JP2001085718A - 太陽電池 - Google Patents

太陽電池

Info

Publication number
JP2001085718A
JP2001085718A JP26198399A JP26198399A JP2001085718A JP 2001085718 A JP2001085718 A JP 2001085718A JP 26198399 A JP26198399 A JP 26198399A JP 26198399 A JP26198399 A JP 26198399A JP 2001085718 A JP2001085718 A JP 2001085718A
Authority
JP
Japan
Prior art keywords
solar cell
light incident
cell
unit solar
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26198399A
Other languages
English (en)
Other versions
JP3724272B2 (ja
Inventor
Tomomichi Nagashima
知理 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26198399A priority Critical patent/JP3724272B2/ja
Publication of JP2001085718A publication Critical patent/JP2001085718A/ja
Application granted granted Critical
Publication of JP3724272B2 publication Critical patent/JP3724272B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【課題】 キャリア再結合損失を低減し、発電効率の高
い太陽電池を提供する。 【解決手段】 n+層、p層、p+層で構成された上部セ
ル12とp層の下部に裏面に沿ってn+層とp+層を並べ
た下部セル14とを積層し太陽電池10とする。この上
部セル12と下部セル14との間に中間層30を設け、
この中間層30のバンドギャップを、上部セル12及び
下部セル14のバンドギャップの中間のバンドギャップ
とする。これにより、上部セル12と下部セル14との
接合面におけるエネルギ障壁を小さくでき、キャリアの
再結合損失を抑制し、発電効率を向上できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は太陽電池、特に異な
るバンドギャップを有する単位太陽電池を積層したタン
デム型の太陽電池の改良に関する。
【0002】
【従来の技術】異なるバンドギャップを有する単位太陽
電池を積層することにより、広い波長域で光電変換効率
を向上させたタンデム型太陽電池が知られている。特開
平4−226084号公報にも、このようなタンデム型
の太陽電池が開示されている。
【0003】図15には、このような従来のタンデム型
太陽電池の断面図が示される。図15において、太陽電
池10は、光入射側(図の上側)の単位太陽電池である
上部セル12と、裏面側の単位太陽電池である下部セル
14とが積層された構造となっており、一般に上部セル
12としてバンドギャップ(Eg)の大きい太陽電池が
使用され、下部セル14としてバンドギャップの小さい
太陽電池が使用されている。また、太陽電池10の光入
射側には上部電極18が、裏面側には下部電極20がそ
れぞれ設けられており、上部セル12及び下部セル14
で発生したキャリアである電子は上部電極18から、正
孔は下部電極20からそれぞれ取り出される。
【0004】この場合、上部セル12と下部セル14と
では、それぞれのバンドレベルに隔たりがあるので、上
部セル12と下部セル14との接合面で電子及び正孔の
キャリア移動が妨げられる。このため、この接合部分に
トンネルダイオード16を配置し、接合部分でのキャリ
アの移動を可能としている。
【0005】
【発明が解決しようとする課題】しかし、図15に示さ
れた従来の太陽電池10においては、上部セル12と下
部セル14との間に設けられたトンネルダイオード16
及びこれらの界面での抵抗損失やキャリアの再結合損失
が多いという問題があった。特に、上記界面では格子の
不整合による欠陥密度が高く、この部分でのキャリアの
再結合損失が多かった。
【0006】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、キャリア再結合損失を低減
し、発電効率の高い太陽電池を提供することにある。
【0007】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、異なるバンドギャップを有する単位太陽
電池を積層したタンデム型の太陽電池であって、太陽電
池の光入射面に設けられ、光入射側の前記単位太陽電池
の一方の電極となる上部電極と、太陽電池の裏面に設け
られ、この裏面側に形成されたn層とp層とにそれぞれ
独立して接続されて裏面側の単位太陽電池の一対の電極
を形成するとともに、この一対の電極のうちの一方が光
入射側の単位太陽電池の他方の電極にも兼用される裏面
電極と、を備え、光入射側の単位太陽電池と裏面側の単
位太陽電池との間に、それぞれの単位太陽電池のバンド
ギャップの中間のバンドギャップを有する半導体中間層
を設けたことを特徴とする。
【0008】また、異なるバンドギャップを有する単位
太陽電池を積層したタンデム型の太陽電池であって、太
陽電池の光入射面に設けられ、光入射側の単位太陽電池
の一方の電極となる上部電極と、太陽電池の裏面に設け
られ、この裏面側に形成されたn層とp層とにそれぞれ
独立して接続されて裏面側の単位太陽電池の一対の電極
を形成するとともに、この一対の電極のうち正極が光入
