JP2001103675A - Device and method for controlling solar battery - Google Patents

Device and method for controlling solar battery

Info

Publication number
JP2001103675A
JP2001103675A JP26987299A JP26987299A JP2001103675A JP 2001103675 A JP2001103675 A JP 2001103675A JP 26987299 A JP26987299 A JP 26987299A JP 26987299 A JP26987299 A JP 26987299A JP 2001103675 A JP2001103675 A JP 2001103675A
Authority
JP
Japan
Prior art keywords
voltage
current
solar cell
operating point
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26987299A
Other languages
Japanese (ja)
Other versions
JP4042943B2 (en
Inventor
Kenji Seto
賢治 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP26987299A priority Critical patent/JP4042943B2/en
Publication of JP2001103675A publication Critical patent/JP2001103675A/en
Application granted granted Critical
Publication of JP4042943B2 publication Critical patent/JP4042943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly search the optimum operating point of a solar battery. SOLUTION: The control device is provided with a current voltage characteristic-grasping means 100 for approximately grasping current-voltage characteristics by measuring current the open voltage of a solar battery 3, short-circuiting current, and current when being controlled to a voltage that is slightly smaller than the open voltage, an optimum operation point determination means 101 for determining an optimum operating point according to the cross point between a first characteristic straight line L1 for indicating the open voltage and a current when being controlled to a voltage that is slightly smaller than the open voltage, and a second characteristic straight line L2 for indicating the characteristics of the short-circuiting current, and a control means 102 for controlling the current of the solar cell so that the solar battery voltage reaches the voltage of an optimum operation point P1 while a load is connected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池の制御
装置及び太陽電池の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell control device and a solar cell control method.

【0002】[0002]

【従来の技術】太陽電池は、電力供給用として種々の装
置や住宅の冷暖房装置等に用いられている。この太陽電
池の出力特性は、図4に電流−電圧特性A,B,Cとし
て表され、この特性は実稼働状態においては様々な要因
(照度、気温、固体差、経年変化など)により変化す
る。
2. Description of the Related Art Solar cells are used in various devices for supplying electric power and in cooling and heating devices in houses. The output characteristics of this solar cell are represented in FIG. 4 as current-voltage characteristics A, B, and C, and these characteristics change due to various factors (illuminance, temperature, individual difference, aging, etc.) in an actual operation state. .

【0003】つまり最大出力が得られる太陽電池電圧の
特性が変化する。そのため実稼働状態において発電効率
を高めるためには、その状況における最大電力を取り出
せる太陽電池電圧を何らかの方法により求め、その電圧
となるように制御する必要がある。
That is, the characteristics of the solar cell voltage at which the maximum output is obtained change. Therefore, in order to increase the power generation efficiency in the actual operation state, it is necessary to obtain a solar cell voltage at which the maximum power can be taken out in that state by some method, and to control the voltage to be the voltage.

【0004】従来、一般的に用いられている最適動作点
の探索方法は、山登り法と呼ばれ、その方法は、太陽電
池の出力電圧を出力電流により小刻みに変化させ、その
ときの電力を計算しながら電力の最大点を探索するとい
うものである。
Conventionally, a generally used method for searching for an optimum operating point is called a hill-climbing method. In this method, the output voltage of a solar cell is gradually changed by an output current, and the power at that time is calculated. While searching for the maximum point of power.

【0005】[0005]

【発明が解決しようとする課題】ところで、この山登り
法では、最適動作点付近は、電流を変化させても電圧の
変化量が微小なので、その積である電力の変化量も微小
となる。そのため、デジタル制御の場合、精密に最適動
作点を探索するためには、高い分解能を持ったA/D変
換器が必要となり、また変化させる電流の刻み幅を狭く
しなければならず、そのため最適動作点の探索に時間が
かかる。
By the way, in the hill-climbing method, the amount of change in voltage near the optimum operating point is small even if the current is changed, and therefore the amount of change in power, which is the product thereof, is also small. Therefore, in the case of digital control, an A / D converter having a high resolution is required in order to accurately search for the optimum operating point, and the step size of the current to be changed must be narrowed. It takes time to search for an operating point.

【0006】この発明は、かかる点に鑑みてなされたも
ので、短時間で太陽電池の最適動作点を探索することが
可能な太陽電池の制御装置及び太陽電池の制御方法を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a solar cell control device and a solar cell control method capable of searching for an optimum operating point of a solar cell in a short time. And

【0007】[0007]

【課題を解決するための手段】前記課題を解決し、かつ
目的を達成するために、この発明は、以下のように構成
した。
Means for Solving the Problems In order to solve the above problems and achieve the object, the present invention has the following constitution.

