JP2001085657A - Method for manufacturing solid-state image pick up element - Google Patents

Method for manufacturing solid-state image pick up element

Info

Publication number
JP2001085657A
JP2001085657A JP26192699A JP26192699A JP2001085657A JP 2001085657 A JP2001085657 A JP 2001085657A JP 26192699 A JP26192699 A JP 26192699A JP 26192699 A JP26192699 A JP 26192699A JP 2001085657 A JP2001085657 A JP 2001085657A
Authority
JP
Japan
Prior art keywords
microlens
solid
wavelength
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26192699A
Other languages
Japanese (ja)
Other versions
JP4465750B2 (en
Inventor
Tadashi Ishimatsu
忠 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP26192699A priority Critical patent/JP4465750B2/en
Publication of JP2001085657A publication Critical patent/JP2001085657A/en
Application granted granted Critical
Publication of JP4465750B2 publication Critical patent/JP4465750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably manufacture a micro-lens having a high aperture coefficient providing an interval between micro-lenses on a solid-state image pick up element of 0.2 to 0.3 μm without any fusion of micro- lenses. SOLUTION: After a photosensitive resin as the material of micro-lens is coated, exposed and developed, the ultraviolet ray including far ultraviolet region is irradiated for temporary hardening of the edge portion at the external circumference of photosensitive resin, and thereafter the resin is heated for formation through dissolution, deformation and hardening. Moreover, the wavelength of the ultraviolet ray including the far ultraviolet region used is 200 to 365 nm, and the dose is 50 to 100 mJ/cm2 at the wavelength of 254 nm per film thickness of lens material of 1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集光用マイクロレ
ンズを有する固体撮像素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device having a focusing microlens.

【0002】[0002]

【従来の技術】CCD(Charge Coupled Device) 等の固
体撮像素子は、例えば図4に示すように、シリコン等の
基体1内に埋設された複数の矩形の受光素子2よりなる
光電変換部と、受光素子2から接続される電極層3など
の信号の読み出し回路部の2つの領域から成り、これら
の上層に、透明材料で構成された下部平滑化層4、受光
素子2の間隙部に対応する部位に設けられる遮光層5、
およびカラー画像対応の素子にあっては赤、緑、青のカ
ラーフィルタ層6が形成された構成となっている。
2. Description of the Related Art As shown in FIG. 4, for example, a solid-state imaging device such as a CCD (Charge Coupled Device) includes a photoelectric conversion unit including a plurality of rectangular light receiving elements 2 embedded in a substrate 1 such as silicon. It is composed of two regions of a signal readout circuit portion such as an electrode layer 3 connected from the light receiving element 2, and a lower smoothing layer 4 made of a transparent material and a gap between the light receiving elements 2 are formed on these two layers. Light-shielding layer 5 provided on the site,
In addition, a device corresponding to a color image has a configuration in which red, green, and blue color filter layers 6 are formed.

【0003】ここで、信号の読み出し回路部は、入射光
成分に対する不感領域である。そこで従来、この不感領
域上に入射する光成分を光電変換部に集光し、撮像素子
の高感度化を達成するとともに、他の素子を劣化させな
い有効な手段の一つとして、固体撮像素子上に透明な凸
レンズ状のマイクロレンズアレイを配置し、不感領域で
ある信号読み出し回路上に到達する入射光成分を、光電
変換部に集光させるようにした撮像素子一体型のマイク
ロレンズアレイが提案されている。
Here, the signal readout circuit section is an insensitive area to the incident light component. Therefore, conventionally, the light component incident on the insensitive area is condensed on the photoelectric conversion unit to achieve high sensitivity of the imaging device, and as one of effective means that does not deteriorate other devices, the solid-state imaging device is used. A microlens array integrated with an imaging element has been proposed, in which a transparent convex lens-shaped microlens array is arranged on the substrate, and an incident light component reaching a signal readout circuit, which is an insensitive area, is focused on a photoelectric conversion unit. ing.