射側の単位太陽電池の他方の電極にも兼用される裏面電
極と、を備え、光入射側の単位太陽電池から裏面側の単
位太陽電池へ正孔が移動する構成であり、光入射側の単
位太陽電池と裏面側の単位太陽電池との間に、それぞれ
の単位太陽電池の価電子帯のエネルギレベルの中間のエ
ネルギレベルをとる価電子帯を有する半導体中間層を設
けたことを特徴とする。
【0009】また、異なるバンドギャップを有する単位
太陽電池を積層したタンデム型の太陽電池であって、太
陽電池の光入射面に設けられ、光入射側の単位太陽電池
の一方の電極となる上部電極と、太陽電池の裏面に設け
られ、この裏面側に形成されたn層とp層とにそれぞれ
独立して接続されて裏面側の単位太陽電池の一対の電極
を形成するとともに、この一対の電極のうち負極が光入
射側の単位太陽電池の他方の電極にも兼用される裏面電
極と、を備え、光入射側の単位太陽電池から裏面側の単
位太陽電池へ電子が移動する構成であり、光入射側の単
位太陽電池と裏面側の単位太陽電池との間に、それぞれ
の単位太陽電池の伝導帯のエネルギレベルの中間のエネ
ルギレベルをとる伝導帯を有する半導体中間層を設けた
ことを特徴とする。
【0010】また、上記太陽電池において、半導体中間
層が、そのバンドギャップが段階的に変化する複数層で
構成されることを特徴とする。
【0011】また、上記太陽電池において、半導体中間
層が、その価電子帯のエネルギレベルが段階的に変化す
る複数層で構成されることを特徴とする。
【0012】また、上記太陽電池において、半導体中間
層が、その伝導帯のエネルギレベルが段階的に変化する
複数層で構成されることを特徴とする。
【0013】また、上記太陽電池において、半導体中間
層が、そのバンドギャップが連続的に変化する層で構成
されることを特徴とする。
【0014】また、上記太陽電池において、半導体中間
層が、その価電子帯のエネルギレベルが連続的に変化す
る層で構成されることを特徴とする。
【0015】また、上記太陽電池において、半導体中間
層が、その伝導帯のエネルギレベルが連続的に変化する
層で構成されることを特徴とする。
【0016】また、異なるバンドギャップを有する単位
太陽電池を積層したタンデム型の太陽電池であって、太
陽電池の光入射面に設けられ、光入射側の単位太陽電池
の一方の電極となる上部電極と、太陽電池の裏面に設け
られ、この裏面側に形成されたn層とp層とにそれぞれ
独立して接続されて裏面側の単位太陽電池の一対の電極
を形成するとともに、この一対の電極のうち正極が光入
射側の単位太陽電池の他方の電極にも兼用される裏面電
極と、を備え、光入射側の単位太陽電池から裏面側の単
位太陽電池へ正孔が移動する構成であり、光入射側の単
位太陽電池の下部の価電子帯のエネルギレベルが裏面側
の単位太陽電池の上部の価電子帯のエネルギレベルより
低いことを特徴とする。
【0017】また、異なるバンドギャップを有する単位
太陽電池を積層したタンデム型の太陽電池であって、太
陽電池の光入射面に設けられ、光入射側の単位太陽電池
の一方の電極となる上部電極と、太陽電池の裏面に設け
られ、この裏面側に形成されたn層とp層とにそれぞれ
独立して接続されて裏面側の単位太陽電池の一対の電極
を形成するとともに、この一対の電極のうち負極が前記
光入射側の単位太陽電池の他方の電極にも兼用される裏
面電極と、を備え、光入射側の単位太陽電池から裏面側
の単位太陽電池へ電子が移動する構成であり、光入射側
の単位太陽電池の下部の伝導帯のエネルギレベルが裏面
側の単位太陽電池の伝導帯のエネルギレベルより高いこ
とを特徴とする。
【0018】
【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。
【0019】実施形態1.図1には、本発明に係る太陽
電池の実施形態1の構成の断面図が示される。図1にお
いて、太陽電池10は、バンドギャップ(Eg)の広い
半導体材料で構成される単位太陽電池である上部セル1
2とバンドギャップの狭い半導体材料で構成される単位
太陽電池である下部セル14とが積層されたタンデム型
の構造となっている。上部セル12は、n+層、p層、
+層が積層されて構成されており、本発明に係る光入
射側の単位太陽電池を構成する。また、その最上部に形
成されたn+層に接続されて上部電極18が設けられて
いる。さらに、n+層の上には絶縁膜24が形成されて
いる。絶縁膜24は透明材料で構成されており、太陽光
はこの絶縁膜24を介して太陽電池10に入射してく
る。
【0020】また、下部セル14は、基板となるp層の
裏面にn+層、p+層が交互に設けられている。各n+
には負極26が、各p+層には正極28がそれぞれ独立
して接続されており、本発明に係る裏面電極を構成して
いる。これらの負極26及び正極28は、下部セル14
の一対の電極を構成するとともに、正極28が上部セル
12の一方の電極である上部電極18に対して他方の電
極としても兼用されている。なお、下部セル14が本発
明に係る裏面側の単位太陽電池に相当する。
【0021】上述した上部セル12の材料としては、た
とえばAl0.3Ga0.7Asを使用することができる。そ
のバンドギャップは1.82eVである。また、この場
合n+層のドーパント濃度は2×1018cm-3であり、
その厚みは0.1μmである。また、p層のドーパント
濃度は1×1017cm-3であり、その厚みは0.8μm
である。さらに、p+層のドーパント濃度は2×1018
cm-3であり、その厚みは0.1μmである。
【0022】また、下部セル14の材料としては、たと
えばSiを使用することができる。そのバンドギャップ
は1.12eVである。また、この場合n+層のドーパ
ント濃度は1×1019cm-3であり、その厚みは1.0
μmである。またp層のドーパント濃度は5×1013
-3であり、その厚みは100μmである。さらに、p
+層のドーパント濃度は1×1019cm-3であり、その
厚みは1.0μmである。
【0023】本実施形態では、上部セル12と下部セル
14との間に、中間層30が形成されている。この中間
層30の材料としてはGaAsを使用することができ
る。そのバンドギャップは1.42eVである。また、
この場合中間層30のドーパント濃度は1×1018cm
-3であり、その厚みは0.01μm〜10μmの範囲と
する。なお、上記ドーパントとしてはp+型を使用す
る。
【0024】タンデム型の太陽電池において、図1に示
された中間層30を設けない場合のエネルギバンド構造
の模式図は図16のようになる。図16において、横軸
には太陽電池の表面すなわち光入射面からの距離が示さ
れ、縦軸には、この距離に対応する伝導帯(Ec)及び
価電子帯(Ev)のエネルギレベルが示される。このE
cとEvとの差がバンドギャップである。
【0025】図1に示された太陽電池では、上部セル1
2、下部セル14の基板がp型であるので、少数キャリ
アは電子となる。電子は、図16に示されるように、上
部セル12と下部セル14の接合部を境にして、上部セ
ル12で発生した電子は上部セル12の上方向に向かっ
て移動し、上部電極18に集められる。また、下部セル
14で発生した電子は下部セル14の下方向に向かって
移動し、裏面電極のうち負極26に集められる。したが
って、上部セル12と下部セル14との接合部を通過す
る電子はないので、図16のような伝導帯のエネルギバ
ンド構造でも問題が生じない。
【0026】これに対して、多数キャリアである正孔
は、上部セル12と下部セル14との接合部分を通過し
てすべて下部セル14の裏面に設けられた裏面電極のう
ち正極28に集められる。このため、図16に示される
ような上部セル12と下部セル14との接合面に生じる
エネルギのノッチ及びギャップが正孔の移動に対して障
害となる。また、上部セル12と下部セル14との界面
部における欠陥量が多い場合には、ここを通過するキャ
リアである正孔が上記エネルギ障壁部分で再結合し消滅
する確率も多くなる。したがって、図16に示されたノ
ッチ、ギャップの高さを極力小さくし、正孔の移動に対
するエネルギ障壁を極力低くすることが、太陽電池の発
電効率を向上させるために重要である。
【0027】このため、図1に示された中間層30のバ
ンドギャップを上部セル12及び下部セル14のそれぞ
れのバンドギャップの中間のバンドギャップとなるよう
に調整する。この様子が図2に示される。このように、
上部セル12と下部セル14との間にそれらのバンドギ
ャップの中間のバンドギャップを有する中間層30を設
ければ、上部セル12と中間層30及び中間層30と下
部セル14の接合界面に生じるノッチとギャップの高さ
を小さくすることができる。この結果、上部セル12と
下部セル14とが直接接合している場合よりエネルギ障
壁が小さくなり、上部セル12で発生したキャリアであ
る正孔が下部セル14へ移動する際に、上部セル12と
下部セル14との界面近傍において発生するキャリアの
再結合損失を抑制することができる。このため、図1に
示されたタンデム型太陽電池の光発電量を増加させ、発
電効率を向上させることができる。
【0028】なお、上部セル12と下部セル14との間
の中間層30の厚みとしては、0.01μmよりも薄い
と上述したエネルギ障壁を小さくする効果を十分得るこ
とができず、また10μmよりも厚くなると下部セル1
4へ到達する光量を減少させ、いずれも発電効率を向上
させることができない。したがって、中間層30の厚み
としては前述したとおり0.01μm〜10μm程度の
範囲が望ましい。
【0029】なお、図1及び図2においては、上部セル
12から下部セル14へ移動するキャリアが正孔の場合
であったが、図1の構造において各p層、n層を入れ替
えれば、上部セル12から下部セル14へ移動するキャ
リアは電子となる。この場合にも、上部セル12と下部
セル14とのそれぞれのバンドギャップの中間のバンド
ギャップを有する中間層30を設けることにより、電子
の移動に対するエネルギ障壁を小さくでき、上述した正
孔の場合と同様に再結合損失を小さくでき、発電効率の
向上を図ることができる。
【0030】この場合に用いることのできる材料として
は、前述した上部セル12、下部セル14、中間層30
の材料に加え、SiC、SiGe、AlP、GaP、A
lAs、InP、InAs、GaSb、AlSb、Al
xGa(1-x)As、InxGa( 1-x)P、InxGa(1-x)
s、AlxGa(1-x)AsySb(1-y)、InxGa(1-x)
y(1-y)、InxGa(1-x)ySb(1-y)、CdTe、
HgTe、ZnTe、CdS、ZnSe、ZnS、Cu
InSe2、CuInxGa(1-x)Se2等の半導体材料や
水素、ハロゲン元素等を含んだ上記半導体材料を主材料
とした非晶質半導体材料を用いることができる。これら
の材料を、バンドギャップや光吸収係数を考慮し、ま
た、適切なドーパント材料と濃度を用いて組み合わせ、
上部セル12、下部セル14,中間層30に用いること
ができる。
【0031】図3には、本実施形態に係る太陽電池の変
形例のエネルギバンド構造が示される。図3に示された
変形例では、上部セル12から下部セル14へ正孔が移
動する構成となっている。この場合の中間層30は、上
部セル12及び下部セル14のそれぞれの価電子帯のエ
ネルギレベル(Ev)の中間のエネルギレベルを取る価
電子帯を有している。このような中間層30を設けるこ
とにより、上部セル12と下部セル14との価電子帯の
エネルギレベル(Ev)の間に中間層30の価電子帯の
エネルギレベルが存在することになる。これによってノ
ッチ、ギャップが低くなり、正孔が上部セル12から下
部セル14へ移動する際のエネルギ障壁が小さくなる。
このため、上部セル12と下部セル14との接合界面に
おける正孔の再結合損失を小さくすることができ、太陽
電池の発電効率を向上させることができる。
【0032】なお、図3においては、上部セル12で生
じた電子は上部セル12の上部電極18から、下部セル
14で生じた電子は下部セル14の裏面電極のうち負極
