JP2988556B2 - Microlens manufacturing method and semiconductor device manufacturing method - Google Patents

Microlens manufacturing method and semiconductor device manufacturing method

Info

Publication number
JP2988556B2
JP2988556B2 JP4254538A JP25453892A JP2988556B2 JP 2988556 B2 JP2988556 B2 JP 2988556B2 JP 4254538 A JP4254538 A JP 4254538A JP 25453892 A JP25453892 A JP 25453892A JP 2988556 B2 JP2988556 B2 JP 2988556B2
Authority
JP
Japan
Prior art keywords
transparent layer
microlens
manufacturing
pattern
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4254538A
Other languages
Japanese (ja)
Other versions
JPH06112454A (en
Inventor
義和 佐野
貢 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4254538A priority Critical patent/JP2988556B2/en
Publication of JPH06112454A publication Critical patent/JPH06112454A/en
Application granted granted Critical
Publication of JP2988556B2 publication Critical patent/JP2988556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上にマイクロレン
ズを形成するマイクロレンズの製造方法および表面にマ
イクロレンズを有する半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a microlens for forming a microlens on a substrate and a method of manufacturing a semiconductor device having a microlens on a surface.

【0002】[0002]

【従来の技術】近年、半導体装置の高集積化および微細
化に伴って製造工程および性能面で多くの課題が発生し
ているが、特に固体撮像装置においては小型化および画
素数の増大に伴って光電変換部の面積の減少による感度
の低下およびS/Nの低下が問題となっている。そのた
めに光電変換部の上にマイクロレンズを備えた固体撮像
装置が利用されるようになってきた。
2. Description of the Related Art In recent years, many problems have arisen in the manufacturing process and the performance in accordance with the high integration and miniaturization of semiconductor devices. Thus, there is a problem that the sensitivity and the S / N ratio are reduced due to the reduction in the area of the photoelectric conversion unit. Therefore, a solid-state imaging device having a microlens on a photoelectric conversion unit has been used.

【0003】以下従来のマイクロレンズの製造方法につ
いて、固体撮像装置の例について説明する。図3は従来
の固体撮像装置の要部断面図である。図3において、1
はシリコン単結晶からなる半導体基板、2はフォトダイ
オードからなる光電変換部、3は光電変換部2からの電
荷を転送する転送部、4は金属膜からなる遮光部、5は
有機透明膜からなる平坦化層、6は所望の色に染色され
た有機膜からなるカラーフィルタ層、7は有機透明膜か
らなる中間層、8は有機透明材料からなり凸型形状に形
成されたマイクロレンズである。
Hereinafter, a conventional method of manufacturing a microlens will be described with reference to an example of a solid-state imaging device. FIG. 3 is a sectional view of a main part of a conventional solid-state imaging device. In FIG. 3, 1
Is a semiconductor substrate made of silicon single crystal, 2 is a photoelectric conversion section made of a photodiode, 3 is a transfer section for transferring charges from the photoelectric conversion section 2, 4 is a light shielding section made of a metal film, and 5 is an organic transparent film A flattening layer, 6 is a color filter layer made of an organic film dyed in a desired color, 7 is an intermediate layer made of an organic transparent film, and 8 is a microlens made of an organic transparent material and formed in a convex shape.

【0004】以上のように形成された固体撮像装置につ
いて、以下その動作を説明する。まず光電変換部2およ
び遮光部4の上方に入射した光がマイクロレンズ8で集
光され、中間層7、カラーフィルター層6および平坦化
層5を通り光電変換部2に到達する。光電変換部2に到
達した光は電荷に変換され、その電荷が転送部3で転送
され、信号として出力される。
[0004] The operation of the solid-state imaging device formed as described above will be described below. First, light that has entered above the photoelectric conversion unit 2 and the light shielding unit 4 is collected by the microlens 8, and reaches the photoelectric conversion unit 2 through the intermediate layer 7, the color filter layer 6, and the flattening layer 5. The light that has reached the photoelectric conversion unit 2 is converted into a charge, and the charge is transferred by the transfer unit 3 and output as a signal.

