JP2001087631A - Method for preparing film by melt spinning - Google Patents

Method for preparing film by melt spinning

Info

Publication number
JP2001087631A
JP2001087631A JP26779299A JP26779299A JP2001087631A JP 2001087631 A JP2001087631 A JP 2001087631A JP 26779299 A JP26779299 A JP 26779299A JP 26779299 A JP26779299 A JP 26779299A JP 2001087631 A JP2001087631 A JP 2001087631A
Authority
JP
Japan
Prior art keywords
liquid
hollow
temperature
hollow fiber
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26779299A
Other languages
Japanese (ja)
Other versions
JP4623780B2 (en
Inventor
Noboru Kubota
昇 久保田
Hiroshi Hatayama
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP26779299A priority Critical patent/JP4623780B2/en
Publication of JP2001087631A publication Critical patent/JP2001087631A/en
Application granted granted Critical
Publication of JP4623780B2 publication Critical patent/JP4623780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a hollow fibrous porous film comprising a thermoplastic resin with dense pores and high water permeability suitable for the use in filtration such as turbidity removal. SOLUTION: In a method for obtaining a hollow fibrous porous film by firstly melting a thermoplastic resin and an organic at a high temperature, then extruding the molten material from a spinning orifice for molding a hollow into a liquid bath in hollow fiber structure to cool and harden via the air while injecting into a hollow part a fluid which forms a hollow part, and subsequently extracting and removing the organic liquid, thereby obtaining a hollow fibrous porous films, the method is characterized in that (1) the time for which the extrudate is running in the air is within a range from 0 to 1 second (, provided that 0 is not included) and that (2) the hollow part forming fluid is a liquid having a higher boiling point than the temperature at the spinning orifice, particularly preferably a liquid having a higher boiling point than the temperature at the spinning orifice and a liquid-liquid phase separability from the thermoplastic resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な、緻密な細孔と高い透水性能を持つ、熱可塑性
樹脂より成る中空糸状多孔膜の製膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hollow fiber-shaped porous membrane made of a thermoplastic resin having fine pores and high water permeability, which is suitable for filtration such as turbidity.

【0002】[0002]

【従来の技術】精密濾過膜や限外濾過膜等の多孔膜によ
る濾過操作は、自動車産業(電着塗料回収再利用システ
ム)、半導体産業(超純水製造)、医薬食品産業(除
菌、酵素精製)などの多方面にわたって実用化されてい
る。特に近年は河川水等を除濁して飲料水や工業用水を
製造するための手法としても多用されつつある。中でも
中空糸状の多孔膜は、単位体積当たりに充填できる膜面
積が大きくでき、単位空間占有体積当たりの濾過処理能
力を高くできるため、特に多く利用されている。
2. Description of the Related Art Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes are carried out in the automobile industry (electrodeposition paint recovery and reuse system), the semiconductor industry (ultra pure water production), the pharmaceutical food industry (sterilization, It has been put to practical use in many fields such as enzyme purification. Particularly in recent years, it has been widely used as a method for producing drinking water and industrial water by turbidizing river water and the like. Above all, hollow fiber porous membranes are particularly widely used because the membrane area that can be filled per unit volume can be increased and the filtration capacity per unit space occupied can be increased.

【0003】多孔膜の製法としては、相分離(相転換)
を利用した方法が多用されている(滝澤章、膜、p36
7−418、(株)アイピーシー、1992年、あるい
は吉川正和ら監修、膜技術第2版、p77−107、
(株)アイピーシー、1997年、など)。中でも高分
子を高温で溶剤と溶融した後に冷却して相分離させる熱
誘起型相分離法(熱転相法、本明細書では溶融法と呼
ぶ)は、基本的には熱可塑性高分子でさえあれば、常温
付近での適当な溶剤がなくて他の相分離法がとれない高
分子化合物にも広く適用が可能である優れた製膜方法で
ある(滝澤章、膜、p404、(株)アイピーシー、1
992年)。特に他の相分離法が取れないが安価でかつ
機械的化学的強度に優れるポリオレフィン系高分子化合
物(ポリプロピレン、ポリエチレン等)に適用できるこ
とは溶融法の大きな利点である。
[0003] As a method for producing a porous membrane, phase separation (phase conversion) is used.
(Akira Takizawa, Membrane, p. 36)
7-418, IPC Co., Ltd., 1992, or supervision by Masakazu Yoshikawa et al., Membrane Technology Second Edition, pp. 77-107,
(IPC, 1997, etc.). Above all, the heat-induced phase separation method in which a polymer is melted with a solvent at a high temperature and then cooled and phase-separated (thermal phase inversion method, which is called a melting method in this specification) is basically a thermoplastic polymer. If it is, it is an excellent film-forming method that can be widely applied to a polymer compound that does not have a suitable solvent at around normal temperature and cannot be subjected to other phase separation methods (Akira Takizawa, Membrane, p404, Inc.) IPC, 1
992). In particular, it is a great advantage of the melting method that it can be applied to a polyolefin polymer compound (polypropylene, polyethylene, etc.) which is inexpensive and has excellent mechanical and chemical strength, although other phase separation methods cannot be taken.

【0004】溶融法により製膜する場合のプロセスは、
1)熱可塑性樹脂と溶剤とを押出機等で高温にて均一に
溶融し、2)この溶融物を紡口より空気中を経て液浴中
に押し出して冷却することにより相分離(高分子濃厚相
と高分子希薄相の2相)を生起させた後固化(凝固)さ
せ、3)固化物中の溶剤を除去する(このとき相分離時
の高分子濃厚相部分が多孔膜骨格となり、相分離時の高
分子希薄相部分が孔となる)方法が知られている(特開
昭55−60537号公報、特開昭55−22398号
公報など)。
[0004] The process of forming a film by a melting method is as follows.
1) The thermoplastic resin and the solvent are uniformly melted at a high temperature by an extruder or the like, and 2) The melt is extruded from a spinneret into the liquid bath through the air through the spinneret and cooled to phase-separate (polymer rich). Phase) and solidification (coagulation) after generation of the polymer phase. 3) Removal of the solvent in the solidified substance (at this time, the polymer rich phase portion at the time of phase separation becomes a porous membrane skeleton, There is known a method in which a polymer dilute phase portion becomes a pore during separation (JP-A-55-60537, JP-A-55-22398, etc.).