【0008】請求項1に記載の発明は、『太陽電池の開
放電圧、短絡電流及び開放電圧より少し低い電圧に制御
したときの電流を測定することで電流−電圧特性を近似
的に把握する電流電圧特性把握手段と、開放電圧とこの
開放電圧より少し低い電圧に制御したときの電流を示す
第1の特性直線と短絡電流の特性を示す第2の特性直線
との交点から最適動作点を決定する最適動作点決定手段
と、負荷を接続した状態で太陽電池電圧が最適動作点電
圧になるように太陽電池電流を制御する制御手段とを有
することを特徴とする太陽電池の制御装置。』である。
According to the first aspect of the present invention, there is provided a method of measuring a current obtained by controlling the open-circuit voltage, short-circuit current, and voltage slightly lower than the open-circuit voltage of a solar cell to obtain a current-voltage characteristic approximately. An optimum operating point is determined from a voltage characteristic grasping means and an intersection of an open-circuit voltage and a first characteristic line indicating a current when controlled to a voltage slightly lower than the open-circuit voltage and a second characteristic line indicating a characteristic of the short-circuit current. A control device for controlling a solar cell current so that the solar cell voltage becomes an optimum operating point voltage with a load connected thereto. ].

【0009】この請求項1に記載の発明によれば、電流
−電圧特性を近似的に把握し、開放電圧とこの開放電圧
より少し低い電圧に制御したときの電流を示す第1の特
性直線と短絡電流の特性を示す第2の特性直線との交点
から最適動作点を決定し、負荷を接続した状態で太陽電
池電圧が最適動作点電圧になるように太陽電池電流を制
御することができる。
According to the first aspect of the present invention, the current-voltage characteristic is approximately grasped, and the open-circuit voltage and the first characteristic line representing the current when the voltage is controlled to a voltage slightly lower than the open-circuit voltage are obtained. The optimum operating point is determined from the intersection with the second characteristic line indicating the characteristics of the short-circuit current, and the solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected.

【0010】請求項2に記載の発明は、『前記太陽電池
電流を制御する制御手段は、最適動作点電圧の推定値の
移動平均結果を目標太陽電池電圧に用いることを特徴と
する請求項1に記載の太陽電池の制御装置。』である。
The invention according to claim 2 is characterized in that the control means for controlling the solar cell current uses a moving average result of the estimated value of the optimum operating point voltage as the target solar cell voltage. 3. The control device for a solar cell according to 1. ].

【0011】この請求項2に記載の発明によれば、最適
動作点電圧の推定値の移動平均結果を目標太陽電池電圧
に用いることで、日射量が瞬間的に変動しても影響を受
けにくい。
According to the second aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that even if the amount of solar radiation fluctuates instantaneously, it is hardly affected. .

【0012】請求項3に記載の発明は、『太陽電池の開
放電圧、短絡電流及び開放電圧より少し低い電圧に制御
したときの電流を測定することで電流−電圧特性を近似
的に把握し、開放電圧とこの開放電圧より少し低い電圧
に制御したときの電流を示す第1の特性直線と、短絡電
流の特性を示す第2の特性直線との交点から最適動作点
を決定し、負荷を接続した状態で太陽電池電圧が最適動
作点電圧になるように太陽電池電流を制御することを特
徴とする太陽電池の制御方法。』である。
[0012] The invention according to claim 3 is based on "an open-circuit voltage of a solar cell, a short-circuit current, and a current when controlled to a voltage slightly lower than the open-circuit voltage to approximately grasp a current-voltage characteristic, The optimum operating point is determined from the intersection of the first characteristic line indicating the open-circuit voltage and the current when controlled to a voltage slightly lower than the open-circuit voltage and the second characteristic line indicating the characteristic of the short-circuit current, and the load is connected. A method for controlling a solar cell, comprising: controlling a solar cell current so that the solar cell voltage becomes an optimum operating point voltage in a state where the solar cell is in a de-energized state. ].