【0005】次に従来のマイクロレンズの製造方法につ
いて説明する。図4は従来のマイクロレンズの製造方法
における第1工程を説明する断面図、図5は同製造方法
における第2工程を説明する断面図、図6は同製造方法
における第3工程を説明する断面図、図7は同製造方法
における第工程を説明する断面図である。まず図4に
示すように、光電変換部2、転送部3、遮光部4などが
形成された半導体基板1の上に平坦化層5、カラーフィ
ルタ層6および中間層7を形成した後、最終的にレンズ
8となるレンズ樹脂材料を回転塗布し、透明層8aを形
成する。次に図5に示すように、マイクロレンズ8の形
状を決めるマスク9を使用し、紫外線10を照射して透
明層8aを露光する。図5は透明層8aがポジ型の場合
を示しており、露光領域11が現像によって除去され、
図6に示すように透明層8aのパターンが間隔12によ
って区切られる。次に図7に示すように、透明層8aを
均一加熱し熱溶融してマイクロレンズ8を間隔12を隔
てて形成した後、加熱硬化する。
Next, a conventional method for manufacturing a microlens will be described. FIG. 4 is a cross-sectional view for explaining a first step in the conventional method of manufacturing a microlens, FIG. 5 is a cross-sectional view for explaining a second step in the same manufacturing method, and FIG. 6 is a cross-section for explaining a third step in the same manufacturing method. FIG . 7 is a cross-sectional view for explaining a fourth step in the manufacturing method. First, as shown in FIG. 4, a planarizing layer 5, a color filter layer 6, and an intermediate layer 7 are formed on a semiconductor substrate 1 on which a photoelectric conversion unit 2, a transfer unit 3, a light shielding unit 4, and the like are formed. A lens resin material to be the lens 8 is spin-coated to form a transparent layer 8a. Next, as shown in FIG. 5, the transparent layer 8a is exposed by irradiating ultraviolet rays 10 using a mask 9 for determining the shape of the microlens 8. FIG. 5 shows a case where the transparent layer 8a is of a positive type, and the exposed area 11 is removed by development.
As shown in FIG. 6, the pattern of the transparent layer 8a is divided by the interval 12. Next, as shown in FIG. 7, the transparent layer 8a is uniformly heated and melted to form the microlenses 8 at intervals 12, and then cured by heating.

【0006】次にマイクロレンズ8を形成する前後の透
明層8aの形状について説明する。図8(a)は露光現
像後の透明層のパターンの平面図、図8(b)は加熱後
のマイクロレンズの平面図である。図8(a)に示すよ
うに、レンズ樹脂材料を回転塗布して透明層8aを形成
し、露光現像した直後ではマスク9に忠実に長方形にパ
ターンが形成されており、間隔12も設計値通りとなっ
ているが、透明層8aを加熱溶融した後では一般に図8
(b)に示すように各辺が外方向に膨らむ。
Next, the shapes of the transparent layer 8a before and after forming the microlenses 8 will be described. FIG. 8A is a plan view of the pattern of the transparent layer after exposure and development, and FIG. 8B is a plan view of the microlens after heating. As shown in FIG. 8 (a), a transparent layer 8a is formed by spin-coating a lens resin material, and immediately after exposure and development, a rectangular pattern is formed faithfully on the mask 9, and the interval 12 is also as designed. However, after the transparent layer 8a is heated and melted, generally, FIG.
Each side swells outward as shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、透明層8aのパターン形成時に間隔12
を狭くすると加熱溶融した際に隣接する透明層8aが接
触し、できあがったマイクロレンズ9が変形するという
課題を有していた。
However, in the above-mentioned conventional structure, the distance 12 is required when the pattern of the transparent layer 8a is formed.
When the width is reduced, the adjacent transparent layer 8a comes into contact when heated and melted, and the completed microlens 9 is deformed.

【0008】この課題を解決するためには図8(a)に
おける間隔12を加熱溶融時の透明層8aの膨張分を考
慮して広くしておかなければならない。図9は隣接する
マイクロレンズ間の距離と固体撮像装置の相対光感度の
関係を示す図である。間隔12を小さくするほどマイク
ロレンズ9の占有面積が増加して光電変換部2に集光さ
れる光量は増加し相対光感度が向上する。しかしながら
相対光感度を向上させるためにマイクロレンズ9の間隔
12を小さくしていくと、透明層8aが変形し、流れ出
したレンズ樹脂材料が互いに接触して混じり合い、所望
のレンズ形状が得られなくなる。さらにその状態が進む
とレンズ形状を失って平坦になり、急激に相対光感度が
低下する。このような状態を図10、図11に示した。
In order to solve this problem, the interval 12 in FIG. 8A must be widened in consideration of the expansion of the transparent layer 8a during heating and melting. FIG. 9 is a diagram illustrating the relationship between the distance between adjacent microlenses and the relative light sensitivity of the solid-state imaging device. As the distance 12 decreases, the area occupied by the microlenses 9 increases, the amount of light condensed on the photoelectric conversion unit 2 increases, and the relative light sensitivity improves. However, when the interval 12 between the microlenses 9 is reduced to improve the relative light sensitivity, the transparent layer 8a is deformed, and the lens resin materials that have flowed out come into contact with each other and are mixed, so that a desired lens shape cannot be obtained. . When the state further progresses, the lens loses its shape and becomes flat, and the relative light sensitivity rapidly decreases. Such a state is shown in FIGS.

【0009】図10(a)は露光現像後の透明層パター
ンの平面図、図10(b)は同透明層パターンの断面
図、図11(a)は透明層を加熱溶融して形成したマイ
クロレンズの平面図、図11(b)は同マイクロレンズ
の断面図である。図10(a)に示すレンズ樹脂材料を
塗布し、現像し、露光して形成した透明層8aのパター
ンおよび図10(b)に示すその断面が正確に出ていた
としても、間隔12が狭いと図11(a)に示すように
透明層8aのパターンの辺の中央部が膨れて透明層8a
が互いに接触し、図11(b)に示すようにマイクロレ
ンズ8の形状が崩れてしまうことになる。
FIG. 10 (a) is a plan view of a transparent layer pattern after exposure and development, FIG. 10 (b) is a cross-sectional view of the transparent layer pattern, and FIG. FIG. 11B is a cross-sectional view of the microlens. Even if the pattern of the transparent layer 8a formed by applying, developing, and exposing the lens resin material shown in FIG. 10A and the cross section shown in FIG. As shown in FIG. 11A, the center of the side of the pattern of the transparent layer 8a swells and the transparent layer 8a
Are in contact with each other, and the shape of the microlens 8 is broken as shown in FIG.

【0010】この現象を防止するためにマイクロレンズ
9の間隔を広くすると、図9のA点で示すように相対光
感度を十分に上げることができない。
If the distance between the microlenses 9 is increased in order to prevent this phenomenon, the relative light sensitivity cannot be sufficiently increased as shown by point A in FIG.

【0011】本発明は上記の従来の課題を解決するもの
で、間隔を詰めても隣接する透明層が接触しないためで
きあがったマイクロレンズが変形しないマイクロレンズ
の製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing a microlens in which a formed microlens is not deformed because an adjacent transparent layer does not contact even if the distance is reduced. .