【0005】[0005]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な、緻密な細孔と高い透水性能を持つ、熱
可塑性樹脂より成る中空糸状多孔膜の製膜方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention provides a method for producing a hollow fiber-like porous membrane made of a thermoplastic resin having fine pores and high water permeability, which is suitable for filtration such as turbidity. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明は、(1)熱可塑
性樹脂と有機液体とを高温にて溶融した後、該溶融物を
中空糸成型用紡口から中空部内に中空部形成流体を注入
しつつ中空糸状に空気中を経て液浴中に押し出して冷却
固化し、しかる後に該有機液体を抽出除去して中空糸状
多孔膜を得る方法において、該押し出し物が空気中を走
行する時間が0から1秒の間(ただし0は含まない)で
あり、かつ該中空部形成流体が紡口温度以上の沸点を持
つ液体であることを特徴とする、熱可塑性樹脂より成る
中空糸状多孔膜の溶融製膜方法、(2)中空部形成流体
が高温にて熱可塑性樹脂と液液相分離する能力を持つ液
体であることを特徴とする、上記(1)記載の熱可塑性
樹脂より成る中空糸状多孔膜の溶融製膜方法、(3)押
し出し物が空気中を走行する時間が0から0.5秒の間
(ただし0は含まない)である、上記(1)または
(2)記載の熱可塑性樹脂より成る中空糸状多孔膜の溶
融製膜方法、(4)押し出し物が空気中を走行する時間
が0から0.25秒の間(ただし0は含まない)であ
る、上記(1)または(2)記載の熱可塑性樹脂より成
る中空糸状多孔膜の溶融製膜方法、(5)液浴が実質的
に水より成る、上記(1)−(4)に記載の熱可塑性樹
脂より成る中空糸状多孔膜の溶融製膜方法、(6)熱可
塑性樹脂がポリエチレンである、上記(1)−(5)に
記載の熱可塑性樹脂より成る中空糸状多孔膜の溶融製膜
方法、に関する。
According to the present invention, there is provided (1) a method in which a thermoplastic resin and an organic liquid are melted at a high temperature, and then the melt is poured into a hollow portion from a spun for forming a hollow fiber into a hollow portion. In a method of extruding into a liquid bath through the air into a hollow fiber shape while injecting, cooling and solidifying, and then extracting and removing the organic liquid to obtain a hollow fiber-shaped porous membrane, the extruded material travels in the air in a time. A hollow fiber-shaped porous membrane made of a thermoplastic resin, wherein the hollow fiber is a liquid having a boiling point not lower than the spinning temperature, which is between 0 and 1 second (however, 0 is not included). (2) a hollow fiber formed of the thermoplastic resin according to the above (1), wherein the hollow part forming fluid is a liquid having a liquid-liquid phase separation ability with the thermoplastic resin at a high temperature. (3) Extruded material in air (4) a method for melt-forming a hollow fiber-like porous membrane made of a thermoplastic resin according to the above (1) or (2), wherein the running time is between 0 and 0.5 seconds (however, 0 is not included); Melting the hollow fiber-shaped porous membrane made of the thermoplastic resin according to the above (1) or (2), wherein the time for the extrudate to travel in the air is between 0 and 0.25 seconds (excluding 0). A membrane method, (5) a method for melt-forming a hollow fiber-like porous membrane comprising a thermoplastic resin according to the above (1) to (4), wherein the liquid bath is substantially composed of water, and (6) a thermoplastic resin made of polyethylene. The present invention also relates to a method for melt-forming a hollow fiber-shaped porous membrane comprising the thermoplastic resin according to the above (1) to (5).

【0007】以下、本発明について詳細に記述する。熱
可塑性樹脂(熱可塑性高分子)は、常温では変形しにく
く弾性を有し塑性を示さないが、適当な加熱により塑性
を現し、成形が可能になり、冷却して温度が下がると再
びもとの弾性体に戻る可逆的変化を行い、その間に分子
構造など化学的変化を生じない性質を持つ樹脂である
(化学大辞典編修委員会編集、化学大辞典6縮刷版、共
立出版、860および867頁、1963年)。
Hereinafter, the present invention will be described in detail. Thermoplastic resin (thermoplastic polymer) is not easily deformed at room temperature and has elasticity and does not show plasticity, but it shows plasticity by appropriate heating, molding becomes possible, and when cooled down, the temperature returns Is a resin that undergoes a reversible change back to an elastic body and does not cause chemical changes such as molecular structure during that time (edited by the Editing Committee of the Chemical Dictionary, compact edition of the Chemical Dictionary 6, Kyoritsu Shuppan, 860 and 867 P. 1963).

【0008】例として、12695の化学商品、化学工
業日報社、1995年の熱可塑性プラスチックの項(8
29−882頁)記載の樹脂や、日本化学会編、化学便
覧応用編改訂3版、丸善、1980年の809−810
頁記載の樹脂等を挙げることができる。具体例名を挙げ
れば、ポリエチレン、ポリプロピレン、ポリフッ化ビニ
リデン、エチレンビニルアルコールコポリマー、ポリア
ミド、ポリエーテルイミド、ポリスチレン、ポリサルホ
ン、ポリビニルアルコール、ポリフェニレンエーテル、
ポリフェニレンサルファイド、酢酸セルロース、ポリア
クリロニトリルなどである。中でもポリオレフィン系重
合体(ポリエチレン、ポリプロピレン、ポリフッ化ビニ
リデン等)は、疎水性のために耐水性が高いため水系濾
過膜の素材として適しており、好適である。さらに、こ
れらポリオレフィン系重合体の中でも、廃棄時に問題と
なるハロゲン元素を含まず、かつ化学反応性の高い3級
炭素が少ないために膜洗浄時の薬品劣化が起こりにくく
長期使用耐性が期待でき、かつ安価であるポリエチレン
が、特に好適である。
[0008] As an example, 12695 chemical products, Kagaku Kogyo Nippo, 1995 thermoplastics section (8
29-882), the Chemical Society of Japan, edited by Chemical Handbook, 3rd revised edition, Maruzen, 809-810, 1980.
Resins and the like described on the page can be mentioned. Specific examples include polyethylene, polypropylene, polyvinylidene fluoride, ethylene vinyl alcohol copolymer, polyamide, polyetherimide, polystyrene, polysulfone, polyvinyl alcohol, polyphenylene ether,
Examples include polyphenylene sulfide, cellulose acetate, and polyacrylonitrile. Among them, polyolefin-based polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable as a raw material for aqueous filtration membranes because of their high water resistance due to hydrophobicity. Furthermore, among these polyolefin-based polymers, since they do not contain a halogen element which is a problem at the time of disposal, and there are few tertiary carbons having high chemical reactivity, chemical deterioration during film washing does not easily occur and long-term use resistance can be expected, Polyethylene, which is inexpensive, is particularly preferred.

【0009】本発明で用いる有機液体は、熱可塑性高分
子と混合した際に一定の温度および熱可塑性高分子濃度
範囲において液液相分離状態(熱可塑性高分子濃厚相液
滴/熱可塑性高分子希薄相即ち有機液体濃厚相液滴の2
相共存状態)をとることができ、かつ沸点が液液相分離
温度域の上限温度以上である液体である。単一液体でな
く混合液体であってもよい。このような有機液体と熱可
塑性高分子とを液液相分離の起こる濃度範囲にて混合し
た場合、温度をその混合組成において液液相分離状態を
とる上限温度以上に高温にすると熱可塑性高分子と有機
液体とが均一に溶解した相溶物を得ることができる。該
相溶物を冷却すると、液液2相(熱可塑性高分子濃厚相
液滴と有機液体濃厚相液滴)の共存状態(液液相分離状
態)が現れて孔構造が発生し、さらに熱可塑性高分子が
固化する温度まで冷却することで孔構造が固定される。
When the organic liquid used in the present invention is mixed with a thermoplastic polymer, it is in a liquid-liquid phase separated state at a certain temperature and in a range of the thermoplastic polymer concentration (a thermoplastic polymer dense phase droplet / thermoplastic polymer droplet). 2 of dilute phase or organic liquid dense phase droplet
Phase coexisting state) and has a boiling point not lower than the upper limit temperature of the liquid-liquid phase separation temperature range. It may be a mixed liquid instead of a single liquid. When such an organic liquid and a thermoplastic polymer are mixed in a concentration range in which liquid-liquid phase separation occurs, the thermoplastic polymer is heated at a temperature higher than the upper limit temperature at which a liquid-liquid phase separation state is obtained in the mixed composition. And an organic liquid can be obtained. When the compatibilized material is cooled, a coexistence state (liquid-liquid phase separation state) of two liquid-liquid phases (a thermoplastic polymer concentrated phase droplet and an organic liquid concentrated phase droplet) appears, and a pore structure is generated. The pore structure is fixed by cooling to a temperature at which the plastic polymer solidifies.