26から取り出されるため、上記接合界面を電子が移動
することはないので、伝導帯のエネルギレベルEcを調
整する必要はない。このため、本変形例のように、価電
子帯のエネルギレベルEvのみ調整すれば図2の場合と
同じ効果を得ることができる。
【0033】図4には、本実施形態に係る太陽電池のさ
らに他の変形例のエネルギバンド構造が示される。図4
においては、図3とは逆に、上部セル12、下部セル1
4、中間層30はn型半導体で構成されている。したが
って、上部セル12から下部セル14へ電子が移動する
構成となっている。この場合には、上部セル12と下部
セル14との界面を通過するのは電子であるので、伝導
帯におけるエネルギ障壁を小さくする必要がある。この
ため、本変形例における中間層30は、上部セル12及
び下部セル14のそれぞれの伝導帯のエネルギレベルE
cの中間のエネルギレベルを取る伝導帯を有している。
【0034】このように、上部セル12と下部セル14
の伝導帯のエネルギレベルEcの中間に、中間層30の
エネルギレベルEcが存在することにより、図4に示さ
れるように、上部セル12と下部セル14との間の接合
界面に生じるノッチ、ギャップを小さくでき、エネルギ
障壁を小さくすることができる。これは、図2、図3で
示された、上部セル12から下部セル14に正孔が移動
する構成における価電子帯の接合界面のエネルギ障壁を
小さくする場合と同様の効果を得ることができる。この
ため、図4のように多数キャリアが電子の場合でも中間
層30を設けることによりキャリア再結合による損失を
抑制でき、発電効率を向上させることができる。
【0035】実施形態2.図5には、本発明に係る太陽
電池の実施形態2の構成が示され、図1と同一要素には
同一符号を付してその説明を省略する。図5において特
徴的な点は、中間層30が複数の層で構成されている点
にある。かかる中間層30を構成する各層は、そのバン
ドギャップが段階的に変化するように構成されている。
【0036】図6には、上記図5に示された太陽電池の
エネルギバンド構造が示される。図6に示されるよう
に、中間層30の伝導帯のエネルギレベルEcと価電子
帯のエネルギレベルEvとの差すなわちエネルギギャッ
プは、上部セル12と下部セル14のそれぞれのエネル
ギギャップの間で段階的に変化している。このように、
上部セル12のエネルギギャップと下部セル14のエネ
ルギギャップとの間を一段階ではなく数段階でエネルギ
ギャップが変化する中間層30を設けることにより、図
16に示されたようなノッチ、ギャップの高さがより低
くなり、正孔が上部セル12から下部セル14に移動す
る際の各層間のエネルギ障壁をより小さくすることがで
きる。この結果、正孔の再結合損失を小さくすることが
でき、発電効率を向上させることができる。
【0037】本実施形態に係る太陽電池においては、上
部セル12及び下部セル14の構成は図1の場合と同様
である。また中間層30については以下のような構成と
なっている。まず、中間層30の第1層すなわち上部セ
ル12側の層は、材料としてAl0.15Ga0.85Asを使
用し、そのバンドギャップが1.61eVである。この
層のドーパント濃度はp+型のドーパントを使用し、2
×1018cm-3である。またその厚みは0.1μmであ
る。また、中間層30の第2層は、材料としてGaAs
を使用し、そのバンドギャップが1.42eVとなって
いる。ドーパントとしてはp+型を使用し、ドーパント
濃度が2×1018cm-3となっている。また、その厚み
は0.1μm程度である。さらに、中間層30の第3層
すなわち下部セル14側の層は、材料としてIn0.2
0.8Asを使用し、そのバンドギャップが1.22e
Vとなっている。ドーパントとしてはp+型を使用し、
ドーパント濃度が2×1018cm-3である。また、その
厚みは0.1μm程度である。
【0038】このような中間層30の全体の厚みとして
は、0.01μm〜10μm程度が望ましい。0.01
μmより薄いとエネルギ障壁を小さくする効果が低くな
り、10μmより厚くなると下部セル14まで到達する
光量が減少するので、いずれも発電量が減少してしまう
ためである。
【0039】図7には、本実施形態に係る太陽電池の変
形例のエネルギバンド構造が示される。図7において
は、中間層30の価電子帯のエネルギレベルEvが、上
部セル12と下部セル14のそれぞれの価電子帯のエネ
ルギレベルEvの間で段階的に変化する構成となってい
る。前述したとおり、上部セル12と下部セル14とを
p型半導体で形成した場合には、上部セル12から下部
セル14に移動するキャリアは正孔であるので、価電子
帯のエネルギレベルEvのみそのエネルギ障壁を小さく
すれば、図5の場合と同じ効果を得ることができる。
【0040】本変形例では、上述のとおり、中間層30
の価電子帯のエネルギレベルEvを上部セル12と下部
セル14との価電子帯のエネルギレベルEvの間で段階
的に変化させているので、各層間におけるノッチ、ギャ
ップを小さくでき、エネルギ障壁を小さくすることがで
きる。このため、キャリア再結合損失を抑制でき、発電
効率を向上することができる。
【0041】図8には、本実施形態に係る太陽電池の他
の変形例のエネルギバンド構造が示される。本変形例で
は、上部セル12、下部セル14、中間層30がいずれ
もn型半導体で構成されており、上部セル12から下部
セル14へ移動するキャリアは電子となっている。図8
における中間層30は、その伝導帯のエネルギレベルE
cが、上部セル12及び下部セル14のそれぞれの伝導
帯のエネルギレベルEcの間で、段階的に変化する構成
となっている。これにより、上部セル12から下部セル
14に至る各層におけるエネルギ障壁を小さくすること
ができ、キャリアである電子が上部セル12と下部セル
14との接合界面を移動する際のキャリア再結合損失を
抑制できる。これによって、本変形例に係る太陽電池の
発電効率を向上させることができる。
