜層の形状およびシー
ト抵抗値は変更しなくても良いことが多く、設計が容易
になる。
As a result, a higher breakdown voltage of the semiconductor device can be easily realized as compared with the structure having only the spiral thin film resistance layer, which has been difficult to lay out with a complicated shape. Further, even in the case of devices having the same breakdown voltage, even if the chip sizes are different, it is often unnecessary to change the shape of the loop-shaped conductive film layer and the sheet resistance value, which facilitates the design.

【0022】[0022]

【発明の実施の形態】図1から図5は、この発明の第1
実施例の半導体装置であり、図1(a)は要部平面図、
図1(b)は、図1(a)のA部の拡大平面図、図2
は、図1(b)のX−X線で切断した要部断面図、図3
は、図1(b)のY−Y線で切断した要部断面図、図4
は、図1(b)のZ−Z線で切断した要部断面図、図5
は、図1(b)のM−M線で切断した要部断面図であ
る。この半導体装置はDoubleRESURF構造の
高耐圧ICを例として挙げた。
1 to 5 show a first embodiment of the present invention.
FIG. 1A is a plan view of a main part of the semiconductor device according to the embodiment.
1B is an enlarged plan view of a portion A of FIG.
3 is a sectional view of a main part taken along line XX in FIG.
4 is a sectional view of a main part taken along line YY of FIG.
5 is a sectional view of a main part taken along line ZZ in FIG.
[Fig. 2] is a main-portion cross-sectional view taken along line MM in Fig. 1 (b). This semiconductor device is exemplified by a high-voltage IC having a Double RESURF structure.

【0023】図1から図5において、高電位側領域71
を囲むように低電位側領域73が形成されており、その
間の耐圧構造部72にメタル層3、4、5、6がそれぞ
れループ状に形成されている。74、75は高耐圧MO
SFETのゲート・ソース電極とドレイン電極である。
高電位側領域71とメタル層3、メタル層3とメタル層
4、メタル層4とメタル層5、メタル層5とメタル層6
およびメタル層6と低電位側領域は、薄膜抵抗層7、
8、9、10、11によりそれぞれ電気的に接続されて
いる(図1(a))。つぎに、薄膜抵抗層7、8、9、
10、11の構成について説明する。
In FIG. 1 to FIG. 5, the high potential side region 71
A low-potential side region 73 is formed so as to surround the, and metal layers 3, 4, 5, and 6 are formed in a loop shape in the breakdown voltage structure portion 72 therebetween. 74 and 75 are high-voltage MO
These are the gate / source electrode and the drain electrode of the SFET.
High potential side region 71 and metal layer 3, metal layer 3 and metal layer 4, metal layer 4 and metal layer 5, metal layer 5 and metal layer 6
And the metal layer 6 and the low potential side region are the thin film resistance layer 7,
They are electrically connected by 8, 9, 10 and 11 (FIG. 1 (a)). Next, the thin film resistance layers 7, 8, 9,
The configurations of 10 and 11 will be described.

【0024】p基板21の表面層にNwell領域22
が設けられ、Nwell領域22の表面層にn型の高電
位領域71(n領域23)、p型の低電位側領域73
(p領域24)、およびPoffset領域26がそれ
ぞれ形成され、高電位側領域71上と、低電位側領域7
3上には、高電位側電極1と低電位側電極2がそれぞれ
形成され、p基板21上に選択酸化膜27が形成されて
いる。この選択酸化膜27上に薄膜抵抗層7、8、9、
10、11が形成され、この上に層間絶縁膜13を介し
てループ状のメタル層3、4、5、6が形成され、高電
位側電極1と最内周のメタル層3、メタル層3とメタル
層4、メタル層4とメタル層5、メタル層5とメタル層
6、および最外周のメタル層6と低電位側電極2は、薄
膜抵抗層7、8、9、10、11によってそれぞれ電気
的に接続され(図2、図4)、低電位側電極2と裏面側
電極38は、図示しないp基板21の終端部で電気的に
接続している。
The Nwell region 22 is formed on the surface layer of the p substrate 21.
Are provided, and the n-type high potential region 71 (n region 23) and the p-type low potential side region 73 are provided on the surface layer of the Nwell region 22.
(P region 24) and Poffset region 26 are formed, respectively, on the high potential side region 71 and the low potential side region 7.
A high potential side electrode 1 and a low potential side electrode 2 are formed on the substrate 3, and a selective oxide film 27 is formed on the p substrate 21. On the selective oxide film 27, the thin film resistance layers 7, 8, 9,
10 and 11 are formed, and loop-shaped metal layers 3, 4, 5, and 6 are formed on the inter-layer insulating film 13, and the high-potential side electrode 1, the innermost metal layer 3, and the metal layer 3 are formed. The metal layer 4 and the metal layer 4, the metal layer 4 and the metal layer 5, the metal layer 5 and the metal layer 6, and the outermost metal layer 6 and the low-potential-side electrode 2 are respectively formed by thin-film resistance layers 7, 8, 9, 10, and 11. It is electrically connected (FIGS. 2 and 4), and the low potential side electrode 2 and the back surface side electrode 38 are electrically connected at the terminal end portion of the p substrate 21 (not shown).

【0025】尚、図中の23はn領域、24、25はp
領域、28は選択酸化膜、29はコンタクトをとるため
のn+ 領域、31〜37はコンタクトをとるためのp+
領域、12はメタル層と薄膜抵抗層とを接続するコンタ
クトホールである。図6は、図1の半導体装置の要部断
面図と電位分布を示し、同図(a)は図2の要部断面図
で、同図(b)は同図(a)のループ状のメタル層の電
位分布を示す図である。
In the figure, 23 is an n region and 24 and 25 are p regions.
Region, 28 is a selective oxide film, 29 is an n + region for making contact, 31 to 37 are p + for making contact
A region, 12 is a contact hole for connecting the metal layer and the thin film resistance layer. 6A and 6B show a cross-sectional view and a potential distribution of the main part of the semiconductor device of FIG. 1, FIG. 6A is a cross-sectional view of the main part of FIG. 2, and FIG. 6B is a loop-shaped view of FIG. It is a figure which shows the electric potential distribution of a metal layer.