【0010】この相図の例を図1に示した。図1におい
て、熱可塑性高分子濃度は、熱可塑性高分子重量と有機
液体重量の和に対する熱可塑性高分子の重量の割合であ
る。また、液1相領域は熱可塑性高分子と有機液体との
相溶領域を、液液2相領域は熱可塑性高分子濃厚相(液
状)と熱可塑性高分子希薄相(液体)との共存領域を、
固化領域は熱可塑性高分子が固化する領域(固体熱可塑
性高分子と有機液体との共存領域)をそれぞれ示す。
FIG. 1 shows an example of this phase diagram. In FIG. 1, the concentration of the thermoplastic polymer is the ratio of the weight of the thermoplastic polymer to the sum of the weight of the thermoplastic polymer and the weight of the organic liquid. The liquid 1 phase region is a compatible region of the thermoplastic polymer and the organic liquid, and the liquid / liquid 2 phase region is a coexisting region of the thermoplastic polymer rich phase (liquid) and the thermoplastic polymer dilute phase (liquid). To
The solidified region indicates a region where the thermoplastic polymer is solidified (a region where the solid thermoplastic polymer and the organic liquid coexist).

【0011】孔構造が固定されたのち、膜より有機液体
を除去することで中空糸状多孔体が得られる。このと
き、液液相分離時の熱可塑性高分子濃厚相部分が冷却固
化されて多孔構造(多孔体骨格)を形成し、熱可塑性高
分子希薄相(有機液体濃厚相)部分が孔部分となる。従
って、本発明に言う有機液体とは、高温では熱可塑性高
分子の溶剤であるが、低温(例えば常温付近)では非溶
剤である液体である。例えば熱可塑性高分子がポリエチ
レンの場合、このような有機液体の例として、フタル酸
ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル、
フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデ
シル、フタル酸ジトリデシル等のフタル酸エステル類、
セバシン酸ジブチル等のセバシン酸エステル類、アジピ
ン酸ジオクチル等のアジピン酸エステル類、マレイン酸
ジオクチル等のマレイン酸エステル類、トリメリット酸
トリオクチル等のトリメリット酸エステル類、リン酸ト
リブチル、リン酸トリオクチル等のリン酸エステル類、
プロピレングリコールジカプレート、プロピレングリコ
ールジオレエート等のグリコールエステル類、グリセリ
ントリオレエート等のグリセリンエステル類などの単独
あるいは2種以上の混合物を挙げることができる。さら
に、単独ではポリエチレンと高温にても相溶しない液体
や、流動パラフィンのように単独では高温でポリエチレ
ンと相溶するものの相溶性が高すぎて液液2相の相分離
状態をとらない液体を、有機液体の定義(ポリエチレン
と混合した際に一定の温度およびポリエチレン濃度範囲
において液液相分離状態をとることができかつ沸点が液
液相分離温度域の上限温度以上の液体)を逸しない範囲
内で前記有機液体例(フタル酸エステル類等)と混合し
た混合液体も有機液体の例として挙げることができる。
After the pore structure is fixed, the organic liquid is removed from the membrane to obtain a hollow fiber-like porous body. At this time, the thermoplastic polymer rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous skeleton), and the thermoplastic polymer dilute phase (organic liquid rich phase) portion becomes a pore portion. . Therefore, the organic liquid referred to in the present invention is a liquid which is a solvent of a thermoplastic polymer at a high temperature, but is a non-solvent at a low temperature (for example, near normal temperature). For example, when the thermoplastic polymer is polyethylene, examples of such an organic liquid include dibutyl phthalate, diheptyl phthalate, dioctyl phthalate,
Phthalic acid esters such as di (2-ethylhexyl) phthalate, diisodecyl phthalate, ditridecyl phthalate,
Sebacic esters such as dibutyl sebacate, adipic esters such as dioctyl adipate, maleic esters such as dioctyl maleate, trimellitic esters such as trioctyl trimellitate, tributyl phosphate, trioctyl phosphate and the like Phosphoric esters,
Examples thereof include propylene glycol dicaprate, glycol esters such as propylene glycol dioleate, glycerin esters such as glycerin trioleate, and the like, alone or in combination of two or more. Furthermore, a liquid that is incompatible with polyethylene alone at high temperatures or a liquid such as liquid paraffin that is compatible with polyethylene at high temperatures alone but does not form a liquid-liquid two-phase separation state due to too high compatibility. , The definition of organic liquid (a liquid that can be in a liquid-liquid phase separation state at a certain temperature and polyethylene concentration range when mixed with polyethylene and has a boiling point not lower than the upper limit temperature of the liquid-liquid phase separation temperature range) Among them, a mixed liquid mixed with the above-mentioned organic liquid examples (such as phthalic esters) can also be mentioned as examples of the organic liquid.

【0012】熱可塑性高分子と上記有機液体とは、例え
ば2軸押し出し機を用いて所定の混合比にてその混合比
における液液相分離温度域の上限温度以上の温度にて混
合、相溶させることができる。熱可塑性高分子と有機液
体との混合比は、熱可塑性高分子の比が小さすぎると得
られる膜の強度が低くなりすぎて不利であり、逆に熱可
塑性高分子の比が大きすぎると得られる膜の透水性能が
低くなりすぎて不利である。熱可塑性高分子と有機液体
との好ましい混合比は、熱可塑性高分子/有機液体の重
量比で10/90から50/50である。
The thermoplastic polymer and the organic liquid are mixed and mixed at a predetermined mixing ratio using a twin screw extruder at a temperature higher than the upper limit temperature of the liquid-liquid phase separation temperature range at the mixing ratio. Can be done. The mixing ratio between the thermoplastic polymer and the organic liquid is disadvantageous because the strength of the obtained film is too low when the ratio of the thermoplastic polymer is too small, and conversely, when the ratio of the thermoplastic polymer is too large. This is disadvantageous because the water permeability of the resulting membrane is too low. The preferred mixing ratio between the thermoplastic polymer and the organic liquid is from 10/90 to 50/50 by weight of the thermoplastic polymer / organic liquid.

【0013】相溶物(溶融物)は、押し出し機先端のヘ
ッドと呼ばれる部分に導かれ、押し出される。このヘッ
ド内の押し出し口に、相溶物を所定の形状に押し出すた
めの口金を装着することで所定の形状に相溶物を成形し
て押し出すことができる。本発明の場合は、中空糸状に
成形するための口金(中空糸成形用紡口)をヘッドの押
し出し口に装着する。中空糸成形用紡口は、相溶物を中
空状(円環状)に押し出すための円環状の穴と、押し出
された中空状物の中空部が閉じて円柱状になってしまわ
ないために押し出された中空状物の中空部に注入してお
く中空部形成流体を吐出するための穴(上記円環状穴の
内側に存在する;形状は円形穴)とを押し出し側の面に
持つ紡口ノズルである。熱可塑性高分子と有機液体との
相溶物は、上記中空糸成形用紡口の円環穴より、円環穴
の内側の穴から中空部形成流体の注入を中空部内に受け
つつ空気中(窒素等の不活性ガス中でもよい)に押し出
される。
The compatible material (melt) is guided to a portion called a head at the tip of the extruder and extruded. By mounting a die for extruding the compatible material into a predetermined shape at the extrusion port in the head, the compatible material can be formed into a predetermined shape and extruded. In the case of the present invention, a spinneret for forming into a hollow fiber (hollow fiber forming spinneret) is attached to the extrusion port of the head. The hollow fiber forming spinneret has an annular hole for extruding the compatible material into a hollow shape (annular shape) and an extruded hole for preventing the hollow portion of the extruded hollow material from closing to form a column. Spouting nozzle having a hole (existing inside the above-mentioned annular hole; the shape is a circular hole) for discharging a hollow part forming fluid to be injected into the hollow part of the hollow material formed on the extrusion side surface It is. The miscible material of the thermoplastic polymer and the organic liquid is injected into the hollow portion through the hole inside the annular hole from the annular hole of the above-described hollow fiber forming spout while receiving the injection of the hollow portion forming fluid into the hollow portion ( (Even in an inert gas such as nitrogen).

【0014】中空部形成流体は、押し出し物(熱可塑性
高分子および有機液体)とは非反応性であることはもち
ろんのことであるが、加えて、紡口から吐出される際に
液体であることが、押し出される中空状物の断面形状の
真円性を維持するために必要である。中空部形成流体が
気体(例えば窒素ガスや空気)の場合、紡口から押し出
された後の中空状物の断面形状の真円性を保つことは難
しくなる。中空部形成流体は紡口内から吐出されるた
め、吐出時にも液体であることを確保するためには、沸
点が紡口温度以上である液体を中空部形成流体として用
いることが必要である。
The hollow part forming fluid is, of course, non-reactive with the extrudate (thermoplastic polymer and organic liquid), but in addition, is a liquid when discharged from the spinneret. This is necessary in order to maintain the roundness of the cross-sectional shape of the extruded hollow object. When the hollow part forming fluid is a gas (for example, nitrogen gas or air), it is difficult to maintain the roundness of the cross-sectional shape of the hollow object after being extruded from the spinneret. Since the hollow part forming fluid is discharged from the inside of the spinneret, it is necessary to use a liquid having a boiling point equal to or higher than the spinning point temperature as the hollow part forming fluid in order to ensure that the liquid is also liquid at the time of discharging.

【0015】中空部形成流体の特性として、沸点が紡口
温度以上であることに加えて、高温で熱可塑性高分子と
液液相分離する能力を持つ液体、即ち熱可塑性高分子と
混合した際に一定の温度および熱可塑性高分子濃度範囲
において液液相分離状態(熱可塑性高分子濃厚相液滴/
熱可塑性高分子希薄相即ち有機液体濃厚相液滴の2相共
存状態)をとることができる液体を用いることで、得ら
れる多孔膜の透水性能を飛躍的に向上させることができ
る。この場合、中空糸成形用紡口から吐出されるときの
中空部形成流体の温度は必ずしも熱可塑性高分子と液液
相分離状態となる温度である必要はなく、液液相分離状
態をとる温度域より高くてもよいし、低くてもよい。こ
のような中空部形成用流体の例としては、前記の有機液
体の例と同じ例を挙げることができる。なお、中空部形
成流体の沸点は、紡口温度以上であれば、前記の有機液
体とは異なり、液液相分離温度域の上限温度以下であっ
てもよい。
As the characteristics of the fluid forming the hollow portion, in addition to the fact that the boiling point is not lower than the spinning temperature, when mixed with a liquid having a capability of liquid-liquid phase separation with a thermoplastic polymer at a high temperature, that is, when mixed with a thermoplastic polymer, Liquid-liquid phase separation at a certain temperature and thermoplastic polymer concentration range (thermoplastic polymer dense phase droplets /
By using a liquid capable of forming a thermoplastic polymer dilute phase, that is, a two-phase coexistence state of an organic liquid dense phase droplet, the water permeability of the obtained porous membrane can be remarkably improved. In this case, the temperature of the hollow part forming fluid when discharged from the spinning nozzle for forming a hollow fiber does not necessarily need to be a temperature at which the thermoplastic polymer and the liquid-liquid phase separation state are obtained, but a temperature at which the liquid-liquid phase separation state is obtained. It may be higher or lower than the range. Examples of such a fluid for forming a hollow portion include the same examples as those of the above-described organic liquid. The boiling point of the hollow part forming fluid may be lower than the upper limit temperature of the liquid-liquid phase separation temperature region, unlike the above-mentioned organic liquid, as long as the boiling point is higher than the spinning temperature.

【0016】空気中に押し出された相溶物は、液浴に導
かれ、押し出し物中の熱可塑性高分子が固化する温度ま
で冷却される。こうして紡口から押し出された相溶物
は、紡口出口から液浴中通過の間に冷却されることで液
液相分離が生起されて孔構造が発生し、次いで固化し、
孔構造が固定される。液浴の組成は、押し出し物(熱可
塑性高分子および有機液体)と反応性を有さない液体で
あれば特に限定はされず、押し出し物中の有機液体と同
じであっても良い。ただし、温度は、その押し出し物組
成での熱可塑性高分子の固化温度以下である必要があ
る。液浴の重要な機能は押し出し物の冷却機能であるの
で、冷却能力が高い、即ち熱容量が大きい液体である水
が、液浴の組成物としては好ましい。
The compatible material extruded into the air is guided to a liquid bath and cooled to a temperature at which the thermoplastic polymer in the extruded material solidifies. The compatibilized material extruded from the spinneret is cooled during passage from the spinneret outlet into the liquid bath, thereby causing liquid-liquid phase separation to occur, generating a pore structure, and then solidifying,
The hole structure is fixed. The composition of the liquid bath is not particularly limited as long as it has no reactivity with the extrudate (thermoplastic polymer and organic liquid), and may be the same as the organic liquid in the extrudate. However, the temperature needs to be lower than the solidification temperature of the thermoplastic polymer in the extrudate composition. Since the important function of the liquid bath is the function of cooling the extrudate, water, which has a high cooling capacity, that is, a liquid having a large heat capacity, is preferable as the composition of the liquid bath.

【0017】紡口から空気中に押し出された相溶物が液
浴に入るまでの時間、即ち空中走行時間は、ゼロから1
秒までの間(ただしゼロは含まない)である。空中走行
時間がゼロの場合は、紡口の押し出し面が液浴の液面と
接している状態になる。紡口温度は熱可塑性高分子と有
機液体の相溶温度、即ちその混合組成における液液相分
離温度域以上の温度に設定するため、熱可塑性高分子の
固化温度以下に設定されている液浴より必然的に高い温
度になる。したがって空中走行時間がゼロの場合は、紡
口が液浴の液で常時冷却されて紡口の温度調節が不安定
になるため、適さない。一方で空中走行時間が長くなり
すぎると外表面の開孔性が低下し、膜の透水性能が低下
して好ましくない。空中走行時間は、好ましくはゼロか
ら0.5秒の間(ただし0は含まない)、さらに好まし
くはゼロから0.25秒の間(ただし0は含まない)で
ある。空中走行時間の測定は、液浴出口で中空糸を張力
をかけない状態で巻き取った場合には、巻き取り速度と
空中走行距離(紡口面と液浴面との距離)から、下記式
で求めることができる。
The time required for the compatible substance extruded from the spinneret into the air to enter the liquid bath, that is, the air travel time, is from zero to one.
Up to seconds (but not including zero). When the air travel time is zero, the extruded surface of the spinneret comes into contact with the liquid surface of the liquid bath. Since the spinning temperature is set to a temperature higher than the compatibility temperature of the thermoplastic polymer and the organic liquid, that is, the liquid-liquid phase separation temperature range in the mixed composition, the liquid bath is set to a temperature lower than the solidification temperature of the thermoplastic polymer. Inevitably higher temperatures. Therefore, when the air traveling time is zero, the spinneret is always cooled by the liquid in the liquid bath, and the temperature control of the spinneret becomes unstable, which is not suitable. On the other hand, if the air traveling time is too long, the porosity of the outer surface decreases, and the water permeability of the membrane decreases, which is not preferable. The air travel time is preferably between zero and 0.5 seconds (but not including zero), and more preferably between zero and 0.25 seconds (but not including zero). The aerial traveling time is measured by the following formula based on the winding speed and the aerial traveling distance (distance between the spouting surface and the liquid bath surface) when the hollow fiber is wound without tension at the liquid bath outlet. Can be obtained by

【0018】[0018]

【数1】 (Equation 1)

【0019】このように、中空部形成流体として沸点が
紡口温度以上の液体、特にその中でも熱可塑性高分子と
液液相分離状態をとることができる液体を用いた上で紡
口から出た相溶物をある特定の空走時間の後に液浴に導
くことで、緻密な細孔と高い透水性能を持つ膜をつくる
ことが可能になる。液浴から出てきた中空糸状物は、冷
却途中で生起した液液相分離時の熱可塑性高分子濃厚相
部分が冷却固化されて多孔構造(多孔体骨格)を形成
し、液液相分離時の熱可塑性高分子希薄相(有機液体濃
厚相)部分が有機液体の詰まった孔部分となっている。
この孔部分に詰まっている有機液体を除去すれば、本発
明開示の多孔膜が得られる。
As described above, a liquid having a boiling point equal to or higher than the spinning temperature, particularly a liquid capable of forming a liquid-liquid phase-separated state from a thermoplastic polymer, is used as the hollow forming fluid, and then the liquid is discharged from the spinning hole. By guiding the compatible substance to the liquid bath after a certain idle running time, it becomes possible to form a membrane having dense pores and high water permeability. The hollow fiber-like material coming out of the liquid bath forms a porous structure (porous skeleton) by cooling and solidifying the thermoplastic polymer rich phase portion generated during liquid-liquid phase separation during cooling and solidifying. The thermoplastic polymer dilute phase (organic liquid rich phase) portion is a pore portion filled with the organic liquid.
By removing the organic liquid clogging the pores, the porous membrane disclosed in the present invention can be obtained.

【0020】膜中の有機液体の除去は、熱可塑性高分子
を溶解または劣化させずかつ除去したい有機液体を溶解
する揮発性液体で抽出除去し、その後乾燥して膜中に残
存する上記揮発性液体を揮発除去することで実施でき
る。このような有機液体抽出用の揮発性液体の例として
は、ヘキサン、ヘプタン等の炭化水素、塩化メチレン、
四塩化炭素等の塩素化炭化水素、メチルエチルケトンな
どを挙げることができる。
The removal of the organic liquid in the film is performed by extracting and removing the organic liquid without dissolving or deteriorating the thermoplastic polymer with a volatile liquid that dissolves the organic liquid to be removed, followed by drying to remove the volatile liquid remaining in the film. It can be carried out by volatilizing and removing the liquid. Examples of such volatile liquids for organic liquid extraction include hydrocarbons such as hexane and heptane, methylene chloride,
Chlorinated hydrocarbons such as carbon tetrachloride, methyl ethyl ketone and the like can be mentioned.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれに限定されるものではない。なお、平均孔
径、空孔率、純水透水率、破断強度および破断伸度、粘
度平均分子量は以下の測定方法より決定した。 平均孔径:ASTM:F316−86記載の方法(別
称:ハーフドライ法)に従って測定した。使用液体にエ
タノールを用い、25℃、昇圧速度0.01atmにて
測定した。平均孔径[μm]は下記式より求まる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The present invention is not limited to this. The average pore size, porosity, pure water permeability, breaking strength and breaking elongation, and viscosity average molecular weight were determined by the following measurement methods. Average pore size: Measured according to the method described in ASTM: F316-86 (also known as half-dry method). The measurement was performed at 25 ° C. at a pressure increase rate of 0.01 atm using ethanol as a liquid to be used. The average pore diameter [μm] is obtained from the following equation.

【0022】[0022]

【数2】 (Equation 2)

【0023】エタノールの25℃における表面張力は2
1.97dynes/cmである(日本化学会編、化学
便覧基礎編改訂3版、II−82頁、丸善(株)、19
84年)ので、 平均孔径[μm]=62834/(ハーフドライ空気圧
力[Pa]) にて求めることができる。 空孔率:空孔率は、下記式より求めた。
The surface tension of ethanol at 25 ° C. is 2
1.97 dynes / cm (Chemical Handbook Basic Edition, 3rd revised edition, edited by The Chemical Society of Japan, page II-82, Maruzen Co., Ltd., 19)
1984), so that the average pore diameter [μm] = 62834 / (half dry air pressure [Pa]). Porosity: The porosity was determined by the following equation.

【0024】[0024]

【数3】 (Equation 3)

【0025】ここに、湿潤膜とは、孔内は水が満たされ
ているが中空部内は水が入っていない状態の膜を指し、
具体的には、10〜20cm長のサンプル膜をエタノー
ル中に浸漬して孔内をエタノールで満たした後に水浸漬
を4〜5回繰り返して孔内を充分に水で置換し、しかる
後に中空糸の一端を手で持って5回程よく振り、さらに
他端に手を持ちかえてまた5回程よく振って中空部内の
水を除去することで得た。乾燥膜は、前記湿潤膜の重量
測定後にオーブン中80℃で恒量になるまで乾燥させて
得た。膜体積は、 膜体積[cm3]=π{(外径[cm]/2)2−(内径
[cm]/2)2}(膜長[cm]) より求めた。膜1本では重量が小さすぎて重量測定の誤
差が大きくなる場合は、複数本の膜を用いた。
Here, the term “wet membrane” refers to a membrane in which the pores are filled with water but the hollow portions are not filled with water.
Specifically, a sample membrane having a length of 10 to 20 cm is immersed in ethanol to fill the hole with ethanol, and then repeatedly immersed in water 4 to 5 times to sufficiently replace the inside of the hole with water. Was shaken about five times while holding one end of the hand, and shaken about five times again while holding the hand at the other end to remove water in the hollow portion. The dried film was obtained by drying the wet film at 80 ° C. until the weight became constant after measuring the weight of the wet film. The film volume was determined from film volume [cm 3 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 } (film length [cm]). When the weight of one membrane was too small and the error in weight measurement became large, a plurality of membranes were used.

【0026】純水透水率:エタノール浸漬したのち数回
純水浸漬を繰り返した約10cm長の湿潤中空糸膜の一
端を封止し、他端の中空部内へ注射針を入れ、25℃の
環境下にて注射針から0.1MPaの圧力にて25℃の
純水を中空部内へ注入し、外表面から透過してくる純水
の透過水量を測定し、以下の式より純水透水率を決定し
た。
Pure water permeability: One end of a wet hollow fiber membrane having a length of about 10 cm, which has been immersed in ethanol and then immersed in pure water several times, is sealed, and an injection needle is inserted into the hollow portion at the other end. Under the injection needle, pure water at 25 ° C. is injected into the hollow portion at a pressure of 0.1 MPa, and the amount of pure water permeating from the outer surface is measured, and the pure water permeability is calculated from the following equation. Were determined.

【0027】[0027]

【数4】 (Equation 4)

【0028】ここに膜有効長とは、注射針が挿入されて
いる部分を除いた、正味の膜長を指す。破断強度および
破断伸度:引っ張り試験機(島津製作所製オートグラフ
AG−A型)を用い、中空糸をチャック間距離50m
m、引っ張り速度200mm/分にて引っ張り、破断時
の荷重と変位から、以下の式により破断強度および破断
伸度を決定した。
Here, the effective membrane length refers to the net membrane length excluding the portion where the injection needle is inserted. Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type manufactured by Shimadzu Corporation), the distance between the hollow fibers and the chuck was 50 m.
The tensile strength at break and the elongation at break were determined by the following formulas from the load and displacement at the time of breaking at a tensile speed of 200 mm / min.

【0029】[0029]

【数5】 (Equation 5)

【0030】ここに、 膜断面積[cm2]=π{(外径[cm]/2)2−(内
径[cm]/2)2} である。 破断伸度[%]=100(破断時変位[mm])/50 粘度平均分子量:粘度平均分子量(Mv)は、135℃
におけるデカリン溶液の固有粘度([η])を測定し
て、下記式より求めた(J.Brandrupand
E.H.Immergut(Editors)、Pol
ymer Handbook(2nd Ed.)、IV
−7頁、John Wiley & Sons、New
York、1975年)。
Here, the film cross-sectional area [cm 2 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 }. Elongation at break [%] = 100 (displacement at break [mm]) / 50 Viscosity average molecular weight: viscosity average molecular weight (Mv) is 135 ° C.
The intrinsic viscosity ([η]) of the decalin solution was measured by using the following formula (J. Brandrupand).
E. FIG. H. Immergut (Editors), Pol
ymer Handbook (2nd Ed.), IV
-7 pages, John Wiley & Sons, New
York, 1975).

【0031】[η]=6.8×10-4×(Mv)0.67 なお、実施例における製膜フローの概略を図2に示し
た。
[Η] = 6.8 × 10 −4 × (Mv) 0.67 The outline of the film forming flow in the example is shown in FIG.

【0032】[0032]

【実施例1】高密度ポリエチレン(三井化学製:ハイゼ
ックスミリオン030S、粘度平均分子量:45万)2
0重量部と、フタル酸ジイソデシル(DIDP)とフタ
ル酸ジ(2−エチルヘキシル)(DOP)との重量比に
て3対1(DIDP/DOP=3/1)の混合有機液体
80重量部とを、2軸混練押し出し機(東芝機械製TE
M−35B−10/1V)で加熱混練して相溶させ(2
30℃)、押し出し機先端のヘッド(230℃)内の押
し出し口に装着した中空糸成形用紡口の押し出し面にあ
る外径1.58mm/内径0.83mmの相溶物押し出
し用の円環穴から上記相溶物を押し出した。
Example 1 High-density polyethylene (manufactured by Mitsui Chemicals, Hyzex Million 030S, viscosity average molecular weight: 450,000) 2
0 parts by weight and 80 parts by weight of a mixed organic liquid having a weight ratio of diisodecyl phthalate (DIDP) to di (2-ethylhexyl) phthalate (DOP) of 3 to 1 (DIDP / DOP = 3/1). , Twin screw extruder (TE manufactured by Toshiba Machine Co., Ltd.)
(M-35B-10 / 1V) and mixed by heating.
30 ° C.), a ring for extruding a compatible material with an outer diameter of 1.58 mm / inner diameter of 0.83 mm on the extrusion surface of the spinning hole for hollow fiber molding attached to the extrusion opening in the head (230 ° C.) at the tip of the extruder. The compatible material was extruded from the hole.

【0033】相溶物押し出し用円環穴の内側にある0.
6mmφの中空部形成流体吐出用の円形穴からは、中空
部形成流体としてDOPを吐出させ、中空糸状押し出し
物の中空部内に注入した。紡口から空気中に押し出した
中空糸状押し出し物を、1.5cmの空中走行距離を経
て39℃の水浴中に入れ、約2m水中を通過させて冷却
固化させた後、中空糸状物に張力をかけることなく16
m/分の速度で水浴中から水浴外へ巻き取った。このと
きの空中走行時間は、空中走行距離と巻き取り速度から
0.06秒と決定される。
The inside of the annular hole for extruding the compatible material is set to 0.
DOP was discharged as a hollow part forming fluid from the circular hole for discharging the hollow part forming fluid of 6 mmφ, and was injected into the hollow part of the hollow fiber extrudate. The hollow fiber extruded material extruded from the spinneret into the air is placed in a 39 ° C. water bath through an air traveling distance of 1.5 cm, passed through about 2 m of water, solidified by cooling, and then tension is applied to the hollow fiber material. 16 without calling
The film was wound out of the water bath at a speed of m / min. The air travel time at this time is determined as 0.06 seconds based on the air travel distance and the winding speed.

【0034】次いで、得られた中空糸状物を室温の塩化
メチレン中で30分間の浸漬を5回繰り返して中空糸状
物内のDIDPとDOPを抽出除去し、次いで50℃に
て半日乾燥させて残存塩化メチレンを揮発除去した。得
られた膜の諸物性(平均孔径、空孔率、糸径、純水透水
率、破断強度、破断伸度)を表1に示す。
Next, the obtained hollow fiber material was repeatedly immersed in methylene chloride at room temperature for 30 minutes five times to extract and remove DIDP and DOP in the hollow fiber material, and then dried at 50 ° C. for half a day to obtain a residue. The methylene chloride was removed by evaporation. Table 1 shows the physical properties (average pore size, porosity, yarn diameter, pure water permeability, breaking strength, breaking elongation) of the obtained membrane.