【0004】マイクロレンズを形成する方法としては、
熱軟化性の材料でパターンを形成し、加熱溶解して変形
加工し硬化させて形成する熱フロー法が一般的である。
熱フロー法によるマイクロレンズの形成方法は、レンズ
材料となる感光性樹脂を0.5〜5μmの厚さに塗布
し、露光、現像後、超高圧水銀灯等の、波長365nm
を中心としたi線と呼ばれる紫外光の照射を行い、その
後、加熱溶解により変形させ、半球状の凸レンズ形状に
して硬化させるものである。ここで用いる紫外光は、レ
ンズ材料の感光性樹脂中の感光剤を分解し、光透過率を
向上させるのに適した波長である。
[0004] As a method of forming a micro lens,
In general, a heat flow method is used in which a pattern is formed from a heat-softening material, and the pattern is formed by heating and melting, deforming, and curing.
The method of forming a microlens by a heat flow method is as follows. A photosensitive resin serving as a lens material is applied to a thickness of 0.5 to 5 μm, and after exposure and development, an ultrahigh pressure mercury lamp or the like has a wavelength of 365 nm.
Is irradiated with ultraviolet light called an i-line centered at the center, and then deformed by heating and dissolving to cure into a hemispherical convex lens shape. The ultraviolet light used here has a wavelength suitable for decomposing the photosensitive agent in the photosensitive resin of the lens material and improving the light transmittance.

【0005】[0005]

【発明が解決しようとする課題】近年、CCDはデジタ
ルカメラ用途などに代表されるように、高解像度化、小
型化の開発傾向にある。高解像度化により、画素サイズ
は縮小され、撮像素子の受光面積は減少し、必然的に光
感度の低下という問題が生じる。
In recent years, CCDs have been developed for higher resolution and smaller size, as represented by digital camera applications. With the increase in resolution, the pixel size is reduced, the light receiving area of the image sensor is reduced, and the problem of inevitably lowering the light sensitivity occurs.

【0006】この問題を解決するための方法の一つとし
て、各画素上に形成するマイクロレンズの開口率を高く
し、光感度の向上を図ればよい。言い換えると、隣接す
るマイクロレンズ同士の間隔を狭くすればよい。
As one method for solving this problem, the aperture ratio of a micro lens formed on each pixel may be increased to improve the light sensitivity. In other words, the distance between adjacent microlenses may be reduced.

【0007】現状、デジタルカメラなどに採用される2
00万画素CCDのマイクロレンズのピッチは5μm前
後であり、形成するマイクロレンズ同士の間隔は、上述
した光感度の低下を避けるために必要な0.2〜0.3
μmで形成されている。
[0007] At present, 2 is adopted for digital cameras and the like.
The pitch of the microlenses of the one million pixel CCD is about 5 μm, and the interval between the microlenses to be formed is 0.2 to 0.3, which is necessary for avoiding the above-described decrease in light sensitivity.
μm.

【0008】しかしながら、上述した従来の熱フロー法
で形成されるマイクロレンズでは、図3に示すように、
加熱溶解時にパターン片側で0.2μmの熱フロー量
(変形拡大量)がある。このフロー量は大きいため、マ
イクロレンズの間隔を0.2〜0.3μmで形成しよう
としても、熱フロー量のバラツキにより、隣接するマイ
クロレンズ同士が癒着してしまうことがあり、安定して
所望間隔に独立したマイクロレンズを形成することが困
難である。
However, in the above-described microlens formed by the conventional heat flow method, as shown in FIG.
There is a heat flow amount (deformation expansion amount) of 0.2 μm on one side of the pattern during heating and melting. Since this flow amount is large, even if an attempt is made to form the microlens at an interval of 0.2 to 0.3 μm, the adjacent microlenses may adhere to each other due to the variation in the amount of heat flow. It is difficult to form independent microlenses at intervals.

【0009】従って、本発明の課題は、固体撮像素子上
のマイクロレンズ同士の間隔が0.2〜0.3μmであ
る高開口率のマイクロレンズを、マイクロレンズ同士の
癒着が無く、安定して製造することができる方法を提供
することにある。
Therefore, an object of the present invention is to provide a microlens having a high aperture ratio in which the distance between the microlenses on the solid-state imaging device is 0.2 to 0.3 μm, without causing adhesion between the microlenses. It is to provide a method that can be manufactured.

【0010】[0010]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、マイクロレンズ同士の間隔が0.2〜0.3μ
mである高開口率のマイクロレンズを、マイクロレンズ
同士の癒着が無く安定して形成できる熱フロー法による
マイクロレンズの形成方法を見出すことができた。
The present inventors have made intensive studies and found that the distance between microlenses was 0.2 to 0.3 μm.
A method of forming a microlens by a heat flow method that can stably form a microlens having a high aperture ratio of m without adhesion between the microlenses was found.