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に本発明のマイクロレンズの製造方法は、基板上に透明
層を形成する工程と、マスクを用いて透明層を多角形で
かつ隣合う頂点を結ぶ線よりも内側に辺がある透明層パ
ターンに加工する工程と、この透明層パターンを熱溶融
レンズを形成する工程とを有し、透明層パターンの
隣合う頂点を結ぶ線と辺とでできる形が三角形であるこ
とを特徴とする。
Means for Solving the Problems The method of manufacturing a microlens of the present invention to achieve this object, transparent substrate
Step of forming a layer , and using a mask to convert the transparent layer into a polygon
In addition, the transparent layer has an edge inside the line connecting the adjacent vertices.
It includes a step of processing the turn, and forming a lens the transparent layer pattern by thermally melting, the transparent layer pattern
The shape formed by the line connecting the adjacent vertices and the side is a triangle
And features.

【0013】[0013]

【作用】この構成によって、レンズ樹脂材料からなる透
明層を加熱溶融してマイクロレンズを形成する際、透明
層のパターンの各辺が隣接する頂点を結ぶ線より内側に
あるため溶融中に隣接する透明層が接触することがな
い。すなわち固体撮像装置に適用したとき、従来のよう
にマイクレンズを小さくし性能を犠牲にして(図9のA
点)間隔を大きくする必要がないので図9のB点で示す
相対光感度を得ることができる。
According to this structure, when a transparent layer made of a lens resin material is heated and melted to form a microlens, each side of the pattern of the transparent layer is inside the line connecting the adjacent vertices, so that the pattern is adjacent during the melting. There is no contact of the transparent layer. That is, when applied to a solid-state imaging device, the microphone lens is made smaller and performance is sacrificed as in the prior art (see FIG. 9A).
Point) Since it is not necessary to increase the interval, the relative light sensitivity indicated by the point B in FIG. 9 can be obtained.

【0014】[0014]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1(a)は本発明の一実施例にお
けるマイクロレンズの製造方法の前半工程を説明する平
面図、図1(b)は同製造方法の前半工程を説明する断
面図、図2(a)は同製造方法の後半工程を説明する平
面図、図2(b)は同製造方法の後半工程を説明する断
面図であり、それぞれ基板が固体撮像装置の例について
示している。これらの図において、従来例と同一箇所に
は同一符号を付して説明を省略する。なお固体撮像装置
の製造工程は基本的には図4〜図7に示す製造工程と同
じであり、レンズ樹脂材料8aのパターン形成に使用す
るマスクが異なっている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view illustrating a first half of a method of manufacturing a microlens according to an embodiment of the present invention, FIG. 1B is a cross-sectional view illustrating a first half of a method of manufacturing the microlens, and FIG. FIG. 2B is a plan view illustrating a latter half of the manufacturing method, and FIG. 2B is a cross-sectional view illustrating the latter half of the manufacturing method. Each of the substrates illustrates an example of a solid-state imaging device. In these figures, the same parts as those in the conventional example are denoted by the same reference numerals, and description thereof will be omitted. The manufacturing process of the solid-state imaging device is basically the same as the manufacturing process shown in FIGS. 4 to 7, except that a mask used for forming a pattern of the lens resin material 8a is different.

【0015】まず図1(a)に示すように、固体撮像装
置が形成された半導体基板の最上層である中間層7の上
にレンズ樹脂材料を回転塗布して透明層8aを形成し、
マスクを用いて露光する。透明層8aのパターンは頂点
がd,e,f,gで、各辺が隣接する頂点を結ぶ線より
内側に設計されたマスクを用いて露光される。この場合
は各辺の中間点8bが内側にある多角形のパターンの例
を示している。またその断面形状は図1(b)に示すよ
うになっており、透明層8aの間隔12は1個のパター
ンの頂点と隣接するパターンの頂点との間隔を示してい
る。このように形成された透明層8aを加熱溶融してマ
イクロレンズ8を形成する。
First, as shown in FIG. 1A, a transparent layer 8a is formed by spin-coating a lens resin material on an intermediate layer 7 which is the uppermost layer of a semiconductor substrate on which a solid-state imaging device is formed.
Exposure is performed using a mask. The pattern of the transparent layer 8a is exposed using a mask whose vertices are d, e, f, and g, and each side is designed inside a line connecting the adjacent vertices. In this case, an example of a polygonal pattern in which the intermediate point 8b of each side is inside is shown. The cross-sectional shape is as shown in FIG. 1B, and the interval 12 between the transparent layers 8a indicates the interval between the apex of one pattern and the apex of an adjacent pattern. The transparent layer 8a thus formed is heated and melted to form the microlenses 8.