【0013】この請求項3に記載の発明によれば、電流
−電圧特性を近似的に把握し、開放電圧とこの開放電圧
より少し低い電圧に制御したときの電流を示す第1の特
性直線と、短絡電流の特性を示す第2の特性直線との交
点から最適動作点を短時間に決定し、負荷を接続した状
態で太陽電池電圧が最適動作点電圧になるように太陽電
池電流を制御することができる。
According to the third aspect of the present invention, the current-voltage characteristic is approximately grasped, and the open-circuit voltage and the first characteristic line indicating the current when the voltage is controlled to a voltage slightly lower than the open-circuit voltage are obtained. The optimum operating point is determined in a short time from the intersection with the second characteristic line indicating the characteristics of the short-circuit current, and the solar cell current is controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected. be able to.

【0014】請求項4に記載の発明は、『前記最適動作
点電圧の推定値の移動平均結果を目標太陽電池電圧に用
いることを特徴とする請求項3に記載の太陽電池の制御
方法。』である。
According to a fourth aspect of the present invention, there is provided a method for controlling a solar cell according to the third aspect, wherein a moving average result of the estimated value of the optimum operating point voltage is used as a target solar cell voltage. ].

【0015】この請求項4に記載の発明によれば、最適
動作点電圧の推定値の移動平均結果を目標太陽電池電圧
に用いることで、日射量が瞬間的に変動しても影響を受
けにくい。
According to the fourth aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that even if the amount of solar radiation fluctuates instantaneously, it is hardly affected. .

【0016】[0016]

【発明の実施の形態】以下、この発明の太陽電池の制御
装置及び太陽電池の制御方法を図面に基づいて説明す
る。図1は太陽電池の制御装置の回路図、図2は最適動
作点の算出を説明する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solar cell control device and a solar cell control method according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a control device for a solar cell, and FIG. 2 is a diagram for explaining calculation of an optimum operating point.

【0017】負荷1には、バッテリ2と、太陽電池3が
並列に接続され、バッテリ2と太陽電池3の電力により
負荷1が駆動される。太陽電池3の正側の出力ライン4
には、ダイオードD1とインダクタンス20が接続さ
れ、ダイオードD1により電流の逆流防止が行われる。
また、正側の出力ライン4と負側の出力ライン5には、
コンデンサC1が接続され、コンデンサC1は太陽電池
3に並列になっている。
A battery 2 and a solar cell 3 are connected in parallel to the load 1, and the load 1 is driven by the power of the battery 2 and the solar cell 3. Output line 4 on the positive side of solar cell 3
Is connected to the diode D1 and the inductance 20, and the diode D1 prevents backflow of current.
The positive output line 4 and the negative output line 5 have:
The capacitor C1 is connected, and the capacitor C1 is in parallel with the solar cell 3.

【0018】太陽電池3の正側の出力ライン4には、電
界効果トランジスタFET1が接続され、また正側の出
力ライン4と負側の出力ライン5の間には、電界効果ト
ランジスタFET2が接続され、電界効果トランジスタ
FET1のゲートは抵抗11を介して、電界効果トラン
ジスタFET2のゲートは抵抗R12を介して太陽電池
電圧制御回路11へ接続されている。太陽電池電圧制御
回路11により電界効果トランジスタFET1及び電界
効果トランジスタFET2を制御し、太陽電池電圧の制
御を行なう。
A field effect transistor FET1 is connected to the positive output line 4 of the solar cell 3, and a field effect transistor FET2 is connected between the positive output line 4 and the negative output line 5. The gate of the field effect transistor FET1 is connected to the solar cell voltage control circuit 11 via the resistor 11 and the gate of the field effect transistor FET2 is connected to the solar cell voltage control circuit 11 via the resistor R12. The solar cell voltage control circuit 11 controls the field effect transistor FET1 and the field effect transistor FET2 to control the solar cell voltage.

【0019】太陽電池3の電力を充電したり負荷に供給
するときには、太陽電池電圧が目標電圧となるように電
界効果トランジスタFET1及び電界効果トランジスタ
FET2を操作する。この電界効果トランジスタFET
1及び電界効果トランジスタFET2を制御するときに
生じる電圧変動は、コンデンサC1により、また電流変
動はインダクタンス20により安定化するようになって
いる。
When the power of the solar cell 3 is charged or supplied to a load, the field effect transistors FET1 and FET2 are operated so that the solar cell voltage becomes the target voltage. This field effect transistor FET
1 and the field-effect transistor FET2 are controlled by the capacitor C1 and the current fluctuation is stabilized by the inductance 20.