【0026】図6(b)は、高電位側電極1、メタル層
3、4、5、6、および低電位側電極2の電位分布を、
横軸を高電位側電極1からの変位量としてグラフにした
ものである。図のように、メタル層が4本の場合の電位
分布では、各メタル層の電位差が大きい。しかし、実際
には、この高電位側電極1と低電位側電極2の間隔は、
1400Vクラスの高耐圧ICでは、150〜200μ
m程度あり、例えば、メタル層3、4、5、6の幅を8
μm、メタル層の間隔を4μmとすれば、12〜16本
程度のメタル層を形成することができ、このメタル層の
数を多くするほど、高電位側電極1から低電位側電極2
までの階段状の電位差(ステップ)を小さくすることが
でき、それによって電界の集中を小さくし、耐圧を高め
ることができる。このメタル層の数はメタル層の幅と間
隔を小さくすることで、増やすことができる。
FIG. 6B shows the potential distribution of the high potential side electrode 1, the metal layers 3, 4, 5, 6 and the low potential side electrode 2,
The horizontal axis is a graph showing the amount of displacement from the high potential side electrode 1. As shown in the figure, in the potential distribution when there are four metal layers, the potential difference between the metal layers is large. However, in reality, the distance between the high potential side electrode 1 and the low potential side electrode 2 is
150 to 200μ for 1400V class high voltage IC
m, for example, the width of the metal layers 3, 4, 5, 6 is 8
If the gap between the metal layers is 4 μm, and about 12 to 16 metal layers can be formed, the higher the number of metal layers, the higher the potential side electrode 1 to the lower potential side electrode 2 becomes.
It is possible to reduce the stepwise potential difference (step) up to, thereby reducing the concentration of the electric field and increasing the breakdown voltage. The number of metal layers can be increased by reducing the width and spacing of the metal layers.

【0027】つぎに薄膜抵抗層7、8、9、10、11
のシート抵抗値について説明する。前記薄膜抵抗層7、
8、9、10、11は、たとえば膜厚0.4〜1μm程
度のポリシリコンで形成できる。薄膜抵抗層7、8、
9、10、11の幅を2μm程度に細くし、ループ状の
メタル層3、4、5、6の長手方向に対して、垂直でな
く、斜めに配置することで、薄膜抵抗層7、8、9、1
0、11の長さを長くすることができる。薄膜抵抗層
7、8、9、10、11の長さを長くすることによっ
て、薄膜抵抗層7、8、9、10、11のシート抵抗値
を制御し易いレベルまで下げることが可能である。
Next, the thin film resistance layers 7, 8, 9, 10, 11
The sheet resistance value of is explained. The thin film resistance layer 7,
8, 9, 10, and 11 can be formed of, for example, polysilicon having a film thickness of 0.4 to 1 μm. Thin film resistance layers 7, 8,
By thinning the widths of 9, 10, 11 to about 2 μm and arranging the metal layers 3, 4, 5, 6 in a loop shape not obliquely to the longitudinal direction but obliquely, the thin film resistance layers 7, 8 , 9, 1
The length of 0 and 11 can be increased. By increasing the length of the thin film resistance layers 7, 8, 9, 10, 11, it is possible to reduce the sheet resistance value of the thin film resistance layers 7, 8, 9, 10, 11 to a level at which it can be easily controlled.

【0028】例として、図1の構造において、1400
Vを高電位側電極に印加した場合について説明する。薄
膜抵抗層7、8、9、10、11を通じて10μA程度
の漏れ電流にする場合、抵抗値は、1400V/10μ
A=1.4×108 Ω=140MΩである。薄膜抵抗層
7、8、9、10、11は5本直列に接続しているの
で、薄膜抵抗層1本あたりでは、140MΩ÷5=28
MΩである。
As an example, in the structure of FIG.
A case where V is applied to the high potential side electrode will be described. When the leakage current is about 10 μA through the thin film resistance layers 7, 8, 9, 10 and 11, the resistance value is 1400 V / 10 μ.
A = 1.4 × 10 8 Ω = 140 MΩ. Since five thin film resistance layers 7, 8, 9, 10, and 11 are connected in series, one thin film resistance layer is 140 MΩ / 5 = 28.
It is MΩ.

【0029】薄膜抵抗層1本の長さを1.5mm、幅を
2μmとして、薄膜抵抗層のシート抵抗値は、28MΩ
×2÷1500=3.73×104 Ω/□=37.3k
Ω/□また、メタル層の本数が13本で、薄膜抵抗層の
本数が14とすると、薄膜抵抗層1本あたりの抵抗値
は、140MΩ÷14=10MΩである。
If the length of one thin film resistance layer is 1.5 mm and the width is 2 μm, the sheet resistance value of the thin film resistance layer is 28 MΩ.
× 2 ÷ 1500 = 3.73 × 10 4 Ω / □ = 37.3k
Ω / □ Further, when the number of metal layers is 13 and the number of thin film resistance layers is 14, the resistance value per thin film resistance layer is 140 MΩ ÷ 14 = 10 MΩ.

【0030】薄膜抵抗層1本の長さを1.5mm、幅を
2μmと仮定すると、薄膜抵抗層のシート抵抗値は、1
0MΩ×2÷1500=1.33×104 Ω/□=1
3.3kΩ/□となる。このように、本発明の耐圧構造
では、電圧を保持するポリシリコンのシート抵抗値は、
メタル層の本数を増やすことで、実現が容易なレベルに
低下させることができる。
Assuming that one thin film resistance layer has a length of 1.5 mm and a width of 2 μm, the sheet resistance value of the thin film resistance layer is 1
0MΩ × 2 ÷ 1500 = 1.33 × 10 4 Ω / □ = 1
It becomes 3.3 kΩ / □. Thus, in the withstand voltage structure of the present invention, the sheet resistance value of the voltage-holding polysilicon is
By increasing the number of metal layers, it is possible to reduce the level to an easily realizable level.

【0031】しかし、メタル層の本数を増加させると、
メタル層と接続する薄膜抵抗層の幅が狭くなり、薄膜抵
抗層の加工が困難となり、また、シート抵抗値を大幅に
低下させることが必要となる。そのため、実用的な薄膜
抵抗層のシート抵抗値としては、10kΩ/□以上で、
50kΩ/□以下である。50kΩ/□を超えると、薄
膜抵抗層内でのシート抵抗値のばらつきが大きくなり、
実用的でない。
However, if the number of metal layers is increased,
The width of the thin-film resistance layer connected to the metal layer becomes narrower, processing of the thin-film resistance layer becomes difficult, and the sheet resistance value needs to be significantly reduced. Therefore, the sheet resistance value of a practical thin film resistance layer is 10 kΩ / □ or more,
It is 50 kΩ / □ or less. If it exceeds 50 kΩ / □, the variation of the sheet resistance value in the thin film resistance layer becomes large,
Not practical.

【0032】このシート抵抗値の範囲は、イオン注入法
などで、十分に不純物濃度を確保できる範囲である。こ
のように、メタル層3、4、5、6と薄膜抵抗層7、
8、9、10、11を組み合わせた第1実施例の耐圧構
造を採用すると、数MΩ/□の高いシート抵抗値を必要
とせず、また、高耐圧ICのように複雑かつ周囲長の長
い半導体装置においても、レイアウトと抵抗値設定を容
易にし、半導体装置の高耐圧化を達成できる。
The range of the sheet resistance value is a range in which the impurity concentration can be sufficiently secured by the ion implantation method or the like. In this way, the metal layers 3, 4, 5, 6 and the thin film resistance layer 7,
When the withstand voltage structure of the first embodiment in which 8, 9, 10, 11 are combined is adopted, a high sheet resistance value of several MΩ / □ is not required, and a semiconductor having a complicated and long peripheral length such as a high withstand voltage IC. Also in the device, the layout and the resistance value setting can be facilitated, and the high breakdown voltage of the semiconductor device can be achieved.

【0033】また、耐圧クラスが同一で、電流容量が異
なる場合は、薄膜抵抗層のシート抵抗値を変更する必要
がないために、耐圧構造の設計が容易になる。図7から
図12は、第1実施例の半導体装置の製造方法であり、
工程順に示した要部製造工程図である。この要部製造工
程図は、図2の要部断面図に相当した図である。
When the withstand voltage classes are the same and the current capacities are different, it is not necessary to change the sheet resistance value of the thin film resistance layer, so that the withstand voltage structure can be easily designed. 7 to 12 show a semiconductor device manufacturing method according to the first embodiment,
It is a principal part manufacturing process drawing shown in process order. This main part manufacturing process diagram is a view corresponding to the main part sectional view of FIG. 2.

【0034】まず、p基板21に、n領域22、23、
p領域24、25、Poffset領域26、をイオン
注入と熱拡散により形成し、次に、選択酸化膜27、2
8を形成する(図7)。次に、図示しない箇所にゲート
酸化膜を形成する。このゲート酸化膜は、ゲート形成箇
所以外の箇所にも酸化膜41が形成される。この酸化膜
41上と選択酸化膜27上にポリシリコン42を成膜
し、前記薄膜抵抗層7、8、9、10、11になるの部
分のポリシリコン42の抵抗値を制御するために、Bも
しくはBの化合物(BF2 など)のイオンを注入43を
行う。このドーズ量は、先ほど述べたようにポリシリコ
ン42のシート抵抗値が約10から50kΩ/□程度に
なるように決める(図8)。
First, on the p substrate 21, n regions 22, 23,
The p regions 24 and 25 and the Poffset region 26 are formed by ion implantation and thermal diffusion, and then the selective oxide films 27 and 2 are formed.
8 is formed (FIG. 7). Next, a gate oxide film is formed at a location not shown. In this gate oxide film, the oxide film 41 is also formed in a place other than the place where the gate is formed. Polysilicon 42 is formed on the oxide film 41 and the selective oxide film 27, and in order to control the resistance value of the polysilicon 42 in the portions to be the thin film resistance layers 7, 8, 9, 10, 11. Ions 43 of B or a compound of B (BF 2 etc.) are implanted. This dose amount is determined so that the sheet resistance value of the polysilicon 42 is about 10 to 50 kΩ / □ as described above (FIG. 8).

【0035】次に、ポリシリコン42を通常の露光、エ
ッチング技術により、パターニングして、薄膜抵抗層
7、8、9、10、11を形成する(図9)。次に、フ
ォトレジスト44を被覆し、露光、エッチング技術によ
る、選択的なAsのイオン注入45を行うことにより、
n領域23の表面層に、後述のメタル層とのコンタクト
をとるためのn+ 領域29を形成する(図10)。
Next, the polysilicon 42 is patterned by ordinary exposure and etching techniques to form thin film resistance layers 7, 8, 9, 10, 11 (FIG. 9). Next, by coating the photoresist 44 and performing selective As ion implantation 45 by exposure and etching techniques,
On the surface layer of the n region 23, an n + region 29 for making contact with a metal layer described later is formed (FIG. 10).

【0036】次に、前記のフォトレジスト44を除去
し、新たにフォトレジスト46を被覆し、露光、エッチ
ング技術による、選択的なBF2 イオンのイオン注入4
7を行うことにより、ポリシリコンで形成された薄膜抵
抗層7、8、9、10、11の表面層に、後述のメタル
層とのコンタクトをとるためのp+ 領域31、32、3
3、34、35を形成し、p領域24、25の表面層
に、後述のメタル層とのコンタクトをとるためのp+
域36、37を形成する(図11)。これらの領域は酸
化膜41をスクリーン酸化膜として利用して形成してい
るが、これらの領域を形成する前に酸化膜41を除去
し、熱酸化膜を形成し直すこともできる。
Next, the photoresist 44 is removed, a new photoresist 46 is coated, and selective BF 2 ion implantation 4 is performed by exposure and etching techniques.
By carrying out step 7, p + regions 31, 32, 3 for making contact with a metal layer described later are formed on the surface layers of the thin film resistance layers 7, 8, 9, 10, 11 made of polysilicon.
3, 34 and 35 are formed, and p + regions 36 and 37 for making contact with a metal layer described later are formed on the surface layers of the p regions 24 and 25 (FIG. 11). Although these regions are formed by using the oxide film 41 as a screen oxide film, the oxide film 41 can be removed and the thermal oxide film can be formed again before forming these regions.

【0037】次に、PSG(リンガラス膜)などの層間
絶縁膜13、14を、形成したのち、露光、エッチング
技術により、高電位側電極1、メタル層3、4、5、6
および低電位側電極2とのコンタクトをとるためのコン
タクトホールを形成し、Alなどのメタルを全面にスパ
ッタし、露光、エッチング技術により、パターニングを
行ない、高電位側電極1、メタル層3、4、5、6およ
び低電位側電極2を形成する(図12)。
Next, after forming interlayer insulating films 13 and 14 such as PSG (phosphorus glass film), the high potential side electrode 1 and the metal layers 3, 4, 5 and 6 are formed by exposure and etching techniques.
Then, a contact hole for making contact with the low potential side electrode 2 is formed, a metal such as Al is sputtered on the entire surface, and patterning is performed by an exposure and etching technique to form the high potential side electrode 1, the metal layers 3, 4 5, 6 and the low potential side electrode 2 are formed (FIG. 12).

【0038】さらに、図示しない、表面のパッシベーシ
ョン膜を形成、パターニングして完了する。前記の第1
実施例は、横型のプレーナ型半導体装置の耐圧構造につ
いて説明したが、つぎの実施例で説明する縦型の半導体
装置の場合で、チップの活性領域から横方向に空乏層が
拡張していくタイプでは、第1実施例で使用した薄膜抵
抗層とループ状のメタル層(導電膜層)で、高電位側電
極と低電位側電極を接続する方法は非常に有効である。
Further, a passivation film (not shown) on the surface is formed and patterned to complete the process. First of the above
Although the embodiments have described the breakdown voltage structure of the horizontal planar semiconductor device, in the case of the vertical semiconductor device described in the next embodiment, the depletion layer expands laterally from the active region of the chip. Then, the method of connecting the high potential side electrode and the low potential side electrode by the thin film resistance layer and the loop-shaped metal layer (conductive film layer) used in the first embodiment is very effective.

【0039】図13は、この発明の第2実施例の半導体
装置であり、同図(a)は要部平面図、同図(b)は同
図(a)のM−M線で切断した要部断面図である。第1
実施例との違いは、図5のループ状のメタル層3、4、
5、6下の層間絶縁膜13を開口して、選択酸化膜27
上に達するように、メタル層に凸部48を設けた点であ
る。こうすることで、ループ状のメタル層3、4、5、
6の電位を、層間絶縁膜13を介すことなく、選択酸化
膜27下の半導体面に有効に伝えることができる。メタ
ル層3、4、5、6の電位が半導体面に有効に反映され
ることで、第1実施例の半導体装置より、局部的な電界
集中が起こり難くくなり、安定して高耐圧を確保するこ
とができる。
FIG. 13 shows a semiconductor device according to a second embodiment of the present invention, in which FIG. 13A is a plan view of an essential part and FIG. 13B is a sectional view taken along line MM in FIG. FIG. First
The difference from the embodiment is that the loop-shaped metal layers 3, 4,
The interlayer insulating film 13 under 5 and 6 is opened, and the selective oxide film 27 is formed.
The point is that the convex portion 48 is provided on the metal layer so as to reach the top. By doing this, the loop-shaped metal layers 3, 4, 5,
The potential of 6 can be effectively transmitted to the semiconductor surface below the selective oxide film 27 without passing through the interlayer insulating film 13. Since the potentials of the metal layers 3, 4, 5, and 6 are effectively reflected on the semiconductor surface, local electric field concentration is less likely to occur than in the semiconductor device of the first embodiment, and a stable high withstand voltage is secured. can do.

【0040】図14は、この発明の第3実施例の半導体
装置の要部断面図である。この半導体装置の耐圧構造
は、プレーナ構造で、縦型デバイスおよび横型デバイス
の周辺耐圧構造によく使用されるガードリング構造と組
み合わせた例である。この図は耐圧構造部の要部断面図
を示す。n層51の裏面側にn+ 層52を形成し、表面
側に低電位領域53となるpウェル領域、この低電位領
域53を取り囲むようにガードリングとなるp領域5
4、55、56、57をそれぞれ形成し、チップの終端
部には、高電位領域58となるp領域を形成する。低電
位領域53となるpウェル領域には、図示しない活性領
域(例えば、MOSFETでいうとゲート部やソース部
が占めている領域のこと)が形成される。低電位領域5
3上に低電位側電極59、高電位領域58上に電極膜6
0が形成される。高電位電極となる裏面側電極61と電
極膜60はダイシング面62で電気的に接続されてい
る。
FIG. 14 is a sectional view showing the principal part of a semiconductor device according to the third embodiment of the present invention. The breakdown voltage structure of this semiconductor device is a planar structure, and is an example in which it is combined with a guard ring structure which is often used as a peripheral breakdown voltage structure for vertical devices and horizontal devices. This figure shows a cross-sectional view of the main part of the breakdown voltage structure portion. An n + layer 52 is formed on the back surface side of the n layer 51, and a p well region serving as a low potential region 53 is formed on the front surface side, and a p region 5 serving as a guard ring surrounding the low potential region 53.
4, 55, 56 and 57 are formed respectively, and a p region serving as a high potential region 58 is formed at the end portion of the chip. An active region (not shown) (for example, a region occupied by a gate portion and a source portion in MOSFET) is formed in the p-well region which becomes the low potential region 53. Low potential area 5
3 on the low potential side, and the electrode film 6 on the high potential region 58.
0 is formed. The back surface side electrode 61, which serves as a high potential electrode, and the electrode film 60 are electrically connected to each other at the dicing surface 62.

【0041】酸化膜63上に薄膜抵抗層7、8、9、1
0、11が形成され、この上に層間絶縁膜13を介して
ループ状のメタル層3、4、5、6が形成され、電極膜
60と最内周のメタル層3、メタル層3とメタル層4、
メタル層4とメタル層5、メタル層5とメタル層6、お
よび最外周のメタル層6と低電位側電極59は、薄膜抵
抗層7、8、9、10、11によってそれぞれ電気的に
接続される。
Thin-film resistance layers 7, 8, 9, 1 are formed on the oxide film 63.
0, 11 are formed, and the loop-shaped metal layers 3, 4, 5, 6 are formed on the inter-layer insulating film 13, and the electrode film 60 and the innermost metal layer 3, the metal layer 3 and the metal are formed. Layer 4,
The metal layer 4 and the metal layer 5, the metal layer 5 and the metal layer 6, and the outermost metal layer 6 and the low potential side electrode 59 are electrically connected by the thin film resistance layers 7, 8, 9, 10 and 11, respectively. It

【0042】ここで、高電位側電極である裏面側電極6
1に電位Vsを印加すると、低電位側電極59と電極膜
60の間に電位Vsがかかり、薄膜抵抗層7、8、9、
10、11には、漏れ電流が流れて、ループ状のメタル
層3、4、5、6には、均一な電位分布が形成され、こ
の電位分布による電界が、半導体中の空乏層における電
界集中を緩和し、耐圧を保持させる。図では、ガードリ
ング上にループ状のメタル層3、4、5、6が配置され
ているが、必ずしも、ガードリング上に配置する必要は
ない。
Here, the back surface side electrode 6 which is the high potential side electrode
When the potential Vs is applied to 1, the potential Vs is applied between the low potential side electrode 59 and the electrode film 60, and the thin film resistance layers 7, 8, 9,
Leakage current flows in 10 and 11, and a uniform potential distribution is formed in the loop-shaped metal layers 3, 4, 5, and 6, and the electric field due to this potential distribution concentrates in the depletion layer in the semiconductor. To maintain the breakdown voltage. In the figure, the loop-shaped metal layers 3, 4, 5, and 6 are arranged on the guard ring, but they are not necessarily arranged on the guard ring.

【0043】[0043]

【発明の効果】この発明によれば、半導体基板上の高電
位領域と低電位領域に電気的に接続する第1電極と第2
電極を設けて、第1電極の周囲の第1電極と第2電極の
間に、複数本のループ状導電膜層を形成し、薄膜抵抗層
で第1電極とループ状導電膜層の間、ループ状導電膜層
の相互間、ループ状導電膜層と第2電極の間を電気的に
接続することによって、第1電極と第2電極の間に、電
圧を印加すると、ループ状導電膜層には、第1電極と第
2電極の間の電位分布を、高い電位から低い電位へ、細
かい階段状で直線的低下させることができるため、半導
体基板内部にも均一な電位分布が形成され、電界集中が
起きにくく、耐圧の高い半導体装置とすることができ
る。
According to the present invention, the first electrode and the second electrode which are electrically connected to the high potential region and the low potential region on the semiconductor substrate.
An electrode is provided, a plurality of loop-shaped conductive film layers are formed between the first electrode and the second electrode around the first electrode, and a thin film resistance layer is formed between the first electrode and the loop-shaped conductive film layer. When a voltage is applied between the first electrode and the second electrode by electrically connecting the loop-shaped conductive film layers to each other and between the loop-shaped conductive film layer and the second electrode, the loop-shaped conductive film layer is formed. Since the potential distribution between the first electrode and the second electrode can be linearly reduced from a high potential to a low potential in fine steps, a uniform potential distribution is formed inside the semiconductor substrate. It is possible to obtain a semiconductor device in which electric field concentration hardly occurs and the breakdown voltage is high.

【0044】また、薄膜抵抗層の形状を、1本あたりの
長さを長く、また細くして抵抗値を高めることによっ
て、薄膜抵抗層自体のシート抵抗値を制御し易い低抵抗
レベルにすることが可能である。また、高耐圧ICのよ
うに耐圧構造の形状が複雑で、周囲長の長い半導体装置
においても、薄膜抵抗層とループ状導電膜層を組み合わ
せることで、耐圧構造を容易に設計することができる。
Further, the shape of each thin film resistance layer is made long and thin to increase the resistance value, so that the sheet resistance value of the thin film resistance layer itself is controlled to a low resistance level. Is possible. Further, even in a semiconductor device having a long peripheral length such as a high withstand voltage IC having a complicated withstand voltage structure, the withstand voltage structure can be easily designed by combining the thin film resistance layer and the loop-shaped conductive film layer.

【0045】また同一耐圧で周囲長が異なる素子を設計
する場合にも、薄膜抵抗層の幅や長さを変更することな
しに耐圧構造の設計ができる。
Also, when designing elements having the same breakdown voltage but different peripheral lengths, the breakdown voltage structure can be designed without changing the width or length of the thin film resistance layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の半導体装置であり、
(a)は要部平面図、(b)は、(a)のA部の拡大平
面図
FIG. 1 is a semiconductor device according to a first embodiment of the present invention,
(A) is a main part plan view, (b) is an enlarged plan view of part A of (a)

【図2】この発明の第1実施例の半導体装置であり、図
1(b)のX−X線で切断した要部断面図
FIG. 2 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment of the present invention, taken along line XX in FIG.

【図3】この発明の第1実施例の半導体装置であり、図
1(b)のY−Y線で切断した要部断面図
FIG. 3 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment of the present invention, taken along the line YY in FIG.

【図4】この発明の第1実施例の半導体装置であり、図
1(b)のZ−Z線で切断した要部断面図
FIG. 4 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment of the present invention, taken along the line ZZ in FIG.

【図5】この発明の第1実施例の半導体装置であり、図
1(b)のM−M線で切断した要部断面図
FIG. 5 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment of the present invention, taken along line MM in FIG.

【図6】図1の半導体装置の要部断面図と電位分布を示
し、(a)は図2の要部断面図、(b)は(a)のルー
プ状のメタル層の電位分布を示す図
6A and 6B show a cross-sectional view and a potential distribution of the main part of the semiconductor device of FIG. 1, FIG. 6A shows a cross-sectional view of the main part of FIG. 2, and FIG. 6B shows a potential distribution of the loop-shaped metal layer of FIG. Figure

【図7】第1実施例の半導体装置の要部製造工程図FIG. 7 is a manufacturing process diagram of main parts of the semiconductor device according to the first embodiment.

【図8】図7に続く、第1実施例の半導体装置の要部製
造工程図
FIG. 8 is a manufacturing step diagram of the main part of the semiconductor device of the first embodiment, following FIG. 7;

【図9】図8に続く、第1実施例の半導体装置の要部製
造工程図
FIG. 9 is a manufacturing step diagram of the essential part of the semiconductor device of the first embodiment, following FIG. 8;

【図10】図9に続く、第1実施例の半導体装置の要部
製造工程図
FIG. 10 is a manufacturing step diagram of a main part of the semiconductor device of the first embodiment, which is subsequent to FIG. 9;

【図11】図10に続く、第1実施例の半導体装置の要
部製造工程図
FIG. 11 is a manufacturing step diagram of the essential part of the semiconductor device of the first embodiment, following FIG. 10;

【図12】図11に続く、第1実施例の半導体装置の要
部製造工程図
FIG. 12 is a manufacturing step diagram of the essential part of the semiconductor device of the first embodiment, which is subsequent to FIG. 11;

【図13】この発明の第2実施例の半導体装置であり、
(a)は要部平面図、(b)は、(a)のM−M線で切
断した要部断面図
FIG. 13 is a semiconductor device of a second embodiment of the present invention,
(A) is a plan view of a main part, (b) is a cross-sectional view of the main part taken along line MM of (a)

【図14】この発明の第3実施例の半導体装置の要部断
面図
FIG. 14 is a sectional view showing the principal part of a semiconductor device according to a third embodiment of the present invention.

【図15】Double RESURF構造と抵抗性フ
ィールドプレート構造を組み合わせた構造の要部断面図
FIG. 15 is a cross-sectional view of an essential part of a structure in which a Double RESURF structure and a resistive field plate structure are combined.

【図16】半導体内部の空乏層の拡がりを示した図FIG. 16 is a diagram showing the spread of a depletion layer inside a semiconductor.

【図17】特許第3117023号に開示されている渦
巻き状の薄膜抵抗層を有する半導体装置
FIG. 17 is a semiconductor device having a spiral thin film resistance layer disclosed in Japanese Patent No. 3117023.

【図18】複雑な平面パターンの耐圧構造を有する高耐
圧ICの要部平面図
FIG. 18 is a plan view of an essential part of a high breakdown voltage IC having a complicated breakdown voltage structure of a planar pattern.

【符号の説明】[Explanation of symbols]

1 高電位側電極 2 低電位側電極 3〜6 メタル層 7〜11 薄膜抵抗層 12 コンタクトホール 13、14 層間絶縁膜 21 p基板 22 Nwell領域 23 n領域 24、25 p領域 26 Poffset領域 27、28 選択酸化膜 29 n+ 領域 31〜37 p+ 領域 38 裏面側電極 41 酸化膜 42 ポリシリコン 43、47 イオン注入(BF2 ) 44、46 フォトレジスト 45 イオン注入(As) 48 凸部 51 n領域 52 n+ 領域 53 低電位領域 54〜57 ガードリング(p領域) 58 高電位領域 59 低電位側電極 60 電極膜 61 裏面側電極 62 ダイシング面 63 酸化膜 71 高電位側領域 72 耐圧構造部 73 低電位側領域 74 ゲート・ソース電極 75 ドレイン電極1 High-potential side electrode 2 Low-potential side electrode 3-6 Metal layers 7-11 Thin film resistance layer 12 Contact hole 13, 14 Interlayer insulating film 21 p Substrate 22 Nwell region 23 n region 24, 25 p region 26 Poffset region 27, 28 Selective oxide film 29 n + regions 31 to 37 p + region 38 back surface side electrode 41 oxide film 42 polysilicon 43, 47 ion implantation (BF 2 ) 44, 46 photoresist 45 ion implantation (As) 48 convex portion 51 n region 52 n + region 53 low potential region 54 to 57 guard ring (p region) 58 high potential region 59 low potential side electrode 60 electrode film 61 back side electrode 62 dicing surface 63 oxide film 71 high potential side region 72 breakdown structure 73 low potential Side region 74 Gate / source electrode 75 Drain electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F038 AR09 AV06 BH02 BH09 BH15 EZ20 5F140 AA00 AA25 AB10 AC23 BA01 BD05 BF01 BF04 BG32 BH18 BH30 BJ01 BJ05 BJ25 BK13 BK29 CA03 CB01 CB07 CB08 CC05 CD09 DA08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F038 AR09 AV06 BH02 BH09 BH15                       EZ20                 5F140 AA00 AA25 AB10 AC23 BA01                       BD05 BF01 BF04 BG32 BH18                       BH30 BJ01 BJ05 BJ25 BK13                       BK29 CA03 CB01 CB07 CB08                       CC05 CD09 DA08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された絶縁膜上に、互
いに離して形成された第1電極と第2電極とを有する半
導体装置であって、該第1電極を取り囲むように、該第
1電極と前記第2電極の間の前記絶縁膜上に、複数本形
成されるループ状導電膜層と、前記第1電極と該ループ
状導電膜層の間、該ループ状導電膜層の相互間、該ルー
プ状導電膜層と前記第2電極の間とをそれぞれ互いに電
気的に接続する薄膜抵抗層と、を有することを特徴とす
る半導体装置。
1. A semiconductor device having a first electrode and a second electrode formed separately from each other on an insulating film formed on a semiconductor substrate, wherein the first electrode and the second electrode are formed so as to surround the first electrode. A plurality of loop-shaped conductive film layers are formed on the insulating film between the first electrode and the second electrode, and between the first electrode and the loop-shaped conductive film layer, the loop-shaped conductive film layers are mutually connected. And a thin film resistance layer electrically connecting the loop-shaped conductive film layer and the second electrode to each other, respectively.
【請求項2】半導体基板上に形成された第1絶縁膜と、
該第1絶縁膜上に形成される第2絶縁膜と、該第2絶縁
膜上に、互いに離して形成された前記第1電極と前記第
2電極と、該第1電極を取り囲むように、該第1電極と
前記第2電極の間の前記第2絶縁膜上に、複数本形成さ
れるループ状導電膜層と、前記第1電極と該ループ状導
電膜層の間、該ループ状導電膜層の相互間、該ループ状
導電膜層と前記第2電極の間とをそれぞれ互いに電気的
に接続し、前記第1絶縁膜上に形成される薄膜抵抗層
と、を有することを特徴とする半導体装置。
2. A first insulating film formed on a semiconductor substrate,
A second insulating film formed on the first insulating film, the first electrode and the second electrode formed on the second insulating film, separated from each other, and surrounding the first electrode, A plurality of loop-shaped conductive film layers formed on the second insulating film between the first electrode and the second electrode, and the loop-shaped conductive film between the first electrode and the loop-shaped conductive film layer. A thin film resistance layer formed on the first insulating film, electrically connecting the loop-shaped conductive film layers and the second electrode to each other. Semiconductor device.
【請求項3】前記ループ状導電膜層の底部が、前記薄膜
抵抗層と離して、前記第1絶縁膜と接することを特徴と
する請求項2に記載の半導体装置。
3. The semiconductor device according to claim 2, wherein a bottom portion of the loop conductive film layer is separated from the thin film resistance layer and is in contact with the first insulating film.
【請求項4】前記ループ状導電膜層が、金属膜で形成さ
れることを特徴とする請求項1ないし3のいずれかに記
載の半導体装置。
4. The semiconductor device according to claim 1, wherein the loop conductive film layer is formed of a metal film.
【請求項5】前記薄膜抵抗層が、ポリシリコンで形成さ
れることを特徴とする請求項1ないし3のいずれかに記
載の半導体装置。
5. The semiconductor device according to claim 1, wherein the thin film resistance layer is made of polysilicon.
【請求項6】前記薄膜抵抗層のシート抵抗値が、1×1
4 Ω/□以上であることを特徴とする請求項1ないし
3のいずれかに記載の半導体装置。
6. The sheet resistance value of the thin film resistance layer is 1 × 1.
4. The semiconductor device according to claim 1, wherein the semiconductor device has a resistance of 0 4 Ω / □ or more.
【請求項7】前記薄膜抵抗層のシート抵抗値が、5×1
4 Ω/□以下であることを特徴とする請求項1、2、
3、6のいずれかに記載の半導体装置。
7. The sheet resistance value of the thin film resistance layer is 5 × 1.
0 4 Ω / □ or less, Claims 1 and 2,
7. The semiconductor device according to any one of 3 and 6.
【請求項8】前記半導体基板が第1導電型であって、該
半導体基板の表面層に第1導電型の第1領域と第2導電
型の第2領域が離して形成され、前記第1領域と前記第
2領域の間の前記半導体基板の表面層に、前記第1領域
から離し、且つ、前記第2領域に接するように第2導電
型の第3領域が形成され、前記第1領域と前記第1電極
とが接続し、前記第2領域と前記第2電極とが接続する
ことを特徴とする請求項1ないし3のいずれかに記載の
半導体装置。
8. The semiconductor substrate is of the first conductivity type, and a first region of the first conductivity type and a second region of the second conductivity type are formed separately on a surface layer of the semiconductor substrate. A third region of the second conductivity type is formed on the surface layer of the semiconductor substrate between the region and the second region so as to be separated from the first region and contact the second region. 4. The semiconductor device according to claim 1, wherein the first region is connected to the first electrode, and the second region is connected to the second electrode.
【請求項9】前記半導体基板が第1導電型であって、該
半導体基板の表面層に第2導電型の第1領域と第2領域
が互いに離れてそれぞれ形成され、前記第1領域と前記
第2領域の間の前記半導体基板の表面層に前記第1領域
と前記第2領域から離して、第2導電型の第4領域が、
前記第1領域を取り囲むようにループ状に形成され、前
記第1領域と前記第1電極とが接続し、前記第2領域と
前記第2電極とが接続することを特徴とする請求項1な
いし3のいずれかに記載の半導体装置。
9. The semiconductor substrate is of a first conductivity type, and a first region and a second region of a second conductivity type are formed separately from each other on a surface layer of the semiconductor substrate, and the first region and the second region are separated from each other. In the surface layer of the semiconductor substrate between the second regions, a fourth region of the second conductivity type is provided apart from the first region and the second region,
It is formed in a loop shape so as to surround the first region, the first region and the first electrode are connected, and the second region and the second electrode are connected. 3. The semiconductor device according to any one of 3 above.
JP2001194631A 2001-06-27 2001-06-27 Semiconductor device Expired - Lifetime JP4894097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194631A JP4894097B2 (en) 2001-06-27 2001-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194631A JP4894097B2 (en) 2001-06-27 2001-06-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2003008009A true JP2003008009A (en) 2003-01-10
JP4894097B2 JP4894097B2 (en) 2012-03-07

Family

ID=19032732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194631A Expired - Lifetime JP4894097B2 (en) 2001-06-27 2001-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4894097B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351753A (en) * 2005-06-15 2006-12-28 Mitsubishi Electric Corp Field effect transistor
JP2007036221A (en) * 2005-07-07 2007-02-08 Infineon Technologies Ag Semiconductor component having channel blocking zone
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device
JP2010283369A (en) * 2010-07-26 2010-12-16 Mitsubishi Electric Corp Semiconductor device
WO2013069408A1 (en) 2011-11-11 2013-05-16 富士電機株式会社 Semiconductor device
EP2958144A1 (en) * 2014-06-16 2015-12-23 STMicroelectronics Srl Integrated transformer
JP2016042542A (en) * 2014-08-19 2016-03-31 富士電機株式会社 Semiconductor device and method of manufacturing the same
JP2017112356A (en) * 2015-12-15 2017-06-22 富士電機株式会社 Semiconductor device
US9762048B2 (en) 2015-12-15 2017-09-12 Fuji Electric Co., Ltd. Semiconductor device
DE102016120301A1 (en) * 2016-10-25 2018-04-26 Infineon Technologies Ag Power semiconductor device termination structure
DE102016120300A1 (en) * 2016-10-25 2018-04-26 Infineon Technologies Austria Ag High voltage termination structure of a power semiconductor device
US10043872B2 (en) 2015-04-08 2018-08-07 Fuji Electric Co., Ltd. Semiconductor device
US10217861B2 (en) 2016-03-18 2019-02-26 Fuji Electric Co., Ltd. High voltage integrated circuit with high voltage junction termination region
US10396167B2 (en) 2015-12-15 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
CN113809161A (en) * 2021-10-15 2021-12-17 捷捷微电(无锡)科技有限公司 Ultrahigh voltage VDMOS integrated circuit chip and preparation method thereof
CN114093866A (en) * 2021-11-19 2022-02-25 陕西亚成微电子股份有限公司 MOSFET structure of integrated starting device and manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229646B2 (en) 2013-12-20 2017-11-15 株式会社デンソー Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266758A (en) * 1988-04-18 1989-10-24 Fuji Electric Co Ltd Semiconductor element
JPH10163482A (en) * 1996-11-27 1998-06-19 Denso Corp Insulation-isolation type semiconductor device
JP2000022175A (en) * 1998-06-30 2000-01-21 Toshiba Corp High breakdown voltage semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266758A (en) * 1988-04-18 1989-10-24 Fuji Electric Co Ltd Semiconductor element
JPH10163482A (en) * 1996-11-27 1998-06-19 Denso Corp Insulation-isolation type semiconductor device
JP2000022175A (en) * 1998-06-30 2000-01-21 Toshiba Corp High breakdown voltage semiconductor device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351753A (en) * 2005-06-15 2006-12-28 Mitsubishi Electric Corp Field effect transistor
JP2007036221A (en) * 2005-07-07 2007-02-08 Infineon Technologies Ag Semiconductor component having channel blocking zone
US8638160B2 (en) 2007-12-14 2014-01-28 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device
US9411346B2 (en) 2007-12-14 2016-08-09 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
JP2010283369A (en) * 2010-07-26 2010-12-16 Mitsubishi Electric Corp Semiconductor device
US20140217466A1 (en) * 2011-11-11 2014-08-07 Fuji Electric Co., Ltd. Semiconductor device
WO2013069408A1 (en) 2011-11-11 2013-05-16 富士電機株式会社 Semiconductor device
US9443966B2 (en) 2011-11-11 2016-09-13 Fuji Electric Co., Ltd. High breakdown voltage semiconductor device
EP2958144A1 (en) * 2014-06-16 2015-12-23 STMicroelectronics Srl Integrated transformer
US11302471B2 (en) 2014-06-16 2022-04-12 Stmicroelectronics S.R.L. Integrated transformer
US10541079B2 (en) 2014-06-16 2020-01-21 Stmicroelectronics S.R.L. Integrated transformer
US10236115B2 (en) 2014-06-16 2019-03-19 Stmicroelectronics S.R.L. Integrated transformer
JP2016042542A (en) * 2014-08-19 2016-03-31 富士電機株式会社 Semiconductor device and method of manufacturing the same
US10043872B2 (en) 2015-04-08 2018-08-07 Fuji Electric Co., Ltd. Semiconductor device
US9762048B2 (en) 2015-12-15 2017-09-12 Fuji Electric Co., Ltd. Semiconductor device
US10396167B2 (en) 2015-12-15 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
JP2017112356A (en) * 2015-12-15 2017-06-22 富士電機株式会社 Semiconductor device
US10217861B2 (en) 2016-03-18 2019-02-26 Fuji Electric Co., Ltd. High voltage integrated circuit with high voltage junction termination region
DE102016120300A1 (en) * 2016-10-25 2018-04-26 Infineon Technologies Austria Ag High voltage termination structure of a power semiconductor device
US10388722B2 (en) 2016-10-25 2019-08-20 Infineon Technologies Ag Power semiconductor device termination structure
DE102016120301A1 (en) * 2016-10-25 2018-04-26 Infineon Technologies Ag Power semiconductor device termination structure
US10600862B2 (en) 2016-10-25 2020-03-24 Infineon Technologies Austria Ag High voltage termination structure of a power semiconductor device
CN113809161A (en) * 2021-10-15 2021-12-17 捷捷微电(无锡)科技有限公司 Ultrahigh voltage VDMOS integrated circuit chip and preparation method thereof
CN113809161B (en) * 2021-10-15 2022-06-24 捷捷微电(无锡)科技有限公司 Ultrahigh voltage VDMOS integrated circuit chip and preparation method thereof
CN114093866A (en) * 2021-11-19 2022-02-25 陕西亚成微电子股份有限公司 MOSFET structure of integrated starting device and manufacturing method
CN114093866B (en) * 2021-11-19 2023-03-14 陕西亚成微电子股份有限公司 MOSFET structure of integrated starting device and manufacturing method

Also Published As

Publication number Publication date
JP4894097B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2597412B2 (en) Semiconductor device and manufacturing method thereof
KR0175277B1 (en) Apparatus and method for manufacturing power semiconductor device with a folding fieldplate structure
JP2968222B2 (en) Semiconductor device and method for preparing silicon wafer
JP2003008009A (en) Semiconductor device
US5714396A (en) Method of making a high voltage planar edge termination structure
JP2005005443A (en) High breakdown voltage semiconductor device
JP2009016482A (en) Semiconductor device, and manufacturing method thereof
JP6344137B2 (en) Semiconductor device and manufacturing method thereof
US11011615B2 (en) Transistor with contacted deep well region
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
US6703665B1 (en) Transistor
US5323041A (en) High-breakdown-voltage semiconductor element
US6707116B2 (en) Integrated circuit and manufacturing method therefor
EP1093168B1 (en) Field-effect transistor and integrated circuit device comprising the same
JP3523458B2 (en) High avalanche withstand MOSFET and method of manufacturing the same
JP3505039B2 (en) Semiconductor device and manufacturing method thereof
JP4576805B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP4275763B2 (en) Power semiconductor device employing field plate and method of manufacturing the same
JPH05136405A (en) Semiconductor device
JPH10229194A (en) Lateral insulated-gate bipolar transistor
JP2004152806A (en) Insulated gate type semiconductor element and method for manufacturing the same
JP2023003564A (en) Semiconductor device
JP2000260981A (en) Semiconductor device containing field-effect transistor
JP2000294779A (en) Semiconductor device and manufacture thereof
JPH0555590A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term