【0042】実施形態3.図9には、本実施形態に係る
太陽電池のエネルギバンド構造が示される。図9におい
ては、図1に示された太陽電池の中間層30のバンドギ
ャップが、上部セル12と下部セル14のそれぞれのバ
ンドギャップの間で、連続的に変化する構成となってい
る。このように、中間層30のバンドギャップを連続的
に変化させることにより、バンドギャップを段階的に変
化させる実施形態2の中間層30の場合よりも、キャリ
アの移動(図9の場合には正孔の移動)に対するエネル
ギ障壁をより小さくすることができる。これにより、よ
り発電効率の向上を図ることができる。なお、本実施形
態の場合にも、中間層30の厚みとしては0.01μm
〜10μm程度が望ましい。
【0043】本実施形態における中間層30の材料とし
ては、たとえばInxGa(1-x)Asy(1-y)を使用する
ことができる。この中間層30を形成するには、たとえ
ばガスソースを用い、MOCVD(メタルオーガニック
CVD)法により形成することができる。この際、上記
化学式における各成分組成すなわちx、yの割合を連続
的に変化させるようにして中間層30の積層を行えば、
図9に示されるように、エネルギバンドギャップが連続
的を変化させることができる。この場合、上部セル12
側でのエネルギバンドギャップは1.80eVであり、
下部セル14側では1.15eVとなっている。
【0044】図10には、本実施形態の変形例のエネル
ギバンド構造が示される。図10においては、上部セル
12、下部セル14、中間層30がp型基板で形成され
ているため、上部セル12から下部セル14に移動する
キャリアは正孔である。このため図10における中間層
30は、価電子帯のエネルギレベルEvが、上部セル1
2及び下部セル14のそれぞれの価電子帯のエネルギレ
ベルEvの間を連続的に変化する構成となっている。上
部セル12から下部セル14に移動するキャリアが正孔
であるので、このように価電子帯におけるエネルギ障壁
を小さくできれば、図9の場合と同じ効果を得ることが
できる。
【0045】図10に示された中間層30を形成する場
合にも、図9の場合と同様に、中間層30の成分組成を
連続的に変化させながら積層することにより、価電子帯
のエネルギレベルを連続的に変化させることができる。
【0046】図11には、本実施形態に係る太陽電池の
他の変形例のエネルギバンド構造図が示される。図1に
おいては、上部セル12、下部セル14、中間層30が
n型基板により形成されているので、上部セル12から
下部セル14に移動するキャリアは電子となっている。
したがってこの場合には、伝導帯のエネルギレベルEc
を中間層30において連続的に変化させれば図10の場
合と同様の効果を得ることができる。この場合にも、中
間層30を構成する材料の成分組成を連続的に変化させ
ながら積層することにより、伝導帯のエネルギレベルE
cを連続的に変化させることができる。
【0047】実施形態4.図12には、本発明に係る太
陽電池の実施形態4の構成が示され、図1と同一要素に
は同一符号を付してその説明を省略する。図12に示さ
れた例では、上部セル12と下部セル14とはp型半導
体で形成されているので、上部セル12から下部セル1
4に移動するキャリアは正孔となる。このようなタンデ
ム型の太陽電池において、上部セル12と下部セル14
のエネルギバンド構造が図17に示されるような場合す
なわち上部セル12の価電子帯のエネルギレベルEvよ
りも下部セル14の価電子帯のエネルギレベルEvの方
が低い場合には、上部セル12と下部セル14との接合
界面を移動するキャリアである正孔にとって、エネルギ
障壁が高い状態となる。このため、上部セル12から下
部セル14へのスムーズなキャリア移動が妨げられる。
したがって、下部セル14の価電子帯のエネルギレベル
を上部セル12の価電子帯のエネルギレベルより高く維
持する必要がある。
【0048】そこで、図12に示されたタンデム型の太
陽電池10においては、その材料を適宜選択することに
より、上部セル12の最下層の価電子帯のエネルギレベ
ルが、下部セル14の最上層の価電子帯のエネルギレベ
ルよりも低くなるように設定されている。具体的には、
上部セル12には、GaAsが使用され、そのバンドギ
ャップは1.42eVである。また、下部セル14に
は、Siが使用され、そのバンドギャップは1.12e
Vである。このような構成により、図12に示された太
陽電池10のエネルギバンド構造は図13のようにな
る。図13に示されるように、上部セル12の最下層の
価電子帯のエネルギレベルは、下部セル14の最上層の
価電子帯のエネルギレベルよりも低くなっている。ま
た、この場合、上部セル12と下部セル14との間に発
生するノッチ、ギャップは図16のものより小さくなっ
ている。
【0049】上記のような構成をとることにより、上部
セル12から下部セル14へスムーズに正孔を移動させ
ることができ、上部セル12と下部セル14との接合界
面でのキャリア再結合損失を抑制することができる。こ
のため、太陽電池10における発電効率を向上させるこ
とができる。
【0050】図14には、本実施形態に係る太陽電池の
変形例のエネルギバンド構造が示される。図14におい
ては、上部セル12及び下部セル14がn型半導体で形
成されているので、上部セル12から下部セル14に移
動するキャリアは電子となっている。この場合には、上
部セル12及び下部セル14を構成する材料を適宜選択
し、上部セル最下層の伝導帯のエネルギレベルEcが、
下部セル14の最上層の伝導帯のエネルギレベルEcよ
りも高くなるように設定されている。
【0051】上記構成により、上部セル12から下部セ
ル14への電子の移動がスムーズになり、上部セル12
と下部セル14との接合界面におけるキャリア再結合損
失を抑制できる。このため、本変形例においても太陽電
池10における発電効率を向上させることができる。
【0052】
【発明の効果】以上説明したように、本発明によれば、
上部セルと下部セルとの間に上部セルと下部セルのバン
ドギャップの中間のバンドギャップをとり、あるいは上
部セルと下部セルの価電子帯のエネルギレベルまたは伝
導帯のエネルギレベルの中間のエネルギレベルを取る中
間層を設けているので、上部セルと下部セルとの間のエ
ネルギ障壁が小さくなり、キャリア再結合損失を抑制で
きる。
【0053】また、上記中間層を複数層とすることによ
り、よりエネルギ障壁を小さくすることができる。
【0054】さらに、中間層のバンドギャップあるいは
エネルギレベルの変化を連続的に行わせれば、さらにエ
ネルギ障壁を小さくすることができる。
【0055】また、上部セルと下部セルとの価電子帯あ
るいは伝導帯のエネルギレベルを調整することにより、
上部セルから下部セルへのキャリア移動をよりスムーズ
に行わせることができる。
【図面の簡単な説明】
【図1】 本発明に係る太陽電池の実施形態1の構成を
示す図である。
【図2】 図1に示された太陽電池のエネルギバンド構
造を示す図である。
【図3】 実施形態1の変形例のエネルギバンド構造を
示す図である。
【図4】 実施形態1の他の変形例のエネルギバンド構
造を示す図である。
【図5】 本発明に係る太陽電池の実施形態2の構成を
示す図である。
【図6】 図5に示された太陽電池のエネルギバンド構
造を示す図である。
【図7】 実施形態2の変形例のエネルギバンド構造を
示す図である。
【図8】 実施形態2の他の変形例のエネルギバンド構
造を示す図である。
【図9】 本発明に係る太陽電池の実施形態3の太陽電
池のエネルギバンド構造を示す図である。
【図10】 実施形態3の変形例のエネルギバンド構造
を示す図である。
【図11】 実施形態3の他の変形例のエネルギバンド
構造を示す図である。
【図12】 本発明に係る太陽電池の実施形態4の構成
を示す図である。
【図13】 図12に示された太陽電池のエネルギバン
ド構造を示す図である。
【図14】 実施形態4の変形例のエネルギバンド構造
を示す図である。
【図15】 従来におけるタンデム型太陽電池の構造を
示す断面図である。
【図16】 中間層を設けないタンデム型太陽電池のエ
ネルギバンド構造を示す図である。
【図17】 中間層を設けないタンデム型太陽電池のエ
ネルギバンド構造を示す図である。
【符号の説明】
10 太陽電池、12 上部セル、14 下部セル、1
6 トンネルダイオード、18 上部電極、20 下部
電極、24 絶縁膜、26 負極、28 正極、30
中間層。

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 異なるバンドギャップを有する単位太陽
    電池を積層したタンデム型の太陽電池であって、 前記太陽電池の光入射面に設けられ、光入射側の前記単
    位太陽電池の一方の電極となる上部電極と、 前記太陽電池の裏面に設けられ、この裏面側に形成され
    たn層とp層とにそれぞれ独立して接続されて裏面側の
    前記単位太陽電池の一対の電極を形成するとともに、こ
    の一対の電極のうちの一方が前記光入射側の単位太陽電
    池の他方の電極にも兼用される裏面電極と、を備え、 前記光入射側の単位太陽電池と前記裏面側の単位太陽電
    池との間に、それぞれの単位太陽電池のバンドギャップ
    の中間のバンドギャップを有する半導体中間層を設けた
    ことを特徴とする太陽電池。
  2. 【請求項2】 異なるバンドギャップを有する単位太陽
    電池を積層したタンデム型の太陽電池であって、 前記太陽電池の光入射面に設けられ、光入射側の前記単
    位太陽電池の一方の電極となる上部電極と、 前記太陽電池の裏面に設けられ、この裏面側に形成され
    たn層とp層とにそれぞれ独立して接続されて裏面側の
    前記単位太陽電池の一対の電極を形成するとともに、こ
    の一対の電極のうち正極が前記光入射側の単位太陽電池
    の他方の電極にも兼用される裏面電極と、を備え、 前記光入射側の単位太陽電池から前記裏面側の単位太陽
    電池へ正孔が移動する構成であり、前記光入射側の単位
    太陽電池と前記裏面側の単位太陽電池との間に、それぞ
    れの単位太陽電池の価電子帯のエネルギレベルの中間の
    エネルギレベルをとる価電子帯を有する半導体中間層を
    設けたことを特徴とする太陽電池。
  3. 【請求項3】 異なるバンドギャップを有する単位太陽
    電池を積層したタンデム型の太陽電池であって、 前記太陽電池の光入射面に設けられ、光入射側の前記単
    位太陽電池の一方の電極となる上部電極と、 前記太陽電池の裏面に設けられ、この裏面側に形成され
    たn層とp層とにそれぞれ独立して接続されて裏面側の
    前記単位太陽電池の一対の電極を形成するとともに、こ
    の一対の電極のうち負極が前記光入射側の単位太陽電池
    の他方の電極にも兼用される裏面電極と、を備え、 前記光入射側の単位太陽電池から前記裏面側の単位太陽
    電池へ電子が移動する構成であり、前記光入射側の単位
    太陽電池と前記裏面側の単位太陽電池との間に、それぞ
    れの単位太陽電池の伝導帯のエネルギレベルの中間のエ
    ネルギレベルをとる伝導帯を有する半導体中間層を設け
    たことを特徴とする太陽電池。
  4. 【請求項4】 請求項1記載の太陽電池において、前記
    半導体中間層が、そのバンドギャップが段階的に変化す
    る複数層で構成されることを特徴とする太陽電池。
  5. 【請求項5】 請求項2記載の太陽電池において、前記
    半導体中間層が、その価電子帯のエネルギレベルが段階
    的に変化する複数層で構成されることを特徴とする太陽
    電池。
  6. 【請求項6】 請求項3記載の太陽電池において、前記
    半導体中間層が、その伝導帯のエネルギレベルが段階的
    に変化する複数層で構成されることを特徴とする太陽電
    池。
  7. 【請求項7】 請求項1記載の太陽電池において、前記
    半導体中間層が、そのバンドギャップが連続的に変化す
    る層で構成されることを特徴とする太陽電池。
  8. 【請求項8】 請求項2記載の太陽電池において、前記
    半導体中間層が、その価電子帯のエネルギレベルが連続
    的に変化する層で構成されることを特徴とする太陽電
    池。
  9. 【請求項9】 請求項3記載の太陽電池において、前記
    半導体中間層が、その伝導帯のエネルギレベルが連続的
    に変化する層で構成されることを特徴とする太陽電池。
  10. 【請求項10】 異なるバンドギャップを有する単位太
    陽電池を積層したタンデム型の太陽電池であって、 前記太陽電池の光入射面に設けられ、光入射側の前記単
    位太陽電池の一方の電極となる上部電極と、 前記太陽電池の裏面に設けられ、この裏面側に形成され
    たn層とp層とにそれぞれ独立して接続されて裏面側の
    前記単位太陽電池の一対の電極を形成するとともに、こ
    の一対の電極のうち正極が前記光入射側の単位太陽電池
    の他方の電極にも兼用される裏面電極と、を備え、 前記光入射側の単位太陽電池から前記裏面側の単位太陽
    電池へ正孔が移動する構成であり、前記光入射側の単位
    太陽電池の下部の価電子帯のエネルギレベルが前記裏面
    側の単位太陽電池の上部の価電子帯のエネルギレベルよ
    り低いことを特徴とする太陽電池。
  11. 【請求項11】 異なるバンドギャップを有する単位太
    陽電池を積層したタンデム型の太陽電池であって、 前記太陽電池の光入射面に設けられ、光入射側の前記単
    位太陽電池の一方の電極となる上部電極と、 前記太陽電池の裏面に設けられ、この裏面側に形成され
    たn層とp層とにそれぞれ独立して接続されて裏面側の
    前記単位太陽電池の一対の電極を形成するとともに、こ
    の一対の電極のうち負極が前記光入射側の単位太陽電池
    の他方の電極にも兼用される裏面電極と、を備え、 前記光入射側の単位太陽電池から前記裏面側の単位太陽
    電池へ電子が移動する構成であり、前記光入射側の単位
    太陽電池の下部の伝導帯のエネルギレベルが前記裏面側
    の単位太陽電池の伝導帯のエネルギレベルより高いこと
    を特徴とする太陽電池。
JP26198399A 1999-09-16 1999-09-16 太陽電池 Expired - Lifetime JP3724272B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26198399A JP3724272B2 (ja) 1999-09-16 1999-09-16 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26198399A JP3724272B2 (ja) 1999-09-16 1999-09-16 太陽電池

Publications (2)

Publication Number Publication Date
JP2001085718A true JP2001085718A (ja) 2001-03-30
JP3724272B2 JP3724272B2 (ja) 2005-12-07

Family

ID=17369381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26198399A Expired - Lifetime JP3724272B2 (ja) 1999-09-16 1999-09-16 太陽電池

Country Status (1)

Country Link
JP (1) JP3724272B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267433A (ja) * 2001-12-05 2009-11-12 Semiconductor Energy Lab Co Ltd 有機太陽電池
JP2011071548A (ja) * 2006-06-02 2011-04-07 Emcore Solar Power Inc 多接合太陽電池における変成層
JP2011181818A (ja) * 2010-03-03 2011-09-15 Sharp Corp タンデム型太陽電池
KR20120092120A (ko) * 2009-11-06 2012-08-20 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 고온 및 저온의 2개의 스크린-프린트된 부분으로 구성된 광기전력 전지
WO2013042525A1 (ja) * 2011-09-21 2013-03-28 ソニー株式会社 多接合型太陽電池、化合物半導体デバイス、光電変換素子及び化合物半導体層・積層構造体
KR20130050812A (ko) * 2011-11-08 2013-05-16 건국대학교 산학협력단 유기태양전지 단위소자
JP2013183159A (ja) * 2012-02-29 2013-09-12 Boeing Co:The デルタドーピング層を有する太陽電池
CN112466975A (zh) * 2020-11-19 2021-03-09 隆基绿能科技股份有限公司 光伏器件
CN113471322A (zh) * 2020-03-30 2021-10-01 隆基绿能科技股份有限公司 叠层光伏器件及生产方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312507B2 (en) 2001-12-05 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP2009267433A (ja) * 2001-12-05 2009-11-12 Semiconductor Energy Lab Co Ltd 有機太陽電池
US11217764B2 (en) 2001-12-05 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US8941096B2 (en) 2001-12-05 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP2011071548A (ja) * 2006-06-02 2011-04-07 Emcore Solar Power Inc 多接合太陽電池における変成層
KR20120092120A (ko) * 2009-11-06 2012-08-20 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 고온 및 저온의 2개의 스크린-프린트된 부분으로 구성된 광기전력 전지
KR101706804B1 (ko) 2009-11-06 2017-02-14 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 고온 및 저온의 2개의 스크린-프린트된 부분으로 구성된 광기전력 전지
JP2011181818A (ja) * 2010-03-03 2011-09-15 Sharp Corp タンデム型太陽電池
WO2013042525A1 (ja) * 2011-09-21 2013-03-28 ソニー株式会社 多接合型太陽電池、化合物半導体デバイス、光電変換素子及び化合物半導体層・積層構造体
KR20130050812A (ko) * 2011-11-08 2013-05-16 건국대학교 산학협력단 유기태양전지 단위소자
JP2013183159A (ja) * 2012-02-29 2013-09-12 Boeing Co:The デルタドーピング層を有する太陽電池
JP2018107453A (ja) * 2012-02-29 2018-07-05 ザ・ボーイング・カンパニーThe Boeing Company デルタドーピング層を有する太陽電池
US10944022B2 (en) 2012-02-29 2021-03-09 The Boeing Company Solar cell with delta doping layer
CN113471322A (zh) * 2020-03-30 2021-10-01 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN113471322B (zh) * 2020-03-30 2022-12-02 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
US11942564B2 (en) 2020-03-30 2024-03-26 Longi Green Energy Technology Co., Ltd. Laminated photovoltaic device, and production method
CN112466975A (zh) * 2020-11-19 2021-03-09 隆基绿能科技股份有限公司 光伏器件

Also Published As

Publication number Publication date
JP3724272B2 (ja) 2005-12-07

Similar Documents

Publication Publication Date Title
JP2008211217A (ja) 薄膜型太陽電池及びその製造方法
US20080314447A1 (en) Single P-N Junction Tandem Photovoltaic Device
KR20080044183A (ko) 비정질-결정성 탠덤형 나노구조 태양전지
KR20080091329A (ko) 태양광 발전 전지
US6166320A (en) Tandem solar cell
US20150200322A1 (en) Semiconductor Heterojunction Photovoltaic Solar Cell with a Charge Blocking Layer
JP3724272B2 (ja) 太陽電池
JP4945916B2 (ja) 光電変換素子
AU727351B2 (en) Solar cell
JP3368822B2 (ja) 太陽電池
US10636928B2 (en) Photovoltaic cell
JP3368854B2 (ja) 太陽電池
US8969711B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
JPH0955522A (ja) トンネルダイオード
US20190229226A1 (en) Wide Band-Gap II-VI Heterojunction Solar Cell for Use In Tandem Structure
JPH08204215A (ja) 直列接続型太陽電池
US20120318337A1 (en) Solar Cell
JP3368825B2 (ja) 太陽電池
US9660126B2 (en) Photovoltaic device with three dimensional charge separation and collection
Deligiannakis et al. Fabrication and characterization of intermediate band CdTe quantum dot solar cells
JPH07122763A (ja) 高効率光起電力素子
JP5666974B2 (ja) 半導体材料を用いた太陽電池
JPH0472773A (ja) 多層接合型太陽電池
KR20220075360A (ko) 직접형 반도체 광소자의 개선
JPH05218477A (ja) 太陽電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7