【0020】また、太陽電池3の正側の出力ライン4と
負側の出力ライン5との間には、分圧抵抗R1,R2が
太陽電池3と並列に接続され、これらの分圧抵抗R1,
R2により分圧された太陽電池電圧が、電圧バッファと
してのオペアンプOP1を介してCPU10及び太陽電
池電圧制御回路11に入力されている。
Between the positive output line 4 and the negative output line 5 of the solar cell 3, voltage dividing resistors R1 and R2 are connected in parallel with the solar cell 3, and these voltage dividing resistors R1 and R2 are connected in parallel. ,
The solar cell voltage divided by R2 is input to the CPU 10 and the solar cell voltage control circuit 11 via the operational amplifier OP1 as a voltage buffer.

【0021】太陽電池3の負側の出力ライン5には、抵
抗R3が接続され、この抵抗R3の太陽電池3側には抵
抗R4を介してオペアンプOP2の非反転入力端子が接
続され、負荷1側には抵抗5を介してオペアンプOP2
の反転入力端子が接続され、オペアンプOP2の出力端
子がCPU10に接続されている。オペアンプOP2の
出力が反転入力端子に抵抗R6を介して負帰還され、太
陽電池電流に比例した電圧が増幅されてCPU10に入
力される。
A resistor R3 is connected to the output line 5 on the negative side of the solar cell 3, and a non-inverting input terminal of an operational amplifier OP2 is connected to the solar cell 3 side of the resistor R3 via a resistor R4. On the operational amplifier OP2 via a resistor 5
Are connected to each other, and the output terminal of the operational amplifier OP2 is connected to the CPU 10. The output of the operational amplifier OP2 is negatively fed back to the inverting input terminal via the resistor R6, and a voltage proportional to the solar cell current is amplified and input to the CPU 10.

【0022】CPU10から目標電圧がデジタル信号と
して出力され、D/A変換回路12によりアナログ信号
に変換されて太陽電池電圧制御回路11へ入力される。
The target voltage is output from the CPU 10 as a digital signal, converted into an analog signal by the D / A conversion circuit 12, and input to the solar cell voltage control circuit 11.

【0023】太陽電池3の正側の出力ライン4と負側の
出力ライン5との間には、分圧抵抗R7,R8がバッテ
リ2と並列に接続され、この分圧抵抗R7,R8の間に
比較回路13の正側端子が接続され、比較回路13の負
側端子が分圧抵抗R9,R10の間に接続されている。
バッテリ2が満充電になると、比較回路13では、負側
端子側の電圧より正側端子の電圧が大きくなり、過充電
防止信号を出力し、この過充電防止信号は太陽電池電圧
制御回路11に入力される。太陽電池電圧制御回路11
では、電界効果トランジスタFET1及び電界効果トラ
ンジスタFET2を制御してバッテリ2が過充電されな
いように制御する。
A voltage dividing resistor R7, R8 is connected between the positive output line 4 and the negative output line 5 of the solar cell 3 in parallel with the battery 2, and is connected between the voltage dividing resistors R7, R8. Is connected to the positive terminal of the comparison circuit 13, and the negative terminal of the comparison circuit 13 is connected between the voltage dividing resistors R9 and R10.
When the battery 2 is fully charged, the voltage of the positive terminal becomes larger than the voltage of the negative terminal in the comparison circuit 13, and outputs an overcharge prevention signal. The overcharge prevention signal is transmitted to the solar cell voltage control circuit 11. Is entered. Solar cell voltage control circuit 11
Then, the field effect transistor FET1 and the field effect transistor FET2 are controlled so that the battery 2 is not overcharged.

【0024】CPU10は、太陽電池の開放電圧、短絡
電流及び開放電圧より少し低い電圧に制御したときの電
流を測定することで電流−電圧特性を近似的に把握する
電流電圧特性把握手段100と、開放電圧とこの開放電
圧より少し低い電圧に制御したときの電流を示す第1の
特性直線L1と短絡電流の特性を示す第2の特性直線L
2との交点から最適動作点P1を決定する最適動作点決
定手段101と、負荷を接続した状態で太陽電池電圧が
最適動作点電圧になるように太陽電池電流を制御する制
御手段102とを有する。
The CPU 10 measures the open-circuit voltage, the short-circuit current of the solar cell, and the current when controlled to a voltage slightly lower than the open-circuit voltage. A first characteristic line L1 showing an open voltage and a current when controlled to a voltage slightly lower than the open voltage, and a second characteristic line L showing a characteristic of the short circuit current
An optimum operating point determining means 101 for determining an optimum operating point P1 from an intersection with the control circuit 2 and a control means 102 for controlling a solar cell current so that the solar cell voltage becomes an optimum operating point voltage with a load connected. .

【0025】このように電流−電圧特性を近似的に把握
し、開放電圧とこの開放電圧より少し低い電圧に制御し
たときの電流を示す第1の特性直線L1と短絡電流の特
性を示す第2の特性直線L2との交点から最適動作点P
1を短時間に決定し、負荷を接続した状態で太陽電池電
圧が最適動作点電圧になるように太陽電池電流を制御す
ることができる。
As described above, the current-voltage characteristic is approximately grasped, and the first characteristic line L1 representing the open voltage and the current when the voltage is controlled to be slightly lower than the open voltage, and the second characteristic line L1 representing the characteristic of the short circuit current. From the intersection with the characteristic line L2
1 can be determined in a short time, and the solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected.

【0026】太陽電池の実際の特性は、図2の点線で示
すようになり、最適動作点P1より僅かに低いところに
真の最適動作点P2があり、その点P2と第1の特性直
線L1と第2の特性直線L2との交点から求める最適動
作点P1とはずれがあるが、どちらの特性グラフによっ
てもその最適動作点電圧V1はほぼ同じとなる。このこ
とから、目標太陽電池電圧がV1となるように、電界効
果トランジスタFET1及び電界効果トランジスタFE
T2のオン・オフのデューティ比を変えることで太陽電
池電流を制御すれば、ほぼ最大出力を得ることができ
る。
The actual characteristics of the solar cell are as shown by the dotted line in FIG. 2. The true optimum operating point P2 is located slightly lower than the optimum operating point P1, and the point P2 and the first characteristic straight line L1 There is a deviation from the optimal operating point P1 obtained from the intersection of the characteristic curve and the second characteristic line L2, but the optimal operating point voltage V1 is substantially the same in both characteristic graphs. From this, the field effect transistor FET1 and the field effect transistor FE are set so that the target solar cell voltage becomes V1.
If the solar cell current is controlled by changing the on / off duty ratio of T2, almost the maximum output can be obtained.

【0027】次に、太陽電池の制御装置のソフトウェア
動作を、図3に基づいて説明する。ステップa1におい
て、前回の処理から1分経過しているか否かの判断を行
ない、1分経過していると、目標太陽電池電圧を開放電
圧より十分に高い値に設定し(ステップa2)、オペア
ンプOP1の出力から太陽電池開放電圧V0を測定する
(ステップa3)。
Next, the software operation of the solar cell control device will be described with reference to FIG. In step a1, it is determined whether or not one minute has elapsed since the previous processing. If one minute has elapsed, the target solar cell voltage is set to a value sufficiently higher than the open-circuit voltage (step a2), and the operational amplifier is turned on. The solar cell open circuit voltage V0 is measured from the output of OP1 (step a3).

【0028】目標太陽電池電圧を最適動作点電圧V1よ
り十分に低い値に設定し(ステップa4)、オペアンプ
OP2の出力から太陽電池電流I0を測定する(ステッ
プa5)。
The target solar cell voltage is set to a value sufficiently lower than the optimum operating point voltage V1 (step a4), and the solar cell current I0 is measured from the output of the operational amplifier OP2 (step a5).

【0029】次に、目標太陽電池電圧をV0−ΔVに設
定し(ステップa6)、太陽電池電流I1を測定する
(ステップa7)。ただし、ΔVは最適動作点電圧V1
の電圧以上でV0以下の適当な値とする。
Next, the target solar cell voltage is set to V0-ΔV (step a6), and the solar cell current I1 is measured (step a7). Here, ΔV is the optimum operating point voltage V1
And an appropriate value not higher than V0 and not higher than V0.

【0030】開放電圧V0と、この開放電圧V0より少
し低い電圧V0−ΔVに制御したときの電流I1より第
1の特性直線L1を求める(ステップa8)。さらに、
短絡電流I0より第2の特性直線L2を求める(ステッ
プa9)。
A first characteristic line L1 is obtained from the open circuit voltage V0 and the current I1 when the voltage is controlled to a voltage V0-.DELTA.V slightly lower than the open circuit voltage V0 (step a8). further,
A second characteristic line L2 is obtained from the short-circuit current I0 (step a9).

【0031】このように太陽電池の開放電圧V0、短絡
電流I0及び開放電圧V0より少し低い電圧V0−ΔV
に制御したときの電流I1を測定することで電流−電圧
特性を近似的に把握し、開放電圧と、この開放電圧より
少し低い電圧に制御したときの電流を示す第1の特性直
線L1と短絡電流の特性を示す第2の特性直線L2との
交点から最適動作点P1を決定し、これらの交点から最
適動作点P1を示す交点電圧V1を推定する(ステップ
a10)。
As described above, the open voltage V0, the short-circuit current I0, and the voltage V0-ΔV slightly lower than the open voltage V0 of the solar cell are obtained.
The current-voltage characteristic is approximately grasped by measuring the current I1 when the voltage is controlled to the minimum value. The optimal operating point P1 is determined from the intersection with the second characteristic line L2 indicating the current characteristic, and the intersection voltage V1 indicating the optimal operating point P1 is estimated from these intersections (step a10).

【0032】この最適動作点P1を示す太陽電池電圧V
1の移動平均をとる(ステップa11)。例えば、1分
ごとに1回の太陽電池電圧V1を求めて記憶し、この記
憶された太陽電池電圧V1から常に過去3回分の平均を
求め、この移動平均の値を目標太陽電池電圧に設定し
(ステップa12)、ステップa1へ移行し同様な制御
を繰り返し、負荷を接続した状態で太陽電池電圧が最適
動作点電圧になるように太陽電池電流を制御する。
The solar cell voltage V indicating this optimum operating point P1
A moving average of 1 is obtained (step a11). For example, one solar cell voltage V1 is obtained and stored every one minute, an average of the past three times is always obtained from the stored solar cell voltage V1, and the moving average value is set as a target solar cell voltage. (Step a12) The process proceeds to Step a1, and the same control is repeated to control the solar cell current so that the solar cell voltage becomes the optimum operating point voltage with the load connected.

【0033】このように最適動作点P1を示す太陽電池
電圧V1の移動平均結果を演算に用いることで、日射量
が瞬間的に変動しても影響を受けにくい。
By using the moving average result of the solar cell voltage V1 indicating the optimum operating point P1 for the calculation as described above, even if the amount of solar radiation fluctuates instantaneously, it is hardly affected.

【0034】この実施の形態では、太陽電池3の開放電
圧V0、短絡電流I0及び開放電圧より少し低い電圧に
制御したときの電流I1を測定するだけで、電流−電圧
特性を近似的に把握することができる。これにより第1
の特性直線L1と第2の特性直線L2との交点から最適
動作点P1を短時間に決定し、負荷を接続した状態で太
陽電池電圧が最適動作点電圧になるように太陽電池電流
を制御することができる。
In this embodiment, the current-voltage characteristic is approximately grasped only by measuring the open voltage V0, the short-circuit current I0, and the current I1 when the voltage is controlled to be slightly lower than the open voltage of the solar cell 3. be able to. This makes the first
The optimum operating point P1 is determined in a short time from the intersection of the characteristic line L1 and the second characteristic line L2, and the solar cell current is controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected. be able to.

【0035】[0035]

【発明の効果】前記したように、請求項1に記載の発明
の太陽電池の制御装置では、電流−電圧特性を近似的に
把握し、開放電圧とこの開放電圧より少し低い電圧に制
御したときの電流を示す第1の特性直線と短絡電流の特
性を示す第2の特性直線との交点から最適動作点を決定
し、負荷を接続した状態で太陽電池電圧が最適動作点電
圧になるように太陽電池電流を制御することができる。
As described above, in the solar cell control device according to the first aspect of the present invention, when the current-voltage characteristics are approximately grasped and the open-circuit voltage is controlled to a voltage slightly lower than the open-circuit voltage. The optimum operating point is determined from the intersection of the first characteristic line indicating the current of the current and the second characteristic line indicating the characteristic of the short-circuit current, so that the solar cell voltage becomes the optimum operating point voltage with the load connected. The solar cell current can be controlled.

【0036】請求項2に記載の発明の太陽電池の制御装
置では、最適動作点電圧の推定値の移動平均結果を目標
太陽電池電圧に用いることで、日射量が瞬間的に変動し
ても影響を受けにくい。
In the solar cell control apparatus according to the second aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that even if the amount of solar radiation fluctuates instantaneously, the influence is not affected. Hard to receive.

【0037】請求項3に記載の発明の太陽電池の制御方
法では、電流−電圧特性を近似的に把握し、開放電圧と
この開放電圧より少し低い電圧に制御したときの電流を
示す第1の特性直線と、短絡電流の特性を示す第2の特
性直線との交点から最適動作点を短時間に決定し、負荷
を接続した状態で太陽電池電圧が最適動作点電圧になる
ように太陽電池電流を制御することができる。
In the solar cell control method according to the third aspect of the present invention, the current-voltage characteristics are approximately grasped, and the first voltage indicating the open-circuit voltage and the current when the voltage is controlled to a voltage slightly lower than the open-circuit voltage. The optimum operating point is determined in a short time from the intersection of the characteristic line and the second characteristic line indicating the characteristics of the short-circuit current, and the solar cell current is adjusted so that the solar cell voltage becomes the optimum operating point voltage with the load connected. Can be controlled.

【0038】請求項4に記載の発明の太陽電池の制御方
法では、最適動作点電圧の推定値の移動平均結果を目標
太陽電池電圧に用いることで、日射量が瞬間的に変動し
ても影響を受けにくい。
According to the solar cell control method of the present invention, the moving average result of the estimated value of the optimal operating point voltage is used as the target solar cell voltage, so that even if the amount of solar radiation fluctuates instantaneously, the influence is not affected. Hard to receive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】太陽電池の制御装置の回路図である。FIG. 1 is a circuit diagram of a control device for a solar cell.

【図2】最適動作点の算出を説明する図である。FIG. 2 is a diagram illustrating calculation of an optimum operating point.

【図3】太陽電池の制御装置のソフトウェア動作フロー
チャートである。
FIG. 3 is a software operation flowchart of the solar cell control device.

【図4】太陽電池の電流−電圧特性を示す図である。FIG. 4 is a diagram showing current-voltage characteristics of a solar cell.

【符号の説明】[Explanation of symbols]

1 負荷 2 バッテリ 3 太陽電池 10 CPU 100 電流電圧特性把握手段 101 最適動作点決定手段 102 制御手段 L1 第1の特性直線 L2 第2の特性直線 P1 最適動作点 P2 真の最適動作点 DESCRIPTION OF SYMBOLS 1 Load 2 Battery 3 Solar cell 10 CPU 100 Current-voltage characteristic grasp means 101 Optimal operating point determining means 102 Control means L1 First characteristic straight line L2 Second characteristic straight line P1 Optimal operating point P2 True optimal operating point

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の開放電圧、短絡電流及び開放電
圧より少し低い電圧に制御したときの電流を測定するこ
とで電流−電圧特性を近似的に把握する電流電圧特性把
握手段と、開放電圧とこの開放電圧より少し低い電圧に
制御したときの電流を示す第1の特性直線と短絡電流の
特性を示す第2の特性直線との交点から最適動作点を決
定する最適動作点決定手段と、負荷を接続した状態で太
陽電池電圧が最適動作点電圧になるように太陽電池電流
を制御する制御手段とを有することを特徴とする太陽電
池の制御装置。
An open-circuit voltage, a short-circuit current, and a current-voltage characteristic grasping means for approximating a current-voltage characteristic by measuring a current when controlled to a voltage slightly lower than the open-circuit voltage; Optimum operating point determining means for determining an optimum operating point from an intersection of a first characteristic line indicating a current when controlled to a voltage slightly lower than the open-circuit voltage and a second characteristic line indicating the characteristic of the short-circuit current; Control means for controlling the solar cell current so that the solar cell voltage becomes an optimum operating point voltage with a load connected.
【請求項2】前記太陽電池電流を制御する制御手段は、
最適動作点電圧の推定値の移動平均結果を目標太陽電池
電圧に用いることを特徴とする請求項1に記載の太陽電
池の制御装置。
2. The control means for controlling the solar cell current comprises:
The solar cell control device according to claim 1, wherein a moving average result of the estimated value of the optimum operating point voltage is used as a target solar cell voltage.
【請求項3】太陽電池の開放電圧、短絡電流及び開放電
圧より少し低い電圧に制御したときの電流を測定するこ
とで電流−電圧特性を近似的に把握し、開放電圧とこの
開放電圧より少し低い電圧に制御したときの電流を示す
第1の特性直線と、短絡電流の特性を示す第2の特性直
線との交点から最適動作点を決定し、負荷を接続した状
態で太陽電池電圧が最適動作点電圧になるように太陽電
池電流を制御することを特徴とする太陽電池の制御方
法。
3. An open-circuit voltage, a short-circuit current, and a current when controlled to a voltage slightly lower than the open-circuit voltage, and a current-voltage characteristic is approximately grasped. The optimum operating point is determined from the intersection of the first characteristic line indicating the current when the voltage is controlled to a low voltage and the second characteristic line indicating the characteristic of the short-circuit current, and the solar cell voltage is optimized with the load connected. A method for controlling a solar cell, comprising controlling a solar cell current to reach an operating point voltage.
【請求項4】前記最適動作点電圧の推定値の移動平均結
果を目標太陽電池電圧に用いることを特徴とする請求項
3に記載の太陽電池の制御方法。
4. The method for controlling a solar cell according to claim 3, wherein a moving average result of the estimated value of the optimum operating point voltage is used as a target solar cell voltage.
JP26987299A 1999-07-23 1999-09-24 Solar cell control device and solar cell control method Expired - Fee Related JP4042943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26987299A JP4042943B2 (en) 1999-07-23 1999-09-24 Solar cell control device and solar cell control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-208603 1999-07-23
JP20860399 1999-07-23
JP26987299A JP4042943B2 (en) 1999-07-23 1999-09-24 Solar cell control device and solar cell control method

Publications (2)

Publication Number Publication Date
JP2001103675A true JP2001103675A (en) 2001-04-13
JP4042943B2 JP4042943B2 (en) 2008-02-06

Family

ID=26516925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26987299A Expired - Fee Related JP4042943B2 (en) 1999-07-23 1999-09-24 Solar cell control device and solar cell control method

Country Status (1)

Country Link
JP (1) JP4042943B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531762A (en) * 2006-03-31 2009-09-03 アントワーヌ・カペル Circuit and method for controlling the maximum power point for a solar generator incorporating a solar energy source and circuit
JP2012174070A (en) * 2011-02-23 2012-09-10 Hitachi Engineering & Services Co Ltd Solar cell characteristic acquisition circuit and solar cell control device
JP5503745B2 (en) * 2010-08-27 2014-05-28 学校法人幾徳学園 Photovoltaic power generation system, control device used in solar power generation system, control method and program thereof
CN113363348A (en) * 2021-01-11 2021-09-07 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) Configuration method and device of battery pack and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531762A (en) * 2006-03-31 2009-09-03 アントワーヌ・カペル Circuit and method for controlling the maximum power point for a solar generator incorporating a solar energy source and circuit
JP5503745B2 (en) * 2010-08-27 2014-05-28 学校法人幾徳学園 Photovoltaic power generation system, control device used in solar power generation system, control method and program thereof
JP2012174070A (en) * 2011-02-23 2012-09-10 Hitachi Engineering & Services Co Ltd Solar cell characteristic acquisition circuit and solar cell control device
CN113363348A (en) * 2021-01-11 2021-09-07 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) Configuration method and device of battery pack and electronic equipment

Also Published As

Publication number Publication date
JP4042943B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US5905364A (en) Rapid battery charger with charge controlling capability depending on overvoltage of the battery
JP3279071B2 (en) Battery pack charging device
US6949914B2 (en) Charging apparatus
US8339108B2 (en) Charging systems that control power dissipation in a charging path
US5898294A (en) Control loop for pulse charging lithium ion cells
JP2012078090A (en) Current/voltage detection circuit and current control circuit
JP3987953B2 (en) Solenoid driving device and driving method
US7268520B2 (en) Sense amplifier for use with wake-up charging current
US5675235A (en) Charging apparatus for controlling supplement of electric current to a rechargeable battery
JP2001103675A (en) Device and method for controlling solar battery
JP2001324519A (en) Current measuring circuit and current quantity of electricity measuring circuit
JPH06282338A (en) Constant current circuit and ramp voltage generating circuit
JPH07168639A (en) Maximum electric power tracking method for solar power generation system
JP3403309B2 (en) Charging device
JPH06253467A (en) Battery charger
JP3735738B2 (en) -ΔV detection circuit for rapid charging of nickel cadmium / nickel metal hydride battery
JP3268866B2 (en) Rechargeable battery charging method
JP3235289B2 (en) battery charger
JPH06284594A (en) Chargeable power supply apparatus
JP5014933B2 (en) CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME
JPH099518A (en) Charging device
TWM542282U (en) Charging device
JPH0595638A (en) Circuit for charging secondary battery
JP3747398B2 (en) Charge / discharge device
JPH0576140A (en) Battery charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees