JP3035955B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device

Info

Publication number
JP3035955B2
JP3035955B2 JP2045069A JP4506990A JP3035955B2 JP 3035955 B2 JP3035955 B2 JP 3035955B2 JP 2045069 A JP2045069 A JP 2045069A JP 4506990 A JP4506990 A JP 4506990A JP 3035955 B2 JP3035955 B2 JP 3035955B2
Authority
JP
Japan
Prior art keywords
state imaging
imaging device
solid
lens
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2045069A
Other languages
Japanese (ja)
Other versions
JPH03248463A (en
Inventor
和久 永屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2045069A priority Critical patent/JP3035955B2/en
Publication of JPH03248463A publication Critical patent/JPH03248463A/en
Application granted granted Critical
Publication of JP3035955B2 publication Critical patent/JP3035955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体撮像素子の製造方法に関し、特に受光部
の各画素に対応して凸型集光レンズを形成する製造方法
に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device, and more particularly to a method for forming a convex condensing lens corresponding to each pixel of a light receiving section.

[従来の技術] 固体撮像素子は従来からカラー,モノクロを問わず種
々の方式、例えばインターライン転送CCD型,MOS型など
が開発,製品化され、それぞれに性能向上が図られてき
ている。
2. Description of the Related Art Conventionally, various types of solid-state imaging devices, color and monochrome, for example, interline transfer CCD type and MOS type have been developed and commercialized, and the performance of each has been improved.

一般に、この種の固体撮像素子において、光入力信号
は(量子効率)×(開口率)×(被写体照度)によって
決定されるが、種々の改良の結果、現在では量子効率が
ほぼ理論値に達し、従って開口率を大きくすること、す
なわち素子全面に占める受光部面積の割合を大きくする
ことが、入射する光の利用率すなわち感度を大きくする
ために重要なテーマとなっている。
Generally, in this type of solid-state imaging device, the optical input signal is determined by (quantum efficiency) × (aperture ratio) × (subject illuminance). As a result of various improvements, the quantum efficiency has almost reached the theoretical value at present. Therefore, increasing the aperture ratio, that is, increasing the ratio of the area of the light receiving portion to the entire surface of the element is an important theme for increasing the utilization factor, that is, the sensitivity, of incident light.

[発明が解決しようとする課題] しかしながら、上述した従来の固体撮像素子は構造的
に、受光部に隣接して信号電荷転送径路もしくは、信号
線を設ける必要があり、受光部の開口率を大きくするに
は限度がある。比較的,開口率を大きくとりうるMOS型
固体撮像素子にあっても50〜60%が限界とされ、CCD型
固体撮像素子においては30〜40%である。また、固体撮
像素子そのものの小型化、あるいは画素の高密度化を考
慮すると、これ以上の開口率の拡大は不可能であり、む
しろ画素数の増加と共に開口率は減少するものと考えら
れる。この問題を解決する手段として、固体撮像素子の
受光領域全面にわたって撮像管のターゲット材料として
用いられる均一な光導電膜を積層し、受光領域の面積の
ほぼ100%を受光するハイブリッド方式の固体撮像素子
が提案されている。しかし、この構造は通常のVLSIプロ
セスに適合していないこと、光導電膜特有の残像,焼き
付きがあるなど問題が多い。
[Problems to be Solved by the Invention] However, the above-described conventional solid-state imaging device needs to provide a signal charge transfer path or a signal line adjacent to the light receiving unit structurally, and the aperture ratio of the light receiving unit is increased. There is a limit to The limit is set at 50 to 60% even for a MOS solid-state imaging device that can have a relatively large aperture ratio, and 30 to 40% for a CCD solid-state imaging device. Further, in consideration of the miniaturization of the solid-state imaging device itself or the increase in the density of pixels, it is impossible to further increase the aperture ratio, but rather, it is considered that the aperture ratio decreases as the number of pixels increases. As a means for solving this problem, a uniform solid-state imaging device in which a uniform photoconductive film used as a target material of an imaging tube is stacked over the entire light-receiving region of the solid-state imaging device and receives light of approximately 100% of the area of the light-receiving region. Has been proposed. However, this structure has many problems such as being incompatible with a normal VLSI process and having an afterimage and image sticking peculiar to a photoconductive film.

このような実状から最近受光部の各画素に対応して、
凸型のレンズを形成し、入射光を集光し、実効的に受光
領域を拡大させ、入射光の利用率(感度)を向上させる
という方法が提案されており、これにより、実効的な開
口率を70〜80%まで向上させることが可能となる。
From such a situation, recently corresponding to each pixel of the light receiving unit,
A method has been proposed in which a convex lens is formed, the incident light is condensed, the light receiving area is effectively enlarged, and the utilization rate (sensitivity) of the incident light is improved. The rate can be improved to 70-80%.

この凸型レンズの製造方法として、種々の方法が提案
されているが、基本的な考え方は可視光(波長400nm〜7
00nm)に対する透過率の高い材料、例えばノボラック樹
脂系レジスト、有機系のPMMA(ポリメチルメタクリレー
ト)等を用い、リソグラフィー技術により各画素に対応
して選択的にパターニングした後、適当な熱処理を施
し、液化し、凸レンズ状の形状にだらすというものであ
る。しかし、この種の製造方法は熱処理の条件が例えば
下地のカラーフィルター層が熱に弱く変質しやすいと
か、素子をパッケージに組み込む組立工程の熱履歴を考
慮しなければならないなど、条件的にかなり狭い範囲に
制限される(例えば150℃〜170℃)ため、その条件下で
液化し、所望の曲律のレンズを得るための材料が限られ
てくるという欠点がある。更に、熱処理条件のわずかな
変動でレンズの形状,曲率が変化することなど、非常に
きびしい製造条件と管理が必要という欠点がある。
Various methods have been proposed as a method of manufacturing this convex lens, but the basic idea is to use visible light (wavelength 400 nm to 7 nm).
Using a material having a high transmittance to (00 nm), for example, a novolak resin-based resist, an organic PMMA (polymethyl methacrylate), or the like, and selectively patterning corresponding to each pixel by a lithography technique, and performing an appropriate heat treatment. It liquefies and sways into a convex lens shape. However, in this type of manufacturing method, the conditions of the heat treatment are considerably narrow in terms of conditions, for example, the underlying color filter layer is easily damaged by heat and easily deteriorates, and the heat history of the assembly process of incorporating the element into a package must be considered. Since it is limited to the range (for example, 150 ° C. to 170 ° C.), there is a disadvantage that the material for liquefying under the condition and obtaining a lens having a desired curvature is limited. Further, there is a disadvantage that extremely strict manufacturing conditions and management are required, such as a change in the shape and curvature of the lens due to a slight change in the heat treatment conditions.

[課題を解決するための手段] 本願発明は従来のこのような実状に鑑み、凸型集光レ
ンズの新しい製造方法を提供するものである。本発明に
係る製造方法は、受光部の表面に平坦化層を設けること
により平坦化する工程と、前記平坦化層上にレンズ材料
を塗布する工程と、受光部の各画素に対応して受光部間
にレンズ材料のフォトレジストパターンを選択的に形成
する工程と、前記レンズ材料を体積膨張させ、球状の曲
率をもたせて所望の曲率の凸型レンズを形成する工程と
を含むことを特徴とする。
[Means for Solving the Problems] The present invention provides a new method of manufacturing a convex condensing lens in view of such a conventional situation. The manufacturing method according to the present invention includes a step of flattening by providing a flattening layer on the surface of the light receiving section, a step of applying a lens material on the flattening layer, and a step of receiving light corresponding to each pixel of the light receiving section. A step of selectively forming a photoresist pattern of a lens material between the portions, and a step of expanding the volume of the lens material to give a spherical curvature to form a convex lens having a desired curvature. I do.

[実施例] 次に、本発明について図面を参照して詳細に説明す
る。
Example Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す受光部の単位セルを
示す図で、第1図(a)は平面図、第1図(b)は第1
図(a)中のA−A′で切断した縦断面図である。同図
はインターラインCCD方式の固体撮像素子に本発明を実
施した例を示し、1は本発明の製造方法で形成した凸型
集光レンズ、2は平坦化層としてのカラーフィルター
層、3は信号電荷転送用電極部、4は遮光膜、5は受光
画素、6は半導体基板である。尚、半導体基板6内の拡
散層領域等の詳細は本発明との関連を議論する上で、特
に重要でないので、図示を省略してある。
FIG. 1 is a diagram showing a unit cell of a light receiving section according to one embodiment of the present invention. FIG. 1 (a) is a plan view, and FIG.
FIG. 2 is a longitudinal sectional view cut along AA ′ in FIG. FIG. 1 shows an example in which the present invention is applied to an interline CCD type solid-state imaging device, wherein 1 is a convex condensing lens formed by the manufacturing method of the present invention, 2 is a color filter layer as a flattening layer, and 3 is The signal charge transfer electrode portion, 4 is a light shielding film, 5 is a light receiving pixel, and 6 is a semiconductor substrate. The details of the diffusion layer region and the like in the semiconductor substrate 6 are not particularly important in discussing the relationship with the present invention, and are not shown.

第2図を参照して第1図で示した構造の凸型集光レン
ズを有する固体撮像素子を得るための、製造方法を説明
する。まず、第2図(a)に示すように、公知の方法に
よりインターラインCCD方式固体撮像素子の下地本体を
形成する。その上方に同図(b)に示すようにカラーフ
ィルター層2を積層して形成し、表面を平坦化する。こ
のカラーフィルター層の構造詳細は、本発明を説明する
上で特に重要でないので、簡略化して描いている。尚、
モノクロ用の固体撮像素子であれば、カラーフィルター
層は必要なく、有機系PMMA等を用いた単なる平坦化層と
なる。次に、同図(c)のようにカラーフィルター層2
の上方にカラーフィルター形成材料と同じ被染色材料7
(例えばゼラチン,カゼインなど)を膜厚1.5〜2.0μm
で塗布する。次に第3図に示したように、受光部の画素
パターンに対応したマスクパターン10を用い、フォトリ
ソグラフィー技術により第2図(d)に示すようなレジ
ストパターン8を膜7上に形成する。この状態で赤外線
用染料(赤外線に感度を持つ染料材)を用いて、被染色
材料7を染色する。染色の方法は赤外線用染料材の濃度
が例えば0.1〜0.%の溶液を45〜50℃にし、その溶液の
中に10分〜15分間浸漬して行う。一般に上述した被染色
材料であるゼラチンやカゼインを適温の染色溶液中に、
一定時間浸漬すると、被染色材料が染色されると同時に
膨潤を起こす。すなわち、染色により体積が膨張する。
本実施例のような染色条件のもとでは体積の増大は約50
%である。そこで本実施例の第2図(d)に示したよう
に、遮光膜4に対応する部分で受光部5の回りを囲むよ
うに被染色材料7を覆うレジストパターン8を形成して
おき、選択的に染色し膨潤を起こさせると、膨潤を起こ
した領域は表面自由エネルギーの最小の形状すなわち球
状になる。この様子を示したものが第2図(e)であ
り、被染色材料7が膨潤して図示のような凸レンズ状の
層1が得られる。このレンズ形状(曲率)は染色の条
件、すなわち溶液濃度,温度,浸漬時間や被染色材料7
の膜厚によって決まり、カラーフィルター層2の厚さを
考慮し、受光部5で焦点を結ぶ最適の曲率を得る条件が
選ばれる。上述のようにして、所望の凸レンズ形状の層
1を形成した後、不要となったレジストパターン8はケ
トン系の溶剤で除去し、最終的に第2図(f)に示す構
造の固体撮像素子が得られる。尚、染色に用いた染料は
赤外線に感度を持つ材料を使用しているため、この凸型
レンズ層1では可視光領域400〜700nmの光の吸収はな
く、可視光用の固体撮像素子としての光学的特性には全
く支障ない。
A manufacturing method for obtaining a solid-state imaging device having a convex condensing lens having the structure shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 2A, a base body of an interline CCD solid-state imaging device is formed by a known method. A color filter layer 2 is formed by laminating the layer as shown in FIG. Since the details of the structure of the color filter layer are not particularly important for explaining the present invention, they are simplified. still,
In the case of a monochrome solid-state imaging device, a color filter layer is not necessary, and it is simply a planarization layer using an organic PMMA or the like. Next, as shown in FIG.
Material to be dyed 7 same as the color filter forming material
(Eg gelatin, casein, etc.)
Apply with. Next, as shown in FIG. 3, a resist pattern 8 as shown in FIG. 2D is formed on the film 7 by photolithography using a mask pattern 10 corresponding to the pixel pattern of the light receiving section. In this state, the material 7 to be dyed is dyed using a dye for infrared rays (a dye material sensitive to infrared rays). The dyeing method is performed by immersing a solution in which the concentration of the infrared dye material is, for example, 0.1 to 0.1% at 45 to 50 ° C. for 10 to 15 minutes. In general, gelatin or casein, which is the material to be dyed as described above, is dyed at an appropriate temperature.
When immersed for a certain period of time, the material to be dyed is dyed and swells at the same time. That is, the volume expands due to staining.
Under the staining conditions as in this example, the increase in volume is about 50
%. Therefore, as shown in FIG. 2 (d) of the present embodiment, a resist pattern 8 covering the material to be dyed 7 is formed so as to surround the light receiving portion 5 at a portion corresponding to the light shielding film 4 and is selected. When dyed and swollen, the swollen region becomes a shape having the minimum surface free energy, that is, a spherical shape. FIG. 2 (e) shows this state, and the material 7 to be dyed swells to obtain the convex lens-shaped layer 1 as shown. The lens shape (curvature) depends on the dyeing conditions, such as solution concentration, temperature, immersion time, and
And the thickness of the color filter layer 2 is taken into consideration, and conditions for obtaining an optimum curvature for focusing at the light receiving section 5 are selected. After forming the desired convex lens-shaped layer 1 as described above, the unnecessary resist pattern 8 is removed with a ketone-based solvent, and finally the solid-state imaging device having the structure shown in FIG. Is obtained. Since the dye used for dyeing is made of a material having sensitivity to infrared rays, the convex lens layer 1 does not absorb light in the visible light region of 400 to 700 nm, and is used as a solid-state imaging device for visible light. It does not affect the optical characteristics at all.

第4図は本発明の他の一実施例の製造方法を示す工程
図である。凸型レンズ形成の原理は前述の実施例と全く
同じであるが、本実施例の特徴は第4図(d)に示した
ように被染色材料7を例えば第3図に示すようなマスク
パターン10を用いてパターニングし、被染色材料7の一
部を除去して遮光膜4に対応する部分で受光部の回りを
囲む溝9を形成することにある。その後は、前述の実施
例と同様、第4図(e)のようにレジストパターン8を
形成し、染色液に浸漬して染色し、最終的に同図(g)
のような凸型レンズを有する固体撮像素子を得る。本実
施例の利点は染色前の被染色材料7をパターニングし
て、隣接する画素と分離しているために染色して膨潤さ
せる際、隣接する被染色材料間の応力がなく、曲率の大
きな凸型レンズ1が容易に得られることである。このこ
とは、カラーフィルター層2の厚さが薄くて凸レンズ1
を短焦点としたい場合とか、入射光の集光率を更に上げ
たい場合などに有利となる。
FIG. 4 is a process chart showing a manufacturing method according to another embodiment of the present invention. The principle of the formation of the convex lens is exactly the same as that of the above-described embodiment, but the feature of this embodiment is that the material to be dyed 7 is, for example, a mask pattern as shown in FIG. A pattern 9 is used to remove a part of the material to be dyed 7 to form a groove 9 surrounding a light receiving portion at a portion corresponding to the light shielding film 4. Thereafter, similarly to the above-described embodiment, a resist pattern 8 is formed as shown in FIG. 4 (e), and the resist pattern 8 is immersed in a dye solution and dyed.
A solid-state imaging device having a convex lens as described above is obtained. The advantage of this embodiment is that when the material to be dyed 7 before patterning is separated from adjacent pixels by dyeing and swelling, there is no stress between the adjacent materials to be dyed and a convex with a large curvature. The mold lens 1 is easily obtained. This is because the thickness of the color filter layer 2 is small and the convex lens 1
This is advantageous when, for example, it is desired to set a short focal length, or when it is desired to further increase the light collection rate of incident light.

本発明は上述の2つの実施例で示した凸型レンズの製
造方法に限られるものではなく、例えば受光部の画素列
に対してストライブ状にすなわちかまぼこ型にすること
や、各種形状の凸型レンズ製造に適用できることは言う
までもない。さらに本実施例では固体撮像素子の下地本
体はインターラインCCD方式の素子に適用した場合の説
明であったが、MOS型の撮像素子であっても全く同じ方
法で製造できる。また、固体撮像素子に限らず、各種フ
ォトセンサへの適用も可能である。
The present invention is not limited to the method of manufacturing the convex lens shown in the above-described two embodiments. It goes without saying that the present invention can be applied to the manufacture of a mold lens. Further, in this embodiment, the description has been given of the case where the base body of the solid-state imaging device is applied to an interline CCD type device, but a MOS type imaging device can be manufactured in exactly the same manner. Further, the present invention is not limited to the solid-state imaging device, and can be applied to various photo sensors.

[発明の効果] 以上説明したように本発明は、固体撮像素子の感度を
向上させる凸型集光レンズを、赤外線染料に浸漬し、体
積膨張させることで熱処理を必要とせずに形成でき、し
かも、製造方法,製造技術は下地であるカラーフィルタ
ー層の形成技術の延長であるから、既存の設備,技術で
容易に、且つ単純な工程で製造できるという効果があ
る。
[Effects of the Invention] As described above, according to the present invention, a convex condensing lens for improving the sensitivity of a solid-state imaging device can be formed without heat treatment by immersing the lens in an infrared dye and expanding the volume. Since the manufacturing method and the manufacturing technology are extensions of the technology of forming the color filter layer as the base, there is an effect that the manufacturing can be easily and simply performed with existing equipment and technology.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の一実施例に係る受光部の単位セ
ルの平面図、第1図(b)は第1図(a)のA−A′で
切断した縦断面図、第2図(a)〜(f)は本発明の一
実施例の製造方法を示す工程図、第3図は一実施例に用
いたマスクパターンの一例を示す平面図、第4図(a)
〜(g)は本発明の他の一実施例の製造方法を示す工程
図である。 1……凸型集光レンズ、 2……カラーフィルター層(平坦下層)、 3……信号電荷転送電極部、 4……遮光膜、 5……受光画素、 6……半導体基板、 7……被染色材料、 8……フォトレジスト、 9……被染色材料の抜きパターン溝、 10……マスクパターン。
FIG. 1 (a) is a plan view of a unit cell of a light receiving section according to one embodiment of the present invention, FIG. 1 (b) is a longitudinal sectional view cut along AA 'of FIG. 1 (a), and FIG. 2 (a) to 2 (f) are process diagrams showing a manufacturing method according to an embodiment of the present invention, FIG. 3 is a plan view showing an example of a mask pattern used in the embodiment, and FIG. 4 (a).
(G) is a process drawing showing a manufacturing method of another embodiment of the present invention. Reference numeral 1 denotes a convex condensing lens, 2 denotes a color filter layer (lower flat layer), 3 denotes a signal charge transfer electrode portion, 4 denotes a light-shielding film, 5 denotes a light-receiving pixel, 6 denotes a semiconductor substrate, and 7 denotes a semiconductor substrate. Material to be dyed, 8: Photoresist, 9: Groove pattern groove for material to be dyed, 10: Mask pattern.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】受光部の表面に平坦化層を設けることによ
り平坦化する工程と、前記平坦化層上にレンズ材料を塗
布する工程と、受光部の各画素に対応して受光部間にレ
ンズ材料のフォトレジストパターンを選択的に形成する
工程と、前記レンズ材料を体積膨張させ、球状の曲率を
もたせて所望の曲率の凸型レンズを形成する工程とを含
むことを特徴とする固体撮像素子の製造方法。
A step of providing a flattening layer on the surface of the light receiving section for flattening; a step of applying a lens material on the flattening layer; A solid-state imaging method comprising the steps of: selectively forming a photoresist pattern of a lens material; and expanding the lens material by volume to give a spherical curvature to form a convex lens having a desired curvature. Device manufacturing method.
【請求項2】上記レンズ材料と塗布した後、前記レンズ
材料を受光部の個々の画素上に選択的に残す工程を含む
ことを特徴とする特許請求の範囲第1項に記載の固体撮
像素子の製造方法。
2. The solid-state imaging device according to claim 1, further comprising a step of selectively leaving said lens material on individual pixels of a light receiving section after being applied with said lens material. Manufacturing method.
JP2045069A 1990-02-26 1990-02-26 Method for manufacturing solid-state imaging device Expired - Lifetime JP3035955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045069A JP3035955B2 (en) 1990-02-26 1990-02-26 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045069A JP3035955B2 (en) 1990-02-26 1990-02-26 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03248463A JPH03248463A (en) 1991-11-06
JP3035955B2 true JP3035955B2 (en) 2000-04-24

Family

ID=12709060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045069A Expired - Lifetime JP3035955B2 (en) 1990-02-26 1990-02-26 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3035955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028633B2 (en) 2006-03-02 2011-10-04 Brother Kogyo Kabushiki Kaisha Sewing machine capable of embroidery sewing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028633B2 (en) 2006-03-02 2011-10-04 Brother Kogyo Kabushiki Kaisha Sewing machine capable of embroidery sewing

Also Published As

Publication number Publication date
JPH03248463A (en) 1991-11-06

Similar Documents

Publication Publication Date Title
US5605783A (en) Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers
JPH05134109A (en) Manufacture of color filter
JPH07312418A (en) Solid-state image pickup element and its preparation
JP3254759B2 (en) Method of manufacturing optical element and on-chip lens
US5286605A (en) Method for producing solid-state imaging device
JP2776810B2 (en) Method for manufacturing solid-state imaging device
US20090206430A1 (en) Solid-state imaging device and method for manufacturing the same
JPH0412568A (en) Manufacture of solid-state image pickup device
JP3035955B2 (en) Method for manufacturing solid-state imaging device
JP2678074B2 (en) Method for manufacturing solid-state imaging device
JP4067175B2 (en) Method for manufacturing solid-state imaging device
JP2000022117A (en) Manufacture of solid-state image-pickup device
KR100886567B1 (en) Mask for forming micro lens pattern of image sensor
WO2010023916A1 (en) Color imaging device and color imaging device fabricating method
JPH0774331A (en) Solid-state image sensing device with micro lens and manufacture thereof
JPH11289073A (en) Solid image pickup device and manufacture thereof
JPH03190166A (en) Manufacture of solid-state image sensing element microlens
JP2988556B2 (en) Microlens manufacturing method and semiconductor device manufacturing method
JP2892865B2 (en) Method for manufacturing solid-state imaging device
JP2000183322A (en) Solid-state color image pickup element and manufacture thereof
KR100972059B1 (en) CMOS image sensor manufacturing method for improving uniformity ot micro lens
JPH03190168A (en) Manufacture of solid-state image sensing device
EP0661757B1 (en) Solid-state imaging device and method of manufacturing the same
JPH06209094A (en) Solid-state image pickup device and its manufacture
JPH04233759A (en) Solid-state image sensing device and manufacture thereof