【0011】すなわち、請求項1に関する発明は、マイ
クロレンズを有する固体撮像素子の製造方法において、
各素子の上層にマイクロレンズを形成する際、材料とな
る感光性樹脂を塗布、露光、現像した後に、遠紫外(Dee
p-UV) 域を含む紫外光を照射し、続いて加熱して溶解・
変形・硬化させて形成することを特徴とする、固体撮像
素子の製造方法である。
That is, the invention according to claim 1 provides a method for manufacturing a solid-state imaging device having a microlens,
When forming a microlens on the upper layer of each element, after applying, exposing and developing a photosensitive resin as a material, far ultraviolet (Dee
(p-UV) region, and then heat to dissolve
A method for manufacturing a solid-state imaging device, characterized by being formed by deformation and hardening.

【0012】また本発明者らは、マイクロレンズ外周の
エッジ部分を仮硬化させる遠紫外光の波長としては、2
00〜300nmが適していることを見出した。さら
に、レンズ材料の感光性樹脂中の赤色に着色した感光剤
を分解し、感光性樹脂の光透過率を向上させる紫外光の
波長としては、365nmである。
Further, the present inventors consider that the wavelength of the far ultraviolet light for temporarily curing the edge portion of the outer periphery of the microlens is 2
It has been found that 00 to 300 nm is suitable. Further, the wavelength of the ultraviolet light for decomposing the red colored photosensitive agent in the photosensitive resin of the lens material and improving the light transmittance of the photosensitive resin is 365 nm.

【0013】すなわち、請求項2に関わる発明は、マイ
クロレンズの形成時に用いる遠紫外域を含む紫外光の波
長が200〜365nmであることを特徴とする、請求
項1記載の固体撮像素子の製造方法である。
In other words, the invention according to claim 2 is characterized in that the wavelength of the ultraviolet light including the far ultraviolet region used in forming the microlens is 200 to 365 nm, and the manufacturing of the solid-state imaging device according to claim 1 is performed. Is the way.

【0014】また、遠紫外域を含む紫外光の照射量が、
レンズ材となる感光性樹脂の膜厚1μm当たり、波長2
54nmにおいて50mJ/cm2未満では、マイクロ
レンズ外周のエッジ部分を仮硬化できず、さらに同波長
において100mJ/cm2以上の照射量では、マイク
ロレンズ外周のエッジ部分だけでなくマイクロレンズ中
央部も仮硬化してしまい、その後の加熱において半球状
のマイクロレンズを得ることができず、台形状になって
しまうことを見出した。
Further, the irradiation amount of the ultraviolet light including the far ultraviolet region is
The wavelength 2 per 1 μm of the thickness of the photosensitive resin used as the lens material
If the wavelength is less than 50 mJ / cm 2 at 54 nm, the edge portion of the outer periphery of the microlens cannot be temporarily cured, and if the irradiation amount is 100 mJ / cm 2 or more at the same wavelength, not only the edge portion of the outer periphery of the microlens but also the central portion of the microlens can be temporarily cured. It has been found that the composition hardens and a hemispherical microlens cannot be obtained by subsequent heating, resulting in a trapezoidal shape.

【0015】すなわち、請求項3に関わる発明は、マイ
クロレンズの形成時に用いる遠紫外域を含む紫外光の照
射量が、レンズ材料の膜厚1μm当たり、波長254n
mにおいて50〜100mJ/cm2であることを特徴
とする、請求項1記載の固体撮像素子の製造方法であ
る。
That is, the invention according to claim 3 is characterized in that the irradiation amount of the ultraviolet light including the far ultraviolet region used at the time of forming the microlens has a wavelength of 254 nm per 1 μm of the film thickness of the lens material.
2. The method according to claim 1, wherein m is 50 to 100 mJ / cm 2 .

【0016】以上の方法によれば、固体撮像素子上に設
けられたマイクロレンズ同士の間隔が0.2〜0.3μ
mである高開口率のマイクロレンズを、マイクロレンズ
同士の癒着無く、安定して形成することができる。
According to the above method, the distance between the microlenses provided on the solid-state imaging device is 0.2 to 0.3 μm.
The microlens having a high aperture ratio of m can be formed stably without adhesion between the microlenses.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を、以下の実
施例により、また比較例との比較により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the following examples and comparisons with comparative examples.