【0035】[0035]

【実施例2】空中走行距離を4.5cmにした以外は実
施例1と同様にして製膜を行った(空中走行時間は0.
17秒)。得られた膜の諸物性(平均孔径、空孔率、糸
径、純水透水率、破断強度、破断伸度)を表1に示す。
Example 2 A film was formed in the same manner as in Example 1 except that the in-air traveling distance was 4.5 cm (the in-air traveling time was 0.1 cm).
17 seconds). Table 1 shows the physical properties (average pore size, porosity, yarn diameter, pure water permeability, breaking strength, breaking elongation) of the obtained membrane.

【0036】[0036]

【比較例1】空中走行距離を52cmにした以外は実施
例1と同様にして製膜を行った(空中走行時間は2.0
秒)。得られた膜の諸物性(平均孔径、空孔率、糸径、
純水透水率、破断強度、破断伸度)を表1に示す。
Comparative Example 1 A film was formed in the same manner as in Example 1 except that the air travel distance was set to 52 cm (the air travel time was 2.0 cm).
Seconds). Various physical properties (average pore diameter, porosity, yarn diameter,
Table 1 shows pure water permeability, breaking strength, and breaking elongation.

【0037】[0037]

【比較例2】中空部形成流体を空気にした以外は実施例
1と同様にして製膜を行った(空中走行時間は0.06
秒)。得られた膜の諸物性(平均孔径、空孔率、糸径、
純水透水率、破断強度、破断伸度)を表1に示す。な
お、比較例2にて得られた中空糸膜は、他に得られた中
空糸膜(実施例1−4、比較例1で得られた中空糸膜)
とは異なってその断面形状は真円状を呈さず、明らかに
楕円状であった。
Comparative Example 2 A film was formed in the same manner as in Example 1 except that the hollow portion forming fluid was air (the air running time was 0.06
Seconds). Various physical properties (average pore diameter, porosity, yarn diameter,
Table 1 shows pure water permeability, breaking strength, and breaking elongation. The hollow fiber membrane obtained in Comparative Example 2 is the hollow fiber membrane obtained in another example (the hollow fiber membrane obtained in Example 1-4 and Comparative Example 1).
Unlike that, the cross-sectional shape did not exhibit a perfect circular shape, but was clearly elliptical.

【0038】[0038]

【実施例3】ポリエチレンとして旭化成工業製の高密度
ポリエチレン(サンテックSH800、粘度平均分子量
25万)を18重量部、有機液体としてDIDPとDO
Pとの重量比にて3対1(DIDP/DOP=3/1)
の混合物を82重量部用い、空中走行距離を4.5cm
にした以外は実施例1と同様にして製膜を行った。(空
中走行時間は0.17秒)。
Example 3 18 parts by weight of high-density polyethylene (Suntech SH800, viscosity average molecular weight 250,000) manufactured by Asahi Kasei Corporation as polyethylene, and DIDP and DO as organic liquids
3: 1 in weight ratio with P (DIDP / DOP = 3/1)
Using 82 parts by weight of a mixture of
A film was formed in the same manner as in Example 1 except that the film thickness was changed. (Aerial running time is 0.17 seconds).

【0039】得られた膜の諸物性(平均孔径、空孔率、
糸径、純水透水率、破断強度、破断伸度)を表1に示
す。
The physical properties (average pore size, porosity,
Table 1 shows the yarn diameter, pure water permeability, breaking strength, and breaking elongation.

【0040】[0040]

【実施例4】ポリエチレンを19重量部用い、有機液体
を81重量部用い、空中走行距離を6cmにした以外は
実施例3と同様にして製膜を行った(空中走行時間は
0.23秒)。得られた膜の諸物性(平均孔径、空孔
率、糸径、純水透水率、破断強度、破断伸度)を表1に
示す。
Example 4 A film was formed in the same manner as in Example 3 except that 19 parts by weight of polyethylene and 81 parts by weight of the organic liquid were used, and the traveling distance in the air was 6 cm (the traveling time in the air was 0.23 seconds). ). Table 1 shows the physical properties (average pore size, porosity, yarn diameter, pure water permeability, breaking strength, breaking elongation) of the obtained membrane.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】本発明により、除濁等の濾過用途に好適
な、緻密な細孔と高い透水性能を持つ、熱可塑性樹脂よ
り成る中空糸状多孔膜の製膜方法が提供できる。
According to the present invention, it is possible to provide a method for producing a hollow fiber-like porous membrane made of a thermoplastic resin having fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱可塑性高分子と有機液体との相図の概念図で
ある。
FIG. 1 is a conceptual diagram of a phase diagram of a thermoplastic polymer and an organic liquid.

【図2】実施例における製膜フローの概略図である。FIG. 2 is a schematic diagram of a film forming flow in an example.

【符号の説明】[Explanation of symbols]

イ ・・・ 紡口吐出時点の相溶物 ロ ・・・ 空中走行部および液浴中での冷却過程 ハ ・・・ 液浴出の固化物 1 ・・・ ポリエチレンホッパー 2 ・・・ ポリエチレン供給口 3 ・・・ 有機液体供給流路 4 ・・・ 有機液体供給口 5 ・・・ 2軸混練押出機 6 ・・・ 導管 7 ・・・ ヘッド 8 ・・・ 定量ギアポンプ駆動部 9 ・・・ 定量ギアポンプ 10・・・ 中空糸成形用紡口 11・・・ 中空部形成流体供給流路 12・・・ ポリエチレンと有機液体の混合押し出し物 13・・・ 中空部形成流体 14・・・ 空中走行部分 15・・・ 水浴 16・・・ ロール 17・・・ 巻き取りロール B: Compatible material at the time of spout ejection B: Cooling process in the aerial traveling section and liquid bath C: Solidified material from liquid bath 1: Polyethylene hopper 2: Polyethylene supply port DESCRIPTION OF SYMBOLS 3 ... Organic liquid supply flow path 4 ... Organic liquid supply port 5 ... Biaxial kneading extruder 6 ... Conduit 7 ... Head 8 ... Constant gear pump drive part 9 ... Constant gear pump DESCRIPTION OF SYMBOLS 10 ... Spout for hollow fiber formation 11 ... Hollow part forming fluid supply flow path 12 ... Mixed extrudate of polyethylene and organic liquid 13 ... Hollow part forming fluid 14 ... Airborne traveling part 15.・ ・ Water bath 16 ・ ・ ・ Roll 17 ・ ・ ・ Winding roll

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月7日(1999.10.
7)
[Submission date] October 7, 1999 (1999.10.
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】このように、中空部形成流体として沸点が
紡口温度以上の液体、特にその中でも熱可塑性高分子と
液液相分離状態をとることができる液体を用いた上で紡
口から出た相溶物をある特定の空走時間の後に液浴に導
くことで、緻密な細孔と高い透水性能を持つ膜をつくる
ことが可能になる。液浴から出てきた中空糸状物は、冷
却途中で生起した液液相分離時の熱可塑性高分子濃厚相
部分が冷却固化されて多孔構造(多孔体骨格)を形成
し、液液相分離時の熱可塑性高分子希薄相(有機液体濃
厚相)部分が有機液体の詰まった孔部分となっている。
この孔部分に詰まっている有機液体を除去すれば多孔膜
が得られる。
As described above, a liquid having a boiling point equal to or higher than the spinning temperature as a fluid for forming a hollow portion, particularly a liquid capable of forming a liquid-liquid phase separation state with a thermoplastic polymer, is used, and the fluid is discharged from the spinning hole. By guiding the compatible substance to the liquid bath after a certain idle running time, it becomes possible to form a membrane having dense pores and high water permeability. The hollow fiber-like material coming out of the liquid bath forms a porous structure (porous skeleton) by cooling and solidifying the thermoplastic polymer rich phase portion generated during liquid-liquid phase separation during cooling and solidifying. The thermoplastic polymer dilute phase (organic liquid rich phase) portion is a pore portion filled with the organic liquid.
By removing the organic liquid that is jammed in the hole portion multi-hole film.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 ─────────────────────────────────────────────────────
FIG. 2 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月13日(1999.10.
13)
[Submission date] October 13, 1999 (1999.10.
13)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA06 GA07 MA01 MC22 NA04 NA10 NA16 PA01 PB24 PC02 4F074 AA02 AA17 AA24 AA32 AA38 AA42 AA43 AA49 AA71 AA74 AA77 AA87 CB31 CB34 CB37 CC22X CC29Y DA43 4L045 AA03 BA02 BA30 CA05 CB21 DA35  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA06 GA07 MA01 MC22 NA04 NA10 NA16 PA01 PB24 PC02 4F074 AA02 AA17 AA24 AA32 AA38 AA42 AA43 AA49 AA71 AA74 AA77 AA87 CB31 CB34 CB37 CC22X CC29Y DA03 BA30 BA45 BA45

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂と有機液体とを高温にて溶
融した後、該溶融物を中空糸成型用紡口から中空部内に
中空部形成流体を注入しつつ中空糸状に空気中を経て液
浴中に押し出して冷却固化し、しかる後に該有機液体を
抽出除去して中空糸状多孔膜を得る方法において、該押
し出し物が空気中を走行する時間が0から1秒の間(た
だし0は含まない)であり、かつ該中空部形成流体が紡
口温度以上の沸点を持つ液体であることを特徴とする、
熱可塑性樹脂より成る中空糸状多孔膜の溶融製膜方法。
1. After melting a thermoplastic resin and an organic liquid at a high temperature, the melt is injected into a hollow portion from a spinning hole for forming a hollow fiber into a hollow portion, and the liquid is passed through the air into a hollow fiber shape. In a method in which the extrudate is extruded into a bath, cooled and solidified, and then the organic liquid is extracted and removed to obtain a hollow fiber-like porous membrane, the extrudate travels in the air for a time of 0 to 1 second (however, 0 is included). And the hollow portion forming fluid is a liquid having a boiling point not lower than the spinning temperature,
A method for melt-forming a hollow fiber-like porous film made of a thermoplastic resin.
【請求項2】 中空部形成流体が紡口温度以上の沸点を
持ち、かつ高温にて熱可塑性樹脂と液液相分離する能力
を持つ液体であることを特徴とする、請求項1記載の熱
可塑性樹脂より成る中空糸状多孔膜の溶融製膜方法。
2. The heat according to claim 1, wherein the hollow part forming fluid is a liquid having a boiling point not lower than the spinning temperature, and having a capability of liquid-liquid phase separation with a thermoplastic resin at a high temperature. A method for melt-forming a hollow fiber-shaped porous film made of a plastic resin.
JP26779299A 1999-09-21 1999-09-21 Melt casting method Expired - Fee Related JP4623780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26779299A JP4623780B2 (en) 1999-09-21 1999-09-21 Melt casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26779299A JP4623780B2 (en) 1999-09-21 1999-09-21 Melt casting method

Publications (2)

Publication Number Publication Date
JP2001087631A true JP2001087631A (en) 2001-04-03
JP4623780B2 JP4623780B2 (en) 2011-02-02

Family

ID=17449666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26779299A Expired - Fee Related JP4623780B2 (en) 1999-09-21 1999-09-21 Melt casting method

Country Status (1)

Country Link
JP (1) JP4623780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733363A (en) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 Preparation process of polyolefin gas exchange membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3213702A1 (en) 2021-03-30 2022-10-06 Yuzuru Sakakibara Resin pellet composition, production method therefor, and method for producing microporous film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS5749467A (en) * 1980-07-15 1982-03-23 Akzo Nv Manufacture of porous hollow fiber-shaped thin membrane for carrying out blood plasma
JPH02241526A (en) * 1989-03-15 1990-09-26 Terumo Corp Hollow yarn membranes and pump oxygenator using the same
JPH0342025A (en) * 1989-07-10 1991-02-22 Asahi Chem Ind Co Ltd Production of polyolefin porous film
JPH03502180A (en) * 1988-11-10 1991-05-23 メンティック・リミテッド Polymer porous hollow fiber manufacturing method and equipment used therein
WO1998029478A1 (en) * 1996-12-31 1998-07-09 Althin Medical, Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
WO1999004891A1 (en) * 1997-07-23 1999-02-04 Akzo Nobel Nv Integrally asymmetrical polyolefin membrane for gas transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS5749467A (en) * 1980-07-15 1982-03-23 Akzo Nv Manufacture of porous hollow fiber-shaped thin membrane for carrying out blood plasma
JPH03502180A (en) * 1988-11-10 1991-05-23 メンティック・リミテッド Polymer porous hollow fiber manufacturing method and equipment used therein
JPH02241526A (en) * 1989-03-15 1990-09-26 Terumo Corp Hollow yarn membranes and pump oxygenator using the same
JPH0342025A (en) * 1989-07-10 1991-02-22 Asahi Chem Ind Co Ltd Production of polyolefin porous film
WO1998029478A1 (en) * 1996-12-31 1998-07-09 Althin Medical, Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
WO1999004891A1 (en) * 1997-07-23 1999-02-04 Akzo Nobel Nv Integrally asymmetrical polyolefin membrane for gas transfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733363A (en) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 Preparation process of polyolefin gas exchange membrane
CN114733363B (en) * 2021-01-07 2023-10-31 杭州费尔新材料有限公司 Preparation process of polyolefin gas exchange membrane

Also Published As

Publication number Publication date
JP4623780B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US5227101A (en) Process of making microporous membranes from poly(etheretherketone)-type polymers and low melting point crystallizable polymers
US9821501B2 (en) Production method of deformed porous hollow fiber membrane
JP4563457B2 (en) Porous multilayer hollow fiber membrane and method for producing the same
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
EP0686085B1 (en) Process of making microporous pps membranes
US5871680A (en) Method and apparatus for spinning hollow fiber membranes
EP0527913B2 (en) Method for making pvdf hollow fibre membranes
CN109922875B (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
JP2002535131A (en) Skinned hollow fiber membrane and method for producing the same
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP4623780B2 (en) Melt casting method
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP2012040462A (en) Method for manufacturing modified porous hollow-fiber membrane, modified porous hollow-fiber membrane, module using modified porous hollow-fiber membrane, filtering device using modified porous hollow-fiber membrane, and filtering method using modified porous hollow-fiber membrane
JP2024039388A (en) Method for manufacturing hollow fiber porous membrane
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
EP0682591A1 (en) Process of making microporous pps membranes
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP4312519B2 (en) Method for producing porous membrane
JP2006088114A (en) Hydrophilic porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees