JP5014933B2 - CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME - Google Patents

CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME Download PDF

Info

Publication number
JP5014933B2
JP5014933B2 JP2007237040A JP2007237040A JP5014933B2 JP 5014933 B2 JP5014933 B2 JP 5014933B2 JP 2007237040 A JP2007237040 A JP 2007237040A JP 2007237040 A JP2007237040 A JP 2007237040A JP 5014933 B2 JP5014933 B2 JP 5014933B2
Authority
JP
Japan
Prior art keywords
voltage
battery
charge
detection
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007237040A
Other languages
Japanese (ja)
Other versions
JP2009071964A (en
Inventor
泰 柴田
良幸 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2007237040A priority Critical patent/JP5014933B2/en
Publication of JP2009071964A publication Critical patent/JP2009071964A/en
Application granted granted Critical
Publication of JP5014933B2 publication Critical patent/JP5014933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、2次電池を充電する充電制御回路に関する。   The present invention relates to a charge control circuit for charging a secondary battery.

近年の携帯電話、PDA(Personal Digital Assistant)、ノート型パーソナルコンピュータなどのさまざまな電子機器には、デジタル信号処理を行うCPU(Central Processing Unit)や、DSP(Digital Signal Processor)、あるいは、液晶パネル、その他のアナログ、デジタル回路など、多くの電子回路が搭載される。電源として電池が搭載される電池駆動型の電子機器においては、機器内部の各電子回路は、電池からの電池電圧によって動作する。   Various electronic devices such as recent cellular phones, PDAs (Personal Digital Assistants), and notebook personal computers include a CPU (Central Processing Unit) that performs digital signal processing, a DSP (Digital Signal Processor), a liquid crystal panel, Many other electronic circuits such as analog and digital circuits are installed. In a battery-driven electronic device in which a battery is mounted as a power source, each electronic circuit inside the device operates with a battery voltage from the battery.

近年では、再充電が可能なリチウムイオン電池やニッケル水素電池などの2次電池が利用される。2次電池の充電動作は、一般に以下のプロセスを経る。すなわち、電池電圧が低い状態では予備充電を行い、電池電圧がある程度大きくなると充電電流をフィードバックし、充電電流が一定となるように充電を行い(定電流充電)、電池電圧が満充電状態に近づくと電池電圧をフィードバックし、電池電圧が所定の基準電圧(満充電電圧)と一致するように充電を行う(定電圧充電)。電池電圧が基準電圧と一致すると、フル充電が検出され、充電動作が停止する。充電完了後、電池の消耗にともなって電池電圧が所定のしきい値電圧(再充電検出電圧)まで低下すると、再充電が開始される(再充電検出)。   In recent years, secondary batteries such as rechargeable lithium ion batteries and nickel metal hydride batteries are used. The charging operation of the secondary battery generally goes through the following process. In other words, preliminary charging is performed when the battery voltage is low, the charging current is fed back when the battery voltage increases to some extent, charging is performed so that the charging current becomes constant (constant current charging), and the battery voltage approaches the fully charged state. The battery voltage is fed back, and charging is performed so that the battery voltage matches a predetermined reference voltage (full charge voltage) (constant voltage charging). When the battery voltage matches the reference voltage, full charging is detected and the charging operation is stopped. After the completion of charging, when the battery voltage decreases to a predetermined threshold voltage (recharge detection voltage) as the battery is consumed, recharge is started (recharge detection).

特開2004−7853号公報JP 2004-7853 A 特開2004−187452号公報Japanese Patent Laid-Open No. 2004-187452 特開2005−168102号公報JP 2005-168102 A

上述の充電プロセスを実行するために、電池には充電制御回路が接続される。図3は、充電制御部30の構成例を示す回路図である。図3の回路図は、定電圧充電および再充電検出を行うブロックのみを示している。充電制御部30はアダプタ端子102に外部電源からの外部電圧Vextを受ける。電池端子104には電池110が接続される。検出端子105は電池110の電池電圧Vbatをモニタするための端子である。電池電圧Vbatは、抵抗R10、R11によって分圧比αで分圧され、第1検出電圧Vdet1が生成される。電池端子104、検出端子105は単一の端子として形成してもよい。   In order to perform the above-described charging process, a charging control circuit is connected to the battery. FIG. 3 is a circuit diagram illustrating a configuration example of the charging control unit 30. The circuit diagram of FIG. 3 shows only blocks that perform constant voltage charging and recharge detection. Charging control unit 30 receives external voltage Vext from an external power source at adapter terminal 102. A battery 110 is connected to the battery terminal 104. The detection terminal 105 is a terminal for monitoring the battery voltage Vbat of the battery 110. The battery voltage Vbat is divided by the resistors R10 and R11 at the voltage dividing ratio α, and the first detection voltage Vdet1 is generated. The battery terminal 104 and the detection terminal 105 may be formed as a single terminal.

誤差増幅器2は、第1検出電圧Vdet1と基準電圧Vrefの誤差を増幅し、誤差電圧Verrを生成する。充電ドライバ50は誤差電圧Verrにもとづき、第1検出電圧Vdet1が基準電圧Vrefと一致するようにフィードバックによって電池110を充電する。つまり、満充電電圧VfullはVref/αで与えられる。   The error amplifier 2 amplifies an error between the first detection voltage Vdet1 and the reference voltage Vref, and generates an error voltage Verr. Based on the error voltage Verr, the charge driver 50 charges the battery 110 by feedback so that the first detection voltage Vdet1 matches the reference voltage Vref. That is, the full charge voltage Vfull is given by Vref / α.

また、電池電圧Vbatは、抵抗R12、R13によって分圧比βで分圧され、第2検出電圧Vdet2が生成される。コンパレータCMP1は第2検出電圧Vdet2としきい値電圧Vthを比較し、第2検出電圧Vdet2がしきい値電圧Vthまで低下すると、所定レベルの検出信号S10を出力する。検出信号S10がハイレベルとなると、急速充電を開始する。つまり再充電検出電圧VrchはVth/βで与えられる。   Further, the battery voltage Vbat is divided by the resistors R12 and R13 at the voltage dividing ratio β, and the second detection voltage Vdet2 is generated. The comparator CMP1 compares the second detection voltage Vdet2 with the threshold voltage Vth, and outputs a detection signal S10 having a predetermined level when the second detection voltage Vdet2 decreases to the threshold voltage Vth. When the detection signal S10 becomes high level, rapid charging is started. That is, the recharge detection voltage Vrch is given by Vth / β.

図3の回路の場合、抵抗R10〜R13の抵抗値のばらつきにより分圧比α、βが変動したり、誤差増幅器2やコンパレータCMP1の入力オフセット電圧がばらついたりすると、満充電電圧Vfullや再充電検出電圧Vrchが相関無く変動することになる。たとえば満充電電圧Vfullは4.2V、再充電検出電圧Vrchは4Vの場合、分圧比や入力オフセット電圧が変動すると大小関係が逆転し、満充電検出、再充電検出が正確に行えない可能性がある。   In the case of the circuit of FIG. 3, when the voltage dividing ratios α and β vary due to variations in resistance values of the resistors R10 to R13, or the input offset voltage of the error amplifier 2 or the comparator CMP1 varies, the full charge voltage Vfull and the recharge detection are detected. The voltage Vrch changes without correlation. For example, if the full charge voltage Vfull is 4.2 V and the recharge detection voltage Vrch is 4 V, the magnitude relationship may be reversed if the voltage division ratio or the input offset voltage fluctuates, and full charge detection or recharge detection may not be performed accurately. is there.

本発明はこうした課題に鑑みてなされたものであり、その目的は、満充電電圧と再充電検出電圧を精度よく設定するための技術の提供にある。   The present invention has been made in view of these problems, and an object thereof is to provide a technique for accurately setting the full charge voltage and the recharge detection voltage.

本発明のある態様は、外部電圧を受け電池を充電する充電制御回路に関する。充電制御回路は、外部電源から外部電圧を受ける入力端子と、電池が接続されるとともに、電池電圧を検出するための電池端子と、電池電圧と所定の満充電電圧の誤差に応じた誤差電圧を生成するアンプと、アンプからの誤差電圧を受け、フィードバックにより電池電圧が満充電電圧と一致するように電池に充電電流を供給して充電する充電ドライバと、を備える。アンプは電池電圧が満充電電圧と一致した後、再充電のタイミングを検出するために、電池電圧を所定の再充電検出電圧と比較するコンパレータとして機能する。   One embodiment of the present invention relates to a charge control circuit that receives an external voltage and charges a battery. The charge control circuit includes an input terminal for receiving an external voltage from an external power source, a battery, a battery terminal for detecting the battery voltage, and an error voltage corresponding to an error between the battery voltage and a predetermined full charge voltage. An amplifier to be generated; and a charge driver that receives an error voltage from the amplifier and supplies a charging current to the battery so that the battery voltage matches the full charge voltage by feedback. The amplifier functions as a comparator that compares the battery voltage with a predetermined recharge detection voltage in order to detect the recharge timing after the battery voltage matches the full charge voltage.

この態様によると、定電圧充電中と、再充電検出中で、単一のアンプを共有することにより、満充電電圧と再充電検出電圧を、相対的に精度よく設定できる。   According to this aspect, the full charge voltage and the recharge detection voltage can be set relatively accurately by sharing a single amplifier during constant voltage charging and during recharge detection.

アンプは、電池の電圧を、切りかえ可能な第1、第2分圧比によって分圧して検出電圧を生成する分圧回路と、分圧回路からの検出電圧と、所定の基準電圧とが入力された差動増幅器と、を含んでもよい。差動増幅器の出力信号は、電池を充電するとき、フィードバックのために充電ドライバに出力されるとともに、再充電のタイミングを検出するとき、電池電圧と再充電検出電圧の比較結果として利用されてもよい。   The amplifier receives a voltage dividing circuit that divides the battery voltage by a switchable first and second voltage dividing ratio to generate a detection voltage, a detection voltage from the voltage dividing circuit, and a predetermined reference voltage. And a differential amplifier. When the battery is charged, the output signal of the differential amplifier is output to the charge driver for feedback, and when the recharge timing is detected, it may be used as a comparison result between the battery voltage and the recharge detection voltage. Good.

本発明の別の態様は、電子機器である。この電子機器は、電池と、外部電源が着脱可能なアダプタ端子と、上述の充電制御回路と、を備える。   Another embodiment of the present invention is an electronic device. This electronic device includes a battery, an adapter terminal to which an external power source can be attached and detached, and the above-described charging control circuit.

なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。   Note that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention replaced with each other among methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.

本発明によれば、満充電電圧と再充電検出電圧を相対的に精度よく設定できる。   According to the present invention, the full charge voltage and the recharge detection voltage can be set relatively accurately.

以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。   The present invention will be described below based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

本明細書において、「部材Aが部材Bに接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
In this specification, “the state in which the member A is connected to the member B” means that the member A and the member B are physically directly connected, or the member A and the member B are in an electrically connected state. Including the case of being indirectly connected through other members that do not affect the above.
Similarly, “the state in which the member C is provided between the member A and the member B” refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.

また本明細書において、電圧信号あるいは抵抗に付された符号は、必要に応じてそれぞれの電圧値あるいは抵抗値を表すものとする。   Further, in this specification, reference numerals attached to voltage signals or resistors represent respective voltage values or resistance values as necessary.

図1は、実施の形態に係る電源管理回路100を備える電子機器200の構成を示す回路図である。電子機器200は、たとえば携帯電話端末や、PDA、ノート型PCなどの電池駆動型の情報端末機器である。電子機器200は、電源管理回路100、電池110、アダプタ端子114、負荷112を備える。   FIG. 1 is a circuit diagram illustrating a configuration of an electronic device 200 including a power management circuit 100 according to an embodiment. The electronic device 200 is, for example, a battery-driven information terminal device such as a mobile phone terminal, a PDA, or a notebook PC. The electronic device 200 includes a power management circuit 100, a battery 110, an adapter terminal 114, and a load 112.

電池110は、リチウムイオン電池やニッケル水素電池などの2次電池であり電池電圧Vbatを出力する。アダプタ端子114は、ACアダプタやUSB(Universal Serial Bus)などの外部電源210が着脱可能な端子であり、外部電源210からの電圧(以下、外部電圧という)Vextを受ける。電源管理回路100は、外部電圧Vextを利用して電池110を充電する。また電源管理回路100は電池電圧Vbatを所定の電圧に昇圧もしくは降圧して安定化させ、負荷112に供給する。負荷112は図示しないDSP、液晶パネルをはじめ、その他のアナログ回路、デジタル回路を含む。   The battery 110 is a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs a battery voltage Vbat. The adapter terminal 114 is a terminal to which an external power source 210 such as an AC adapter or USB (Universal Serial Bus) can be attached and detached, and receives a voltage (hereinafter referred to as an external voltage) Vext from the external power source 210. The power management circuit 100 charges the battery 110 using the external voltage Vext. Further, the power management circuit 100 stabilizes the battery voltage Vbat by stepping up or down to a predetermined voltage and supplies the voltage to the load 112. The load 112 includes a DSP, a liquid crystal panel (not shown), other analog circuits, and digital circuits.

電源管理回路100は、充電制御部30、ステートマシン60、電源回路62を含む。アダプタ端子102には外部電圧Vextが印加されるとともに、電池端子104には電池110が接続される。検出端子105は電池電圧Vbatをモニタするために設けられる。電池端子104、検出端子105は共通の端子としてもよい。ステートマシン60は電源管理回路100の動作モードを管理、制御する。電源回路62はスイッチングレギュレータやリニアレギュレータを含み、電池電圧Vbatまたは外部電圧Vextのいずれかを選択、安定化し、負荷112に出力する。   The power management circuit 100 includes a charge control unit 30, a state machine 60, and a power circuit 62. An external voltage Vext is applied to the adapter terminal 102, and a battery 110 is connected to the battery terminal 104. The detection terminal 105 is provided for monitoring the battery voltage Vbat. The battery terminal 104 and the detection terminal 105 may be a common terminal. The state machine 60 manages and controls the operation mode of the power management circuit 100. The power supply circuit 62 includes a switching regulator and a linear regulator, selects and stabilizes either the battery voltage Vbat or the external voltage Vext, and outputs the selected voltage to the load 112.

充電制御部30は、外部電圧Vextを受け電池110を充電する。充電制御部30は電池110を急速充電するモード(急速充電モード)、定電流充電するモード(定電流充電モード)、定電圧充電するモード(定電圧充電モード)、電池電圧Vbatが再充電検出電圧Vrch(=4.0V)まで低下したことを検出するモード(再充電検出モード)のいずれかで動作する。各モードはステートマシン60によって制御される。   Charging control unit 30 receives external voltage Vext and charges battery 110. The charge control unit 30 is a mode for rapidly charging the battery 110 (rapid charge mode), a mode for constant current charge (constant current charge mode), a mode for constant voltage charge (constant voltage charge mode), and the battery voltage Vbat is a recharge detection voltage. It operates in one of the modes (recharge detection mode) for detecting that the voltage has dropped to Vrch (= 4.0 V). Each mode is controlled by the state machine 60.

充電制御部30は、入力端子32に外部電圧Vextを受ける。電池端子34は、電池110が接続されるとともに、電池電圧Vbatを検出するために設けられる。充電制御部30は、アンプ40、充電ドライバ50を含む。アンプ40は定電流充電モードにおいて、電池電圧Vbatと満充電電圧Vfull(=4.2V)の誤差に応じた誤差電圧Verrを生成する。   Charging control unit 30 receives external voltage Vext at input terminal 32. The battery terminal 34 is provided for detecting the battery voltage Vbat while being connected to the battery 110. The charge control unit 30 includes an amplifier 40 and a charge driver 50. In the constant current charging mode, the amplifier 40 generates an error voltage Verr corresponding to an error between the battery voltage Vbat and the full charge voltage Vfull (= 4.2 V).

充電ドライバ50はアンプ40からの誤差電圧Verrを受け、フィードバックにより電池電圧Vbatが満充電電圧Vullと一致するように電池110に充電電流Ichgを供給して充電する。充電ドライバ50は、一端が電池110側に接続され、他端が外部電源210側に接続された出力トランジスタ(不図示)を含んでもよい。この場合、出力トランジスタのゲート(ベース)に誤差電圧Verrに応じた電圧を印加し、出力トランジスタのオン抵抗を制御することにより充電状態が調節される。   The charging driver 50 receives the error voltage Verr from the amplifier 40 and supplies the charging current Ichg to the battery 110 so that the battery voltage Vbat matches the full charge voltage Vull by feedback. The charge driver 50 may include an output transistor (not shown) having one end connected to the battery 110 side and the other end connected to the external power source 210 side. In this case, the state of charge is adjusted by applying a voltage corresponding to the error voltage Verr to the gate (base) of the output transistor and controlling the on-resistance of the output transistor.

ただし、充電ドライバ50は、このようなリニアレギュレータ形式に限定されず、スイッチングレギュレータ形式でもよい。スイッチングレギュレータの場合、誤差電圧Verrを三角波もしくはのこぎり波状の周期電圧でスライスし、パルス幅変調された信号を生成し、この信号にもとづいてスイッチング素子のオン、オフを制御する。充電ドライバ50はこのほか、公知のさまざまな回路を利用できる。   However, the charge driver 50 is not limited to such a linear regulator type, and may be a switching regulator type. In the case of a switching regulator, the error voltage Verr is sliced with a triangular wave or sawtooth wave periodic voltage to generate a pulse-width modulated signal, and on / off of the switching element is controlled based on this signal. In addition, the charging driver 50 can use various known circuits.

本実施の形態においてアンプ40は、定電圧充電モードにおいて誤差増幅器として機能するとともに、電池電圧Vbatが満充電電圧Vfullと一致した後、再充電開始のタイミングを検出するための再充電検出モードにおいて、電池電圧Vbatを所定の再充電検出電圧Vrchと比較するコンパレータとして機能する。   In the present embodiment, the amplifier 40 functions as an error amplifier in the constant voltage charging mode, and in the recharge detection mode for detecting the recharge start timing after the battery voltage Vbat matches the full charge voltage Vfull, It functions as a comparator that compares the battery voltage Vbat with a predetermined recharge detection voltage Vrch.

ステートマシン60は、定電圧充電モードにおいてハイレベル、再充電検出モードにおいてローレベルとなるイネーブル信号ENを、アンプ40および充電ドライバ50へと出力する。充電ドライバ50はイネーブル信号ENがローレベルのとき、すなわち、アンプ40がコンパレータとして機能する再充電検出モードの間、オフ状態となる。このときフィードバック経路が遮断され、アンプ40の出力が再充電の検出信号S10として利用される。   The state machine 60 outputs to the amplifier 40 and the charge driver 50 an enable signal EN that is at a high level in the constant voltage charge mode and at a low level in the recharge detection mode. The charge driver 50 is turned off when the enable signal EN is at a low level, that is, during the recharge detection mode in which the amplifier 40 functions as a comparator. At this time, the feedback path is interrupted, and the output of the amplifier 40 is used as the recharge detection signal S10.

図2は、図1のアンプ40の構成を示す回路図である。アンプ40は、分圧回路42、第1差動増幅器AMP1、第2差動増幅器AMP2を含む。分圧回路42は、電池電圧Vbatを分圧して、検出電圧Vdetを生成する。分圧回路42の分圧比は、充電制御部30のモードに応じて、2値で切りかえられる。具体的には、定電圧充電モードにおいて第1分圧比αに、再充電検出モードにおいて第2分圧比βに設定される。つまり検出電圧Vdetは、定電圧充電モードにおいてVdet=α×Vbatとなり、再充電検出モードにおいてVdet=β×Vbatとなる。   FIG. 2 is a circuit diagram showing a configuration of the amplifier 40 of FIG. The amplifier 40 includes a voltage dividing circuit 42, a first differential amplifier AMP1, and a second differential amplifier AMP2. The voltage dividing circuit 42 divides the battery voltage Vbat to generate a detection voltage Vdet. The voltage dividing ratio of the voltage dividing circuit 42 is switched between two values according to the mode of the charging control unit 30. Specifically, the first voltage division ratio α is set in the constant voltage charge mode, and the second voltage division ratio β is set in the recharge detection mode. That is, the detection voltage Vdet is Vdet = α × Vbat in the constant voltage charge mode, and Vdet = β × Vbat in the recharge detection mode.

分圧回路42は、電池電圧Vbatが印加される端子44と接地端子間に直列に設けられた第1抵抗R1、第2抵抗R2を含む。第1抵抗R1、第2抵抗R2の接続点の電圧が、検出電圧Vdetとして後段の第1差動増幅器AMP1に出力される。第1抵抗R1、第2抵抗R2の少なくとも一方が、可変抵抗として構成される。図2では第2抵抗R2が可変抵抗であり、抵抗R21、R22、スイッチSW20を含んで構成される。スイッチSW20は抵抗R22と並列に設けられており、スイッチSW20がオンとなると抵抗R22がバイパスされ、第2抵抗R2の実効的な抵抗値がR21となり、スイッチSW20がオフすると、その実効的な抵抗値はR21+R22となる。つまり、スイッチSW20のオン、オフに対応して第2抵抗R2の抵抗値が変化し、分圧回路42の分圧比が切りかえられる。定電圧充電モードにおいてイネーブル信号ENがハイレベルとなるとスイッチSW20はオンとなり、再充電検出モードにおいてイネーブル信号ENがローレベルとなるとスイッチSW20はオフとなる。   The voltage dividing circuit 42 includes a first resistor R1 and a second resistor R2 provided in series between a terminal 44 to which the battery voltage Vbat is applied and a ground terminal. The voltage at the connection point of the first resistor R1 and the second resistor R2 is output as the detection voltage Vdet to the first differential amplifier AMP1 at the subsequent stage. At least one of the first resistor R1 and the second resistor R2 is configured as a variable resistor. In FIG. 2, the second resistor R2 is a variable resistor and includes resistors R21 and R22 and a switch SW20. The switch SW20 is provided in parallel with the resistor R22. When the switch SW20 is turned on, the resistor R22 is bypassed, the effective resistance value of the second resistor R2 is R21, and when the switch SW20 is turned off, the effective resistance is set. The value is R21 + R22. That is, the resistance value of the second resistor R2 changes corresponding to the on / off of the switch SW20, and the voltage dividing ratio of the voltage dividing circuit 42 is switched. The switch SW20 is turned on when the enable signal EN is at a high level in the constant voltage charging mode, and the switch SW20 is turned off when the enable signal EN is at a low level in the recharge detection mode.

図2の分圧回路42を用いた場合、第1分圧比αは、α=R21/(R1+R21)で与えられ、第2分圧比βは、β=(R21+R22)/(R1+R21+R22)で与えられる。   When the voltage dividing circuit 42 of FIG. 2 is used, the first voltage dividing ratio α is given by α = R21 / (R1 + R21), and the second voltage dividing ratio β is given by β = (R21 + R22) / (R1 + R21 + R22).

第1差動増幅器AMP1の一方の入力端子には検出電圧Vdetが入力され、他方の入力端子には所定の基準電圧Vrefが入力される。基準電圧Vrefは図示しないバンドギャップリファレンス回路により生成される。第1差動増幅器AMP1により生成される誤差電圧Verrは差動信号であり、定電圧充電モードにおいて、フィードバックのために充電ドライバ50に出力される。また、再充電検出モードにおいて、差動の誤差電圧Verrは、電池電圧Vbatと再充電検出電圧Vrchの比較結果として利用される。   The detection voltage Vdet is input to one input terminal of the first differential amplifier AMP1, and a predetermined reference voltage Vref is input to the other input terminal. The reference voltage Vref is generated by a band gap reference circuit (not shown). The error voltage Verr generated by the first differential amplifier AMP1 is a differential signal, and is output to the charge driver 50 for feedback in the constant voltage charging mode. In the recharge detection mode, the differential error voltage Verr is used as a comparison result between the battery voltage Vbat and the recharge detection voltage Vrch.

図2の回路では、第1差動増幅器AMP1の後段に第2差動増幅器AMP2が設けられる。第2差動増幅器AMP2はシングルエンドの出力を有しており、第1差動増幅器AMP1から出力される差動の誤差電圧Verrを受け、2つの信号の差を増幅し、ハイレベルまたはローレベルの検出信号S10を生成する。検出信号S10によって、検出電圧Vdetが基準電圧Vrefまで低下したことがステートマシン60に通知される。ステートマシン60は、検出電圧Vdetが基準電圧Vrefまで低下すると、再充電を開始するために、定電圧充電モードもしくは定電流充電モードに遷移する。   In the circuit of FIG. 2, a second differential amplifier AMP2 is provided after the first differential amplifier AMP1. The second differential amplifier AMP2 has a single-ended output, receives the differential error voltage Verr output from the first differential amplifier AMP1, amplifies the difference between the two signals, and outputs a high level or a low level. The detection signal S10 is generated. The detection signal S10 notifies the state machine 60 that the detection voltage Vdet has decreased to the reference voltage Vref. When the detection voltage Vdet decreases to the reference voltage Vref, the state machine 60 transitions to a constant voltage charging mode or a constant current charging mode in order to start recharging.

第2差動増幅器AMP2はイネーブル端子を有しており、ステートマシン60からのイネーブル信号ENにもとづいて、オン、オフが制御される。第2差動増幅器AMP2は、定電圧充電モードにおいてイネーブル信号ENがハイレベルとなるとオフ状態となり、再充電検出モードにおいてイネーブル信号ENがローレベルとなるとオン状態となる。第2差動増幅器AMP2は、電池電圧Vbatと再充電検出電圧Vrchとの比較により使用され、定電圧充電モード中は不要であるため、イネーブル機能を設けてシャットダウンすることにより消費電流を低減できる。   The second differential amplifier AMP2 has an enable terminal, and on / off is controlled based on the enable signal EN from the state machine 60. The second differential amplifier AMP2 is turned off when the enable signal EN is at a high level in the constant voltage charging mode, and is turned on when the enable signal EN is at a low level in the recharge detection mode. The second differential amplifier AMP2 is used by comparing the battery voltage Vbat and the recharge detection voltage Vrch, and is unnecessary during the constant voltage charging mode. Therefore, the current consumption can be reduced by providing an enable function and shutting down.

以上のように構成された充電制御部30の動作を説明する。
ステートマシン60は急速充電モード、定電流充電モードを経て、定電圧充電モードに遷移する。定電圧充電モードにおいてイネーブル信号ENがハイレベルとなり、充電ドライバ50がオン状態に設定されるとともに、アンプ40の第2差動増幅器AMP2がオフ状態に設定される。また分圧回路42の分圧比はαに設定され、Vdet=Vbat×αとなる。第1差動増幅器AMP1および充電ドライバ50を含むループによって、Vdet=Vrefが成り立つように、すなわちVbat=Vref/αが成り立つようにフィードバックがかかる。
The operation of the charging control unit 30 configured as described above will be described.
The state machine 60 transits to the constant voltage charging mode through the rapid charging mode and the constant current charging mode. In the constant voltage charging mode, the enable signal EN becomes a high level, the charging driver 50 is set to an on state, and the second differential amplifier AMP2 of the amplifier 40 is set to an off state. The voltage dividing ratio of the voltage dividing circuit 42 is set to α, and Vdet = Vbat × α. The loop including the first differential amplifier AMP1 and the charge driver 50 provides feedback so that Vdet = Vref is satisfied, that is, Vbat = Vref / α.

図示しない満充電検出回路によって満充電が検出されると、ステートマシン60は再充電検出モードに遷移する。ステートマシン60はイネーブル信号ENをローレベルとし、充電ドライバ50をオフ状態にしてフィードバックループを遮断するとともに、アンプ40の第2差動増幅器AMP2を動作状態とする。さらに分圧回路42の分圧比はβに設定される。第1差動増幅器AMP1からの差動誤差電圧Verrは、検出電圧Vdetと基準電圧Vrefの大小関係に応じて定まる。第2差動増幅器AMP2は、差動誤差電圧Verrにもとづいて、検出電圧Vdetと基準電圧Vrefの大小関係を判定し、検出信号S10を生成する。Vdet<Vrefとなると、すなわちVbat<Vref/βとなると、検出信号S10がハイレベルとなって、ステートマシン60は定電圧充電モードに遷移する。   When full charge is detected by a full charge detection circuit (not shown), the state machine 60 transitions to a recharge detection mode. The state machine 60 sets the enable signal EN to a low level, turns off the charge driver 50 to cut off the feedback loop, and sets the second differential amplifier AMP2 of the amplifier 40 to an operating state. Further, the voltage dividing ratio of the voltage dividing circuit 42 is set to β. The differential error voltage Verr from the first differential amplifier AMP1 is determined according to the magnitude relationship between the detection voltage Vdet and the reference voltage Vref. The second differential amplifier AMP2 determines the magnitude relationship between the detection voltage Vdet and the reference voltage Vref based on the differential error voltage Verr, and generates a detection signal S10. When Vdet <Vref, that is, when Vbat <Vref / β, the detection signal S10 becomes high level, and the state machine 60 transitions to the constant voltage charging mode.

本実施の形態に係る充電制御部30の効果は、図3との対比によってより明確となる。図3の回路では誤差増幅器2とコンパレータCMP1それぞれに入力オフセット電圧が発生し、さらに各入力オフセット電圧は独立に相関無く発生する。したがって、満充電電圧Vfullと再充電検出電圧Vrchの大小関係が反転するおそれがある。満充電電圧Vfullと再充電検出電圧Vrchを高精度に設定するためには、抵抗R10、R11側と、抵抗R12、R13側の両方にトリミング機構を設け、あるいは基準電圧Vrefとしきい値電圧Vthを独立に調節する必要があるため、回路規模が増大し、またトリミングに関連する製造コストが増加するという問題があった。   The effect of the charging control unit 30 according to the present embodiment becomes clearer by comparison with FIG. In the circuit of FIG. 3, an input offset voltage is generated in each of the error amplifier 2 and the comparator CMP1, and each input offset voltage is independently generated without correlation. Therefore, the magnitude relationship between the full charge voltage Vfull and the recharge detection voltage Vrch may be reversed. In order to set the full charge voltage Vfull and the recharge detection voltage Vrch with high accuracy, a trimming mechanism is provided on both the resistors R10 and R11 and the resistors R12 and R13, or the reference voltage Vref and the threshold voltage Vth are set. Since adjustment is required independently, there is a problem that the circuit scale increases and the manufacturing cost related to trimming increases.

これに対して実施の形態に係る充電制御部30では、単一の第1差動増幅器AMP1を利用しているため、回路面積を削減できる。また、定電圧充電時の誤差増幅および再充電検出時の電圧比較は、共通の入力オフセット電圧の影響を受けるため、満充電電圧Vfullと再充電検出電圧Vrchの大小関係には影響しにくいという利点がある。   On the other hand, in the charge control unit 30 according to the embodiment, the circuit area can be reduced because the single first differential amplifier AMP1 is used. Further, the error amplification at the time of constant voltage charging and the voltage comparison at the time of recharging detection are affected by a common input offset voltage, so that it is difficult to affect the magnitude relationship between the full charge voltage Vfull and the recharge detection voltage Vrch. There is.

また実施の形態の充電制御部30では、共通の分圧回路42を設けて分圧比を切りかえる。その結果、分圧回路42内の抵抗値のばらつきは、満充電電圧Vfullと再充電検出電圧Vrchの両方に影響するため相関が保たれる。分圧回路42にトリミング機構を設ける場合、トリミング処理が一度で済むためコストを削減できる。言い換えれば、満充電電圧Vfullがその目標値に近づくようにトリミングを行えば、自動的に再充電検出電圧Vrchをその目標値に近づけることができる。   In the charge control unit 30 of the embodiment, a common voltage dividing circuit 42 is provided to switch the voltage dividing ratio. As a result, the variation in resistance value in the voltage dividing circuit 42 affects both the full charge voltage Vfull and the recharge detection voltage Vrch, so that a correlation is maintained. In the case where the voltage dividing circuit 42 is provided with a trimming mechanism, the cost can be reduced because the trimming process is performed once. In other words, if the trimming is performed so that the full charge voltage Vfull approaches the target value, the recharge detection voltage Vrch can be automatically approximated to the target value.

上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   Those skilled in the art will understand that the above-described embodiment is an exemplification, and that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.

実施の形態では、分圧回路42の分圧比を切りかえる場合を説明したが、分圧比を一定として基準電圧Vrefを満充電電圧Vfullと再充電検出電圧Vrchに対応する2値で切りかえてもよい。この場合も、満充電電圧Vfullと再充電検出電圧Vrchの大小関係を保つことができる。   Although the case where the voltage dividing ratio of the voltage dividing circuit 42 is switched has been described in the embodiment, the reference voltage Vref may be switched between two values corresponding to the full charge voltage Vfull and the recharge detection voltage Vrch with the voltage dividing ratio constant. Also in this case, the magnitude relationship between the full charge voltage Vfull and the recharge detection voltage Vrch can be maintained.

実施の形態ではアンプ40を第1差動増幅器AMP1、第2差動増幅器AMP2の2つの増幅器で構成したが、本発明はこれに限定されない。第1差動増幅器AMP1をシングルエンドの差動増幅器で構成した場合、第2差動増幅器AMP2を省略できる。   In the embodiment, the amplifier 40 is composed of two amplifiers, the first differential amplifier AMP1 and the second differential amplifier AMP2, but the present invention is not limited to this. When the first differential amplifier AMP1 is a single-ended differential amplifier, the second differential amplifier AMP2 can be omitted.

実施の形態において各信号の論理レベルの設定は一例であり、適宜反転して回路構成を変更してもよい。   In the embodiment, the setting of the logic level of each signal is an example, and the circuit configuration may be changed by inverting as appropriate.

実施の形態にもとづき、特定の語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能である。   Although the present invention has been described using specific words and phrases based on the embodiments, the embodiments are merely illustrative of the principles and applications of the present invention, and the embodiments are defined in the claims. Many modifications and arrangements can be made without departing from the spirit of the present invention.

実施の形態に係る電源管理回路を備える電子機器の構成を示す回路図である。It is a circuit diagram which shows the structure of an electronic device provided with the power supply management circuit which concerns on embodiment. 図1のアンプの構成を示す回路図である。FIG. 2 is a circuit diagram illustrating a configuration of an amplifier in FIG. 1. 実施の形態と対比される充電制御部の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the charge control part contrasted with embodiment.

符号の説明Explanation of symbols

100…電源管理回路、102…アダプタ端子、104…電池端子、105…検出端子、30…充電制御部、32…入力端子、40…アンプ、42…分圧回路、44…端子、50…充電ドライバ、60…ステートマシン、62…電源回路、110…電池、112…負荷、114…アダプタ端子、200…電子機器、210…外部電源、Vext…外部電圧、Vbat…電池電圧、R1…第1抵抗、R2…第2抵抗、AMP1…第1差動増幅器、AMP2…第2差動増幅器。 DESCRIPTION OF SYMBOLS 100 ... Power management circuit, 102 ... Adapter terminal, 104 ... Battery terminal, 105 ... Detection terminal, 30 ... Charge control part, 32 ... Input terminal, 40 ... Amplifier, 42 ... Voltage divider circuit, 44 ... Terminal, 50 ... Charge driver , 60 ... state machine, 62 ... power supply circuit, 110 ... battery, 112 ... load, 114 ... adapter terminal, 200 ... electronic equipment, 210 ... external power supply, Vext ... external voltage, Vbat ... battery voltage, R1 ... first resistance, R2 ... second resistor, AMP1 ... first differential amplifier, AMP2 ... second differential amplifier.

Claims (3)

外部電圧を受け電池を充電する充電制御回路であって、
外部電源から外部電圧を受ける入力端子と、
前記電池が接続されるとともに、電池電圧を検出するための電池端子と、
前記電池電圧と所定の満充電電圧の誤差に応じた誤差電圧を生成するアンプと、
前記アンプからの誤差電圧を受け、フィードバックにより前記電池電圧が前記満充電電圧と一致するように前記電池に充電電流を供給して充電する充電ドライバと、
を備え、
前記アンプは前記電池電圧が前記満充電電圧と一致した後、再充電のタイミングを検出するために、前記電池電圧を所定の再充電検出電圧と比較するコンパレータとして機能することを特徴とする充電制御回路。
A charge control circuit for charging a battery in response to an external voltage,
An input terminal for receiving an external voltage from an external power source;
The battery is connected, and battery terminals for detecting battery voltage;
An amplifier that generates an error voltage according to an error between the battery voltage and a predetermined full charge voltage;
A charge driver that receives an error voltage from the amplifier and charges the battery by supplying a charging current so that the battery voltage matches the full charge voltage by feedback; and
With
The amplifier functions as a comparator that compares the battery voltage with a predetermined recharge detection voltage in order to detect a recharge timing after the battery voltage matches the full charge voltage. circuit.
前記アンプは、
前記電池の電圧を、切りかえ可能な第1、第2分圧比によって分圧して検出電圧を生成する分圧回路と、
前記分圧回路からの前記検出電圧と、所定の基準電圧とが入力された差動増幅器と、
を含み、
前記差動増幅器の出力信号は、前記電池を充電するとき、フィードバックのために前記充電ドライバに出力されるとともに、再充電のタイミングを検出するとき、前記電池電圧と前記再充電検出電圧の比較結果として利用されることを特徴とする請求項1に記載の充電制御回路。
The amplifier is
A voltage dividing circuit for dividing the voltage of the battery by a switchable first and second voltage dividing ratio to generate a detection voltage;
A differential amplifier to which the detection voltage from the voltage dividing circuit and a predetermined reference voltage are input;
Including
The output signal of the differential amplifier is output to the charge driver for feedback when the battery is charged, and when the recharge timing is detected, the battery voltage and the recharge detection voltage are compared. The charge control circuit according to claim 1, wherein the charge control circuit is used as:
電池と、
外部電源が着脱可能なアダプタ端子と、
前記電池を充電する請求項1または2に記載の充電制御回路と、
を備えることを特徴とする電子機器。
Battery,
An adapter terminal to which an external power supply can be attached and detached;
The charge control circuit according to claim 1 or 2, wherein the battery is charged;
An electronic device comprising:
JP2007237040A 2007-09-12 2007-09-12 CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME Active JP5014933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237040A JP5014933B2 (en) 2007-09-12 2007-09-12 CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237040A JP5014933B2 (en) 2007-09-12 2007-09-12 CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2009071964A JP2009071964A (en) 2009-04-02
JP5014933B2 true JP5014933B2 (en) 2012-08-29

Family

ID=40607649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237040A Active JP5014933B2 (en) 2007-09-12 2007-09-12 CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5014933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201123680A (en) * 2009-12-18 2011-07-01 Cheng Uei Prec Ind Co Ltd Overcharge protection device for batteries
KR102487237B1 (en) 2015-08-07 2023-01-10 삼성전자주식회사 Charge control circuit using battery voltage tracking, and device having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457630A (en) * 1977-10-18 1979-05-09 Yokogawa Electric Works Ltd Charging equipment
JPS6439238A (en) * 1987-07-31 1989-02-09 Meidensha Electric Mfg Co Ltd Controller for charging equipment
JP3740793B2 (en) * 1997-06-11 2006-02-01 ソニー株式会社 Secondary battery pack
JPH1172544A (en) * 1997-06-20 1999-03-16 Fuji Elelctrochem Co Ltd Method and device for monitoring remaining capacity of secondary cell
JP2000023384A (en) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd Battery charger
JP2004140926A (en) * 2002-10-17 2004-05-13 Seiko Epson Corp Charging control apparatus
JP2005218238A (en) * 2004-01-30 2005-08-11 Kenwood Corp Method and apparatus for controlling charging of secondary battery

Also Published As

Publication number Publication date
JP2009071964A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
Lin et al. A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging
US8558515B2 (en) Protection circuit and electronic device
US8581552B2 (en) Battery state monitoring circuitry with low power consumption during a stand-by-state of a battery pack
KR101201097B1 (en) Power management method and system for battery-powered systems
US8350408B2 (en) Power management circuit
US20090278501A1 (en) Smart battery protector with impedance compensation
US8362748B2 (en) Voltage comparison circuit
US20110304299A1 (en) System of charging battery pack and method thereof
US10727677B2 (en) Fast charging circuit
AU2019402985B2 (en) Methods and apparatus for controlling charge current in a battery pack containing cells of disparate types
KR19980026944A (en) Secondary battery charging circuit
US20090096427A1 (en) Apparatus for detecting end-of-charge for a battery charger
JP2002330549A (en) Charge and discharge control circuit and rechargeable power unit
JP5941656B2 (en) Charging circuit and electronic device using the same
US8080978B2 (en) Battery charging system and method
JP5544922B2 (en) Protection circuit and electronic equipment
US20050275375A1 (en) Battery charger using a depletion mode transistor to serve as a current source
US9553461B2 (en) Charge control circuit, charge circuit, and mobile device
US7701178B2 (en) Charge control that keeps constant input voltage supplied to battery pack
JP5014933B2 (en) CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME
JP2008275524A (en) Battery pack and residual capacity computing method
US7560899B1 (en) Circuit and method for adjusting safety time-out with charge current
JP5139012B2 (en) Power management circuit and electronic equipment
KR101269266B1 (en) Apparatus and method for preventing an electronic equipment damage by rising battery temperature
US20230420969A1 (en) Current consumption control device and battery management device comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250