【0018】<実施例>図1は、半導体基板上に形成さ
れる固体撮像素子の製造工程の概略を示したものであ
る。半導体基板Aは、シリコン基体1上に、図中にある
受光素子2を含むフォトダイオード部、電荷の転送部、
そのほか転送電極、垂直レジスタ部からなる垂直レジス
タ部などの半導体素子を従来と同様の方法で形成し、そ
の上に下部平滑化層4、遮光層5、カラーフィルタ6、
および表面平滑化のためのオーバーコート層7を従来法
にて積層して作成した。
<Embodiment> FIG. 1 schematically shows a manufacturing process of a solid-state imaging device formed on a semiconductor substrate. The semiconductor substrate A includes a photodiode section including the light receiving element 2 shown in the figure, a charge transfer section,
In addition, a semiconductor element such as a transfer electrode and a vertical register portion including a vertical register portion is formed by the same method as the conventional method, and a lower smoothing layer 4, a light shielding layer 5, a color filter 6,
Further, an overcoat layer 7 for smoothing the surface was laminated by a conventional method.

【0019】以上のような半導体素子やカラーフィルタ
等を形成した半導体基板A上に、ジェイエスアール
(株)製感光性レジスト「MFR380H」をスピンコ
ートにて、回転数1800min-1で塗布し、100℃
のホットプレートで3分間ベークを行い、膜厚1.25
μmに形成した(図1(a)参照)。
A photosensitive resist "MFR380H" manufactured by JSR Co., Ltd. is spin-coated on the semiconductor substrate A on which the above-described semiconductor elements, color filters, etc. are formed, at a rotation speed of 1800 min- 1. ° C
Baking for 3 minutes on a hot plate with a film thickness of 1.25
μm (see FIG. 1A).

【0020】その半導体基板Aに対し、ニコン(株)製
i線ステッパーにて露光を行った後、アルカリ現像液N
MD−W(東京応化工業(株)製)を用いてスピン現像
を30〜40秒間行い、純水によりリンスを行った後、
スピン乾燥を行った。このときのマイクロレンズのパタ
ーン同士の間隔は、0.45μmであり、膜厚は1.2
μmであった(図1(b)参照)。
After exposing the semiconductor substrate A with an i-line stepper manufactured by Nikon Corporation, an alkali developer N
After performing spin development for 30 to 40 seconds using MD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.) and rinsing with pure water,
Spin drying was performed. At this time, the interval between the microlens patterns was 0.45 μm, and the film thickness was 1.2.
μm (see FIG. 1 (b)).

【0021】さらに、遠紫外域を含む紫外光、例えばウ
シオ電機(株)製遠紫外ランプUXM−501MA等を
用いて、波長254nmの紫外線照射量が60mJ/c
2になるまで紫外線照射を行った。
Further, the amount of ultraviolet radiation having a wavelength of 254 nm of 60 mJ / c using ultraviolet light including a deep ultraviolet region, for example, a far ultraviolet lamp UXM-501MA manufactured by Ushio Inc.
Irradiation with ultraviolet light was performed until the volume reached m 2 .

【0022】その後、この半導体基板Aを100℃のホ
ットプレートを用いて3分間加熱し、続いて180℃の
ホットプレートで6分間加熱して溶解、変形、硬化を実
施して、図2に示すようなピッチ5μm、マイクロレン
ズ同士の間隔0.25μm、膜厚1.5μmのマイクロ
レンズ8が完成した(図1(c)参照)。この時の熱フ
ロー量は、図2に示すように、パターン片側で0.1μ
mであった。
Thereafter, the semiconductor substrate A was heated for 3 minutes using a hot plate at 100 ° C., and then heated for 6 minutes on a hot plate at 180 ° C. to perform melting, deformation and hardening, as shown in FIG. A microlens 8 having such a pitch of 5 μm, an interval between microlenses of 0.25 μm, and a film thickness of 1.5 μm was completed (see FIG. 1C). The amount of heat flow at this time was 0.1 μm on one side of the pattern as shown in FIG.
m.

【0023】本実施例の半導体基板は、図5に示すよう
にマイクロレンズ同士の癒着による外観ムラの発生が半
導体基板内で全く無く、良好な外観特性が得られた。
As shown in FIG. 5, in the semiconductor substrate of this embodiment, there was no appearance irregularity due to adhesion of the microlenses, and good external appearance characteristics were obtained.

【0024】<比較例>まず、上記の実施例と同様に、
半導体基板Aを従来法にて作成した。その半導体基板A
上に、上記実施例と同様に、ジェイエスアール(株)製
感光性レジスト「MFR380H」をスピンコートに
て、回転数1800min-1で塗布し、100℃のホッ
トプレートで3分間ベークを行い、膜厚1.25μmに
形成した。
<Comparative Example> First, similarly to the above embodiment,
Semiconductor substrate A was prepared by a conventional method. The semiconductor substrate A
In the same manner as in the above example, a photosensitive resist “MFR380H” manufactured by JSR Co., Ltd. was applied by spin coating at a rotation speed of 1800 min- 1 and baked on a hot plate at 100 ° C. for 3 minutes to form a film. It was formed to a thickness of 1.25 μm.

【0025】その半導体基板Aに対し、ニコン(株)製
i線ステッパーにて露光を行った後、アルカリ現像液N
MD−W(東京応化工業(株)製)を用いてスピン現像
を30〜40秒間行い、純水によりリンスを行った後、
スピン乾燥を行った。このときのマイクロレンズのパタ
ーン同士の間隔は、0.65μmであり、膜厚は1.2
μmであった。
After exposing the semiconductor substrate A with an i-line stepper manufactured by Nikon Corporation, an alkali developer N
After performing spin development for 30 to 40 seconds using MD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.) and rinsing with pure water,
Spin drying was performed. At this time, the distance between the microlens patterns was 0.65 μm, and the film thickness was 1.2.
μm.

【0026】さらに、遠紫外域をほとんど含まない紫外
光を発する、超高圧水銀灯で紫外線照射を行った。この
時の紫外線照射量は波長365nmにて300mJ/c
2であった。
Further, ultraviolet irradiation was performed using an ultra-high pressure mercury lamp which emits ultraviolet light containing almost no deep ultraviolet region. At this time, the amount of ultraviolet irradiation is 300 mJ / c at a wavelength of 365 nm.
m 2 .

【0027】その後、この半導体基板Aを100℃のホ
ットプレートを用いて3分間加熱し、続いて180℃の
ホットプレートで6分間加熱して溶解、変形、硬化を実
施して、図3に示すようなピッチ5μm、マイクロレン
ズ同士の間隔0.25μm、膜厚1.5μmのマイクロ
レンズ8が完成した。この時の熱フロー量は、図3に示
すように、パターン片側で0.2μmであった。
Thereafter, the semiconductor substrate A was heated on a hot plate at 100 ° C. for 3 minutes, and then heated on a hot plate at 180 ° C. for 6 minutes to perform melting, deformation and hardening, as shown in FIG. A microlens 8 having a pitch of 5 μm, an interval between microlenses of 0.25 μm, and a film thickness of 1.5 μm was completed. The amount of heat flow at this time was 0.2 μm on one side of the pattern as shown in FIG.

【0028】本比較例の半導体基板は、図6に示すよう
に、マイクロレンズ同士の癒着による外観ムラが半導体
基板内で部分的に発生しており、良好な外観特性を満足
するものではなかった。
As shown in FIG. 6, in the semiconductor substrate of this comparative example, unevenness in appearance due to adhesion of microlenses was partially generated in the semiconductor substrate, and did not satisfy good appearance characteristics. .

【0029】また、本比較例において、マイクロレンズ
同士の癒着を防止するため、熱フロー量を減ずる方法と
して、熱フロー時の温度を低温化する方法が挙げられ
る。しかしながら、本比較例において熱フロー温度を低
温にして熱フローを行うと、マイクロレンズ形成時の熱
フロー量は減じてマイクロレンズ同士の癒着は防止でき
たが、出来上がったマイクロレンズ形状は、断面から見
たとき半球状ではなく台形に近い形状となり、良好な形
状のマイクロレンズを得ることはできなかった。
In this comparative example, as a method of reducing the amount of heat flow in order to prevent adhesion of the microlenses, there is a method of lowering the temperature during the heat flow. However, when the heat flow was performed at a low heat flow temperature in this comparative example, the amount of heat flow at the time of forming the microlenses was reduced, and adhesion of the microlenses could be prevented. When viewed, the shape was not a hemispherical shape but a trapezoidal shape, and a microlens with a good shape could not be obtained.

【0030】[0030]

【発明の効果】本発明の固体撮像素子の製造方法によれ
ば、固体撮像素子の高解像度化に伴う画素サイズ・受光
面積の減少による光感度の低下を補うためのマイクロレ
ンズ同士の間隔の縮小に際しても、マイクロレンズ形成
時の加熱による感光性樹脂のレンズ形状加工の前の、感
光性樹脂外周のエッジ部分の仮硬化において使用する紫
外光の波長が200〜300nmを含むことにより、マ
イクロレンズ同士の癒着を生ずることなく、安定した形
状に形成することが可能となる。
According to the method for manufacturing a solid-state imaging device of the present invention, the distance between microlenses for compensating for the decrease in light sensitivity due to the decrease in the pixel size and the light receiving area accompanying the increase in the resolution of the solid-state imaging device is reduced. In this case, the wavelength of the ultraviolet light used in the temporary curing of the edge portion of the photosensitive resin outer periphery before the lens shape processing of the photosensitive resin by heating at the time of forming the microlens includes 200 to 300 nm, so that the microlenses can be formed. Can be formed into a stable shape without causing adhesion.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱フロー法によるマイクロレンズを有する固体
撮像素子の製造工程を示す説明図である。
FIG. 1 is an explanatory diagram showing a manufacturing process of a solid-state imaging device having a microlens by a heat flow method.

【図2】本発明の実施例のマイクロレンズの概略を示す
説明図である。
FIG. 2 is an explanatory view schematically showing a microlens according to an embodiment of the present invention.

【図3】比較例のマイクロレンズの概略を示す説明図で
ある。
FIG. 3 is an explanatory view schematically showing a microlens of a comparative example.

【図4】固体撮像素子の構成の一例を示す断面図であ
る。
FIG. 4 is a cross-sectional view illustrating an example of a configuration of a solid-state imaging device.

【図5】本発明の実施例のマイクロレンズの断面を表し
た電子顕微鏡写真である。
FIG. 5 is an electron micrograph showing a cross section of a microlens according to an example of the present invention.

【図6】比較例のマイクロレンズの断面を表した電子顕
微鏡写真である。
FIG. 6 is an electron micrograph showing a cross section of a microlens of a comparative example.

【符号の説明】[Explanation of symbols]

1 シリコン基体 2 受光素子 3 電極層 4 下部平滑化層 5 遮光層 6 カラーフィルタ 7 オーバーコート層 8 マイクロレンズ DESCRIPTION OF SYMBOLS 1 Silicon base 2 Light receiving element 3 Electrode layer 4 Lower smoothing layer 5 Light shielding layer 6 Color filter 7 Overcoat layer 8 Micro lens

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マイクロレンズを有する固体撮像素子の製
造方法において、各素子の上層にマイクロレンズを形成
する際、材料となる感光性樹脂を塗布、露光、現像した
後に、遠紫外域を含む紫外光を照射し、続いて加熱して
溶解・変形・硬化させて形成することを特徴とする、固
体撮像素子の製造方法。
In a method of manufacturing a solid-state image pickup device having a microlens, when forming a microlens on an upper layer of each device, a photosensitive resin as a material is applied, exposed and developed, and then an ultraviolet light including a far ultraviolet region is included. A method for producing a solid-state imaging device, comprising irradiating light, and subsequently heating to dissolve, deform, and cure the solid-state imaging device.
【請求項2】マイクロレンズの形成時に用いる遠紫外域
を含む紫外光の波長が200〜365nmであることを
特徴とする、請求項1記載の固体撮像素子の製造方法。
2. The method for manufacturing a solid-state imaging device according to claim 1, wherein a wavelength of ultraviolet light including a far ultraviolet region used in forming the microlens is 200 to 365 nm.
【請求項3】マイクロレンズの形成時に用いる遠紫外域
を含む紫外光の照射量が、レンズ材料の膜厚1μm当た
り、波長254nmにおいて50〜100mJ/cm2
であることを特徴とする、請求項1記載の固体撮像素子
の製造方法。
3. An irradiation amount of ultraviolet light including a far ultraviolet region used for forming a microlens is 50 to 100 mJ / cm 2 at a wavelength of 254 nm per 1 μm of film thickness of a lens material.
The method for manufacturing a solid-state imaging device according to claim 1, wherein
JP26192699A 1999-09-16 1999-09-16 Manufacturing method of solid-state imaging device Expired - Lifetime JP4465750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26192699A JP4465750B2 (en) 1999-09-16 1999-09-16 Manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26192699A JP4465750B2 (en) 1999-09-16 1999-09-16 Manufacturing method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2001085657A true JP2001085657A (en) 2001-03-30
JP4465750B2 JP4465750B2 (en) 2010-05-19

Family

ID=17368643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26192699A Expired - Lifetime JP4465750B2 (en) 1999-09-16 1999-09-16 Manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4465750B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107721A (en) * 2001-09-28 2003-04-09 Nikon Corp Manufacturing method for microlens, manufacturing method for article, working method for resist layer and microlens
JP2004235635A (en) * 2003-01-29 2004-08-19 Hynix Semiconductor Inc Method of manufacturing cmos image sensor
JP2005268356A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Solid state imaging element
JP2007281875A (en) * 2006-04-06 2007-10-25 Toppan Printing Co Ltd Imaging device
US20090206430A1 (en) * 2005-08-19 2009-08-20 Toshihiro Higuchi Solid-state imaging device and method for manufacturing the same
JP2009198870A (en) * 2008-02-22 2009-09-03 Toppan Printing Co Ltd Method for producing microstructure arrangement, and distributed density mask
CN115097553A (en) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 Micro-lens array substrate, preparation method thereof and display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107721A (en) * 2001-09-28 2003-04-09 Nikon Corp Manufacturing method for microlens, manufacturing method for article, working method for resist layer and microlens
JP2004235635A (en) * 2003-01-29 2004-08-19 Hynix Semiconductor Inc Method of manufacturing cmos image sensor
US7932546B2 (en) 2003-01-29 2011-04-26 Crosstek Capital, LLC Image sensor having microlenses and high photosensitivity
JP2005268356A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Solid state imaging element
US20090206430A1 (en) * 2005-08-19 2009-08-20 Toshihiro Higuchi Solid-state imaging device and method for manufacturing the same
JP2007281875A (en) * 2006-04-06 2007-10-25 Toppan Printing Co Ltd Imaging device
JP2009198870A (en) * 2008-02-22 2009-09-03 Toppan Printing Co Ltd Method for producing microstructure arrangement, and distributed density mask
CN115097553A (en) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 Micro-lens array substrate, preparation method thereof and display device
CN115097553B (en) * 2022-06-24 2023-10-31 京东方科技集团股份有限公司 Microlens array substrate, preparation method thereof and display device

Also Published As

Publication number Publication date
JP4465750B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
TWI363194B (en) Method for manufacturing microlens
US7898049B2 (en) Touching microlens structure for a pixel sensor and method of fabrication
KR100710208B1 (en) CMOS image sensor and method for fabricating the same
US7986019B2 (en) Solid-state imaging device and its manufacturing method
US20060292731A1 (en) CMOS image sensor and manufacturing method thereof
JPH04206966A (en) Production of solid-state image pick up element
JP4465750B2 (en) Manufacturing method of solid-state imaging device
JPH04229802A (en) Solid image pick-up device and manufacture thereof
TW548431B (en) Microlens array and fabrication method thereof
JPH0624232B2 (en) Method of manufacturing solid-state imaging device
JP2009198547A (en) Manufacturing method for microlens for solid imaging element, and microlens for solid imaging element
JP6631004B2 (en) Color solid-state imaging device and method of manufacturing the same
JP2000307090A (en) Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them
JP2003258224A (en) Solid state image sensor and its fabricating method
JP3747682B2 (en) Solid-state imaging device and manufacturing method thereof
JP2000174246A (en) Solid state image sensing device and manufacture thereof
JP2892865B2 (en) Method for manufacturing solid-state imaging device
JP5027081B2 (en) Color imaging device and method for manufacturing color imaging device
JP2988556B2 (en) Microlens manufacturing method and semiconductor device manufacturing method
JP3598855B2 (en) Solid-state imaging device and method of manufacturing the same
TWI227037B (en) Method of forming planar color filters in an image sensor
JP4439326B2 (en) Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device
JP2604890B2 (en) Method for manufacturing solid-state imaging device
JP2969842B2 (en) Method for manufacturing solid-state imaging device
JPS61203663A (en) Manufacture of solid-state image pick-up device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3