【0016】次に図2(a)に示すように、透明層8a
を溶融加熱すると、各辺がパターンの各頂点を結ぶ線に
まで広がる。この広がり量をマスク設計時に考慮してお
くことにより、できあがったときの間隔12を容易に制
御することができる。すなわち図2(b)に示すように
間隔12が設計値通りに確保されるために、マイクロレ
ンズ8が変形することなく形成される。
Next, as shown in FIG. 2A, the transparent layer 8a
Is melted and heated, each side spreads to a line connecting each vertex of the pattern. By taking this spread amount into consideration at the time of designing the mask, the interval 12 at the time of completion can be easily controlled. That is, as shown in FIG. 2B, since the interval 12 is secured as designed, the microlens 8 is formed without deformation.

【0017】なお本実施例では、透明層8aのパターン
において各辺の中間点8bが隣接する頂点を結ぶ直線か
ら内側にあり8角形になっている例を示したが、円弧状
にへこんでいても、中間点8bの近傍が直線でその部分
がへこんでいてもよい。また透明層8aのパターン形状
は略長方形でなく、多角形でもよい。
In this embodiment, in the pattern of the transparent layer 8a, an example is shown in which the intermediate point 8b of each side is inside the straight line connecting the adjacent vertices and is octagonal, but is concave in an arc shape. Alternatively, the vicinity of the intermediate point 8b may be a straight line and that part may be dented. Further, the pattern shape of the transparent layer 8a may be a polygon instead of a substantially rectangular shape.

【0018】なお本実施例では基板が固体撮像装置が形
成された半導体基板の例について説明したが、1次元の
ラインセンサーやガラス基板でも全く同様にしてマイク
ロレンズ8を形成することができる。
Although the present embodiment has been described with reference to an example in which the substrate is a semiconductor substrate on which a solid-state imaging device is formed, the microlens 8 can be formed in exactly the same manner using a one-dimensional line sensor or a glass substrate.

【0019】また本実施例では透明層8aのパターンの
4辺全てをへこませた例について説明したが、必要とす
る辺のみへこませても同様の効果が得られる。
In this embodiment, an example is described in which all four sides of the pattern of the transparent layer 8a are dented, but the same effect can be obtained by denting only the necessary sides.

【0020】[0020]

【発明の効果】以上のように本発明は、透明層パターン
の隣合う頂点を結ぶ線と辺とでできる形が三角形である
ことにより、熱溶融したときに隣接する透明層パターン
が接触することがないため、できあがったマイクロレン
ズの形状が変形せずかつマイクロレンズの間隔を従来に
比べて狭くできる優れたマイクロレンズの製造方法を実
現できるものである。
As described above, the present invention provides a transparent layer pattern
Since the shape formed by the line and the side connecting the adjacent vertices is a triangle, the adjacent transparent layer pattern does not come into contact when melted by heat, so the completed micro lens It is possible to realize an excellent method of manufacturing a microlens in which the shape of the microlens is not deformed and the interval between the microlenses can be narrowed as compared with the related art.

【0021】また本発明によるマイクロレンズの製造方
法を固体撮像装置に適用すると、マイクロレンズを従来
より大きくできるため、より多くの光を集めることがで
き相対光感度を向上させることができる。
When the method of manufacturing a microlens according to the present invention is applied to a solid-state imaging device, the microlens can be made larger than before, so that more light can be collected and the relative light sensitivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施例におけるマイクロレ
ンズの製造方法の前半工程を説明する平面図 (b)は同製造方法の前半工程を説明する断面図
FIG. 1A is a plan view illustrating a first half of a method of manufacturing a microlens according to an embodiment of the present invention. FIG. 1B is a cross-sectional view illustrating a first half of a method of manufacturing the microlens.

【図2】(a)は同製造方法の後半工程を説明する平面
図 (b)は同製造方法の後半工程を説明する断面図
2A is a plan view illustrating a latter half of the manufacturing method, and FIG. 2B is a cross-sectional view illustrating a latter half of the manufacturing method.

【図3】従来の固体撮像装置の要部断面図FIG. 3 is a sectional view of a main part of a conventional solid-state imaging device.

【図4】従来のマイクロレンズの製造方法における第1
工程を説明する断面図
FIG. 4 shows a first example of a conventional microlens manufacturing method.
Sectional view explaining process

【図5】従来のマイクロレンズの製造方法における第2
工程を説明する断面図
FIG. 5 shows a second example of a conventional microlens manufacturing method.
Sectional view explaining process

【図6】従来のマイクロレンズの製造方法における第3
工程を説明する断面図
FIG. 6 shows a third example of a conventional microlens manufacturing method.
Sectional view explaining process

【図7】従来のマイクロレンズの製造方法における第4
工程を説明する断面図
FIG. 7 shows a fourth example of a conventional microlens manufacturing method.
Sectional view explaining process

【図8】(a)は露光現像後の透明層のパターンの平面
図 (b)は加熱後のマイクロレンズの平面図
8A is a plan view of a pattern of a transparent layer after exposure and development, and FIG. 8B is a plan view of a microlens after heating.

【図9】隣接するマイクロレンズ間の距離と固体撮像装
置の相対光感度の関係を示す図
FIG. 9 is a diagram illustrating the relationship between the distance between adjacent microlenses and the relative light sensitivity of a solid-state imaging device.

【図10】(a)は露光現像後の透明層のパターンの平
面図 (b)は同透明層のパターンの断面図
10A is a plan view of a pattern of a transparent layer after exposure and development, and FIG. 10B is a cross-sectional view of the pattern of the transparent layer.

【図11】(a)は透明層を加熱溶融して形成したマイ
クロレンズの平面図 (b)は同マイクロレンズの断面図
11A is a plan view of a microlens formed by heating and melting a transparent layer, and FIG. 11B is a cross-sectional view of the microlens.

【符号の説明】[Explanation of symbols]

8a 透明層 8b 中間点(辺の少なくとも一部) d,e,f,g 頂点 8a Transparent layer 8b Midpoint (at least part of side) d, e, f, g Vertex

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 27/14 G02B 3/00 H04N 5/335 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 27/14 G02B 3/00 H04N 5/335

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に透明層を形成する工程と、マス
クを用いて前記透明層を多角形でかつ隣合う頂点を結ぶ
線よりも内側に辺がある透明層パターンに加工する工程
と、前記透明層パターンを熱溶融しレンズを形成する
工程とを有し、前記透明層パターンの前記隣合う頂点を
結ぶ線と前記辺とでできる形が三角形であることを特徴
とするマイクロレンズの製造方法
And 1. A process of forming a transparent layer on the substrate, the mass
Connect the transparent layer with a polygon and adjacent vertices
Process of processing into a transparent layer pattern with sides inside the line
When, the transparent layer pattern and forming a lens by thermal melting, the adjacent vertices of the transparent layer pattern
A method for manufacturing a microlens , wherein a shape formed by a connecting line and the side is a triangle.
【請求項2】 少なくとも、光電変換部と前記光電変換
部で発生した電荷を転送するための転送部とが形成され
た半導体基板の上に透明層を形成する工程と、マスクを
用いて前記透明層を多角形でかつ隣合う頂点を結ぶ線よ
りも内側に辺がある透明層パターンに加工する工程と、
前記透明層パターンを熱溶融しレンズを形成する工程
とを有し、前記透明層パターンの前記隣合う頂点を結ぶ
線と前記辺とでできる形が三角形であることを特徴とす
る半導体装置の製造方法。
2. at least, a step of forming a transparent layer on a semiconductor substrate and is formed transfer section for transferring charges generated in the photoelectric conversion portion and the photoelectric conversion unit, a mask
Use the transparent layer as a line connecting polygons and adjacent vertices.
Process into a transparent layer pattern with sides inside
The transparent layer pattern and forming a lens by thermal melting, connecting the adjacent vertices of the transparent layer pattern
A method for manufacturing a semiconductor device, wherein a shape formed by a line and the side is a triangle .
JP4254538A 1992-09-24 1992-09-24 Microlens manufacturing method and semiconductor device manufacturing method Expired - Fee Related JP2988556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254538A JP2988556B2 (en) 1992-09-24 1992-09-24 Microlens manufacturing method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254538A JP2988556B2 (en) 1992-09-24 1992-09-24 Microlens manufacturing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH06112454A JPH06112454A (en) 1994-04-22
JP2988556B2 true JP2988556B2 (en) 1999-12-13

Family

ID=17266440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254538A Expired - Fee Related JP2988556B2 (en) 1992-09-24 1992-09-24 Microlens manufacturing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2988556B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094082A (en) 2000-07-11 2002-03-29 Seiko Epson Corp Optical element and its manufacturing method and electronic equipment
KR100410672B1 (en) * 2001-06-28 2003-12-12 주식회사 하이닉스반도체 The method of fabricating microlense in CMOS image sensor
JP4696927B2 (en) * 2006-01-23 2011-06-08 凸版印刷株式会社 Manufacturing method of microlens array
JP5677076B2 (en) * 2010-01-07 2015-02-25 キヤノン株式会社 Photomask data generation method, manufacturing method thereof, program therefor, solid-state imaging device manufacturing method, and microlens array manufacturing method
JP2014016454A (en) * 2012-07-09 2014-01-30 Toppan Printing Co Ltd Method for manufacturing microlens and photomask for manufacturing microlens

Also Published As

Publication number Publication date
JPH06112454A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
US5534720A (en) Solid state image sensing element
KR960000223B1 (en) Solid state image device and method of manufacturing the same
JP2776810B2 (en) Method for manufacturing solid-state imaging device
JP3254759B2 (en) Method of manufacturing optical element and on-chip lens
JPH1074927A (en) Mask for micro-lens pattern
JPH1093060A (en) Structure of solid-state image pickup device and manufacture thereof
JP2988556B2 (en) Microlens manufacturing method and semiconductor device manufacturing method
JPH04229802A (en) Solid image pick-up device and manufacture thereof
JPH0922995A (en) Solid state imaging device and manufacture thereof
JPH069229B2 (en) Method of manufacturing solid-state imaging device
JPH07105481B2 (en) Method of manufacturing solid-state imaging device
JP4465750B2 (en) Manufacturing method of solid-state imaging device
JP2892865B2 (en) Method for manufacturing solid-state imaging device
JPH11317511A (en) Manufacture of solid-state image pick up device
JPH03190166A (en) Manufacture of solid-state image sensing element microlens
JP2000260969A (en) Manufacture of solid-state image pickup element
EP0661757B1 (en) Solid-state imaging device and method of manufacturing the same
JPS61203663A (en) Manufacture of solid-state image pick-up device
JP2000260970A (en) Solid-state image pickup element and its manufacture
JPH0468570A (en) Solid-state image sensing device and manufacture thereof
JPH03190167A (en) Solid-state image sensing device
KR100192321B1 (en) The structure of solid-state image sensing device and manufacturing method thereof
JPH03152973A (en) Manufacture of solid-state image sensing device
JP3035955B2 (en) Method for manufacturing solid-state imaging device
KR0156117B1 (en) Method of manufacturing solid state image sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees