JP4439326B2 - Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device - Google Patents

Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device Download PDF

Info

Publication number
JP4439326B2
JP4439326B2 JP2004133726A JP2004133726A JP4439326B2 JP 4439326 B2 JP4439326 B2 JP 4439326B2 JP 2004133726 A JP2004133726 A JP 2004133726A JP 2004133726 A JP2004133726 A JP 2004133726A JP 4439326 B2 JP4439326 B2 JP 4439326B2
Authority
JP
Japan
Prior art keywords
microlens
forming
solid
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133726A
Other languages
Japanese (ja)
Other versions
JP2005317752A (en
Inventor
利夫 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004133726A priority Critical patent/JP4439326B2/en
Publication of JP2005317752A publication Critical patent/JP2005317752A/en
Application granted granted Critical
Publication of JP4439326B2 publication Critical patent/JP4439326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、マイクロレンズの形成方およびこのマイクロレンズを備えた固体撮像素子及び液晶表示装置に関する。   The present invention relates to a method of forming a microlens, and a solid-state imaging device and a liquid crystal display device including the microlens.

固体撮像素子、液晶表示装置に使用されるマイクロレンズは、感光性フォトレジストをマイクロレンズ材料として用い、これを基体上に平板状にして所望の線幅の矩形にフォトリソ加工した後、この矩形パターンを熱リフローによって所定の曲率半径を有するレンズ形状に加工するものが知られている。(特許文献1)   The microlens used in the solid-state imaging device and the liquid crystal display device uses a photosensitive photoresist as a microlens material, which is formed into a flat plate shape on a substrate and is photolithography processed into a rectangle with a desired line width, and then the rectangular pattern Is processed into a lens shape having a predetermined radius of curvature by thermal reflow. (Patent Document 1)

図3は特許文献1に開示されている構成を示し、1は半導体基板、2は光電変換領域、3は光電変換領域2で発生した電荷を転送する転送電極、4は電荷転送部、5は層間絶縁膜、6は遮光膜、7は光電変換領域2と転送電極3との段差を一定値以下に抑えるために光学的に透過率の高い樹脂などで形成された透明平坦化膜、9は入射光を光電変換領域2に効率よく集光するためのマイクロレンズを示す。
特許第2945440号公報
FIG. 3 shows a configuration disclosed in Patent Document 1. 1 is a semiconductor substrate, 2 is a photoelectric conversion region, 3 is a transfer electrode for transferring charges generated in the photoelectric conversion region 2, 4 is a charge transfer unit, and 5 is An interlayer insulating film, 6 is a light-shielding film, 7 is a transparent flattening film formed of a resin having a high optical transmittance in order to suppress the step between the photoelectric conversion region 2 and the transfer electrode 3 to a certain value or less, 9 A microlens for efficiently collecting incident light on the photoelectric conversion region 2 is shown.
Japanese Patent No. 2945440

近年の画素の微細化に伴い光電変換領域2の面積は縮小を続けている。より小さい光電変換領域に対しても十分な集光を得るためには、マイクロレンズ9の高屈折率化が必要不可欠である。また、マイクロレンズ9の高屈折率化にはマイクロレンズ材料に金属酸化物を添加することが有効である。   With the recent miniaturization of pixels, the area of the photoelectric conversion region 2 continues to be reduced. In order to obtain sufficient condensing even for a smaller photoelectric conversion region, it is essential to increase the refractive index of the microlens 9. In addition, it is effective to add a metal oxide to the microlens material in order to increase the refractive index of the microlens 9.

従来のマイクロレンズ9の加工は、フェノールボラック系やポリスチレン系のポジ型感光性樹脂にマスクを介して、矩形にパターニングし、これを熱リフローによってレンズ形状に加工していた。この場合、例えば酸化チタンのような金属酸化物を含有するリフロー性の弱い高屈折率レジスト材料では、熱による十分な溶融が行われずに所望の曲率半径を有するレンズ形状を得ることができなかった。   In the conventional processing of the microlens 9, patterning is made into a rectangular shape through a mask on a positive type photosensitive resin of phenol borac or polystyrene, and this is processed into a lens shape by thermal reflow. In this case, for example, a high refractive index resist material having a weak reflow property containing a metal oxide such as titanium oxide could not obtain a lens shape having a desired radius of curvature without being sufficiently melted by heat. .

このようにマイクロレンズが所望の曲率半径を有するレンズ形状にならない場合、固体撮像素子に入射された光は光電変換領域2に十分に集光されずに感度が劣化するという問題点があった。   Thus, when the microlens does not have a lens shape having a desired radius of curvature, there is a problem that the light incident on the solid-state imaging device is not sufficiently condensed on the photoelectric conversion region 2 and the sensitivity is deteriorated.

本発明は、マイクロレンズの高屈折率化を目的とした金属酸化物含有のマイクロレンズ材料に対しても所望の曲率半径を有するレンズ形状をつくり、微細な画素に対して高い集光率が得られ高感度な固体撮像素子を提供することを目的とする。   The present invention creates a lens shape having a desired radius of curvature even for a metal oxide-containing microlens material for the purpose of increasing the refractive index of the microlens, thereby obtaining a high light condensing rate for a fine pixel. It is an object to provide a highly sensitive solid-state imaging device.

本発明のマイクロレンズの形成方法は、基体上に平板状にマイクロレンズ材料層を形成する工程と、前記平板状に形成されたマイクロレンズ材料層をデフォーカスで露光する工程と、現像してパターニングを行う工程とからなることを特徴とする。
また本発明のマイクロレンズの形成方法は、前記パターニング工程の後、さらにリフローする工程を備えることを特徴とする。さらに本発明のマイクロレンズの形成方法は、前記マイクロレンズ材料層が高屈折率レンズ材であることを特徴とする。特に前記高屈折率レンズ材が金属酸化物を含むことを特徴とする。金属酸化物としては酸化チタンが好ましい。
そして本発明のマイクロレンズの形成方法は、前記基体が固体撮像素子であることを特徴とする。また本発明のマイクロレンズの形成方法は、前記基体が液晶表示装置であることを特徴とする。
The microlens formation method of the present invention includes a step of forming a microlens material layer in a flat plate shape on a substrate, a step of exposing the microlens material layer formed in a flat plate shape by defocus, and developing and patterning Characterized by comprising the steps of:
The microlens forming method of the present invention is characterized by further comprising a reflow step after the patterning step. Furthermore, the microlens formation method of the present invention is characterized in that the microlens material layer is a high refractive index lens material. In particular, the high refractive index lens material includes a metal oxide. Titanium oxide is preferable as the metal oxide.
The microlens forming method of the present invention is characterized in that the substrate is a solid-state imaging device. The microlens forming method of the present invention is characterized in that the substrate is a liquid crystal display device.

また本発明の固体撮像素子は、上記の方法で形成されたマイクロレンズを、半導体基板に形成された光電変換領域に焦点を結ぶように備えたことを特徴とする。また本発明の液晶表示装置は、上記の方法で形成されたマイクロレンズを、画素領域に焦点を結ぶように備えたことを特徴とする。   The solid-state imaging device of the present invention is characterized in that the microlens formed by the above method is provided so as to focus on the photoelectric conversion region formed on the semiconductor substrate. The liquid crystal display device of the present invention is characterized in that the microlens formed by the above method is provided so as to focus on the pixel region.

本発明におけるマイクロレンズは、基体上に平板状にマイクロレンズ材料層を形成し、これをデフォーカスで露光し、現像してパターニングを行うので、熱可塑性が比較的悪く高屈折率レンズ材を所望の曲率半径を有するマイクロレンズ状に形成することができ、高い集光率を得ることができる。また必要に応じてリフローすることによりレンズ形状を整形することができる。或いは、マイクロレンズ材料層をデフォーカスで露光する工程と、現像する工程と、リフローする工程とを具備するので、マイクロレンズの曲率半径を、デフォーカスによるマイクロレンズの曲率形成と、熱リフローによる溶融性による曲率形成を合わせて、所望の曲率半径を得ることができる。
また本発明の固体撮像素子は、半導体基板に形成された光電変換領域に焦点を結ぶように高屈折率レンズ材よりなるマイクロレンズを配置したので、より微細な光電変換領域の固体撮像素子であっても高い集光率が得られ、高出力が得られる。液晶表示装置は絵素領域に集光することができ、効率が高くなり、輝度を大きくすることができる。
In the microlens according to the present invention, a microlens material layer is formed in a flat plate shape on a substrate, and this is exposed with defocus, developed, and patterned. Can be formed in the shape of a microlens having a radius of curvature of 2 mm, and a high light collection rate can be obtained. Moreover, the lens shape can be shaped by reflowing as necessary. Alternatively, it includes a step of exposing the microlens material layer by defocusing, a step of developing, and a step of reflowing. The desired curvature radius can be obtained by combining the curvature formation by the sex.
In addition, the solid-state imaging device of the present invention is a solid-state imaging device with a finer photoelectric conversion region because the microlens made of a high refractive index lens material is disposed so as to focus on the photoelectric conversion region formed on the semiconductor substrate. Even in such a case, a high light collection rate can be obtained, and a high output can be obtained. The liquid crystal display device can focus light on the picture element region, increase efficiency, and increase luminance.

本発明においてレンズ材料は、従来公知の材料も使用できるが、本発明は熱による十分な溶融が行ないにくい高屈折率レジスト材料に適用した場合に有効である。例えば酸化チタンのような金属酸化物を含有するリフロー性の弱い、ポリイミド系などのポリマーを主成分とする、ポジ型レジスト層を使用することができる。また本発明の場合に、露光時の焦点位置をずらすように設定して露光することにより、光の強度分布は中心部が強く、周辺部が弱くなり、円形あるいは楕円形に形成され、また断面が所望の曲率を有するマイクロレンズに形成される   In the present invention, a conventionally known material can be used as the lens material, but the present invention is effective when applied to a high refractive index resist material which is not easily melted by heat. For example, it is possible to use a positive resist layer mainly composed of a polyimide-based polymer having a weak reflow property and containing a metal oxide such as titanium oxide. In the case of the present invention, the exposure is performed by shifting the focal position at the time of exposure, so that the light intensity distribution is strong in the central part and weak in the peripheral part, and is formed in a circular or elliptical shape. Is formed into a microlens having a desired curvature

以下、本発明のマクロレンズは固体撮像素子、液晶表示装置に適用できるが、ここでは特にCCDを例にとり、マイクロレンズの構成を詳細に説明する。図1は本発明のマイクロレンズをCCDに形成した場合の断面図、第2図はCCDの上にマイクロレンズを形成する製造工程図である。図1、2はマイクロレンズ及びCCDが2個と半分だけが示されているが、実際には縦横に多数配列され、アレイ状になっている。図1、2において、1は半導体基板、2は光電変換領域、3は光電変換領域2で発生した電荷を転送する転送電極、4は電荷転送部で、光電変換領域2と転送電極3により形成される電荷転送部4とは半導体基板1上に交互に形成されている。5は層間絶縁膜、6は遮光膜、7は光電変換領域2と転送電荷部3との段差を一定値以下に抑えるために光学的に透過率の高い樹脂などで形成された透明平坦化膜で、使用できる材料としては、例えば、アクリル樹脂、ウレタン樹脂、ポリイミド樹脂、エポキシ樹脂、アルキッド樹脂、フェノール樹脂、シリコーン樹脂、ポリエステル樹脂等の透明高分子樹脂やBPSG(Boron Phosphide Silicate Glass)、PSG(Phosphide Silicate Glass)、SiN(Silicon Nitride)等の無機化合物を挙げることができる。   Hereinafter, the macro lens of the present invention can be applied to a solid-state imaging device and a liquid crystal display device. Here, the configuration of the micro lens will be described in detail by taking a CCD as an example. FIG. 1 is a sectional view when the microlens of the present invention is formed on a CCD, and FIG. 2 is a manufacturing process diagram for forming the microlens on the CCD. 1 and 2 show only two and a half of the microlenses and the CCD, but in reality, a large number of microlenses and CCDs are arrayed vertically and horizontally. 1 and 2, 1 is a semiconductor substrate, 2 is a photoelectric conversion region, 3 is a transfer electrode for transferring charges generated in the photoelectric conversion region 2, and 4 is a charge transfer portion, which is formed by the photoelectric conversion region 2 and the transfer electrode 3. The charge transfer portions 4 are alternately formed on the semiconductor substrate 1. 5 is an interlayer insulating film, 6 is a light-shielding film, 7 is a transparent flattening film formed of a resin having a high optical transmittance in order to keep the step between the photoelectric conversion region 2 and the transfer charge portion 3 below a certain value. Examples of materials that can be used include acrylic resin, urethane resin, polyimide resin, epoxy resin, alkyd resin, phenolic resin, silicone resin, polyester resin and other transparent polymer resins, BPSG (Boron Phosphide Silicate Glass), PSG ( Examples thereof include inorganic compounds such as Phosphide Silicate Glass) and SiN (Silicon Nitride).

次に、図1および図2を用いて、固体撮像素子の上にマイクロレンズを形成する製造工程を説明する。まず、従来技術と同様に、半導体基板1の表面に光電変換領域2、電荷転送部4を形成し、半導体基板1上部に転送電極3、層間絶縁膜5、遮光膜6および透明平坦化層7を形成する。   Next, a manufacturing process for forming a microlens on a solid-state imaging device will be described with reference to FIGS. First, as in the prior art, the photoelectric conversion region 2 and the charge transfer portion 4 are formed on the surface of the semiconductor substrate 1, and the transfer electrode 3, the interlayer insulating film 5, the light shielding film 6, and the transparent planarizing layer 7 are formed on the semiconductor substrate 1. Form.

次に、透明平坦化膜層7上に、例えば酸化チタンのような金属酸化物を含有し、紫外線などの照射によるブリーチングで可視光波長領域の光吸収を抑えることのできる感光剤を用い、且つ、熱可塑性を有するポリイミド系などのポリマーを主成分とする、ポジ型レジスト層8をスピンコートなどにより形成する(図2(a))。ポジ型レジスト層8としては、酸化チタン以外、金属酸化物以外、ポリイミド系以外に屈折率を大きくすることができるものを使用することができる。また硬化剤などマイクロレンズを形成するために必要なものを含有していても良い。   Next, a photosensitive agent that contains a metal oxide such as titanium oxide on the transparent planarizing film layer 7 and can suppress light absorption in the visible light wavelength region by bleaching by irradiation with ultraviolet rays or the like, Further, a positive resist layer 8 mainly composed of a polyimide-based polymer having thermoplasticity is formed by spin coating or the like (FIG. 2A). As the positive resist layer 8, other than titanium oxide, other than metal oxide, other than polyimide, a layer capable of increasing the refractive index can be used. Moreover, what is necessary in order to form microlenses, such as a hardening | curing agent, may be contained.

その後、各光電変換領域2にそれぞれマイクロレンズの焦点を結ぶようにマスク(図示しない)を用いて、フォトリソグラフィー技術により、露光・現像してポジ型レジスト層8をパターニングする。この時、露光機のオートフォーカス機能を用いて所望のフォーカスオフセット値を設定して、露光時の焦点位置をずらすように設定する。露光時の焦点位置をずらせることにより、光の強度分布がマスクの形状に一致せず、通常はマスクされているポジ型レジスト層8の個所にも光が回りこんで露光されるため、現像後のパターンはマスクの形状と同一ではなく、ポジ型レジスト層8のパターン形状の断面が矩形とならず、円形あるいは楕円形に形成され、またマスクパターンの周辺部分は弱く露光されるので、断面が所望の曲率を有するマイクロレンズに形成される(図2(b))。露光時に焦点位置をずらせる距離は、ポジ型レジスト層8の材質、厚さ、光の波長、強度、露光時間、現像液の種類、現像時間、その他により決められ、露光機のベストフォーカスからのオフセット量を、仕上がりのレンズ形状を見て最適の値に設定される。なお、レジストパターンに紫外線などの(例えば350-450nm)の光を、照射するのは、パターニングされたポジ型レジスト層8に含まれる感光剤などの脱色を行い、透過率を増強するためである。i線の外にKrF線材料を使用して露光してもよく、露光時の光の強さは300mJ/cm2程度である。   Thereafter, the positive resist layer 8 is patterned by exposure and development by a photolithography technique using a mask (not shown) so that each photoelectric conversion region 2 is focused on the microlens. At this time, a desired focus offset value is set using the autofocus function of the exposure machine, and the focus position during exposure is set to be shifted. By shifting the focal position at the time of exposure, the light intensity distribution does not match the shape of the mask, and the light is also exposed to the portion of the positive resist layer 8 that is normally masked. The subsequent pattern is not the same as the mask shape, and the cross section of the pattern shape of the positive resist layer 8 is not rectangular, but is formed in a circle or ellipse, and the peripheral portion of the mask pattern is weakly exposed. Is formed into a microlens having a desired curvature (FIG. 2B). The distance by which the focal position is shifted during exposure is determined by the material, thickness, light wavelength, intensity, exposure time, type of developer, development time, etc. of the positive resist layer 8, and from the best focus of the exposure machine. The offset amount is set to an optimum value in view of the finished lens shape. The reason why the resist pattern is irradiated with light such as ultraviolet rays (for example, 350 to 450 nm) is to decolorize the photosensitive agent contained in the patterned positive resist layer 8 and enhance the transmittance. . In addition to i-line, exposure may be performed using a KrF line material, and the intensity of light at the time of exposure is about 300 mJ / cm 2.

次に、パターニングされたポジ型レジスト層8を加熱して熱変形させ、擬半球型のマイクロレンズ9を形成する。(図2(c))この際の加熱温度は、ポリマーの熱溶融の臨界値と熱硬化剤の架橋開始温度、マイクロレンズ9の屈折率の温度依存性などのバランスから最適化が測られるが、例えば300℃に設定される。この加熱工程は必ずしも熱変形させる必要はなく、デフォーカスによりマイクロレンズ形状が得られる場合は、レンズ形状を整形するだけでも良い。あるいは、デフォーカスによるレンズ形成と、加熱による変形を合わせてマイクロレンズの所望の曲率半径が得らるように工程ごとの形状確認をして各工程の配分を決定してもよい。最後に、マイクロレンズ9の上に、必要に応じてアクリル樹脂のような透明層10を形成する。   Next, the patterned positive resist layer 8 is heated and thermally deformed to form a pseudo hemispherical microlens 9. (FIG. 2 (c)) The heating temperature at this time is optimized from the balance of the critical value of the thermal melting of the polymer, the crosslinking start temperature of the thermosetting agent, the temperature dependence of the refractive index of the microlens 9, and the like. For example, it is set to 300 ° C. This heating step does not necessarily need to be thermally deformed, and if a microlens shape can be obtained by defocusing, it is only necessary to shape the lens shape. Alternatively, the distribution of each process may be determined by confirming the shape of each process so that a desired radius of curvature of the microlens can be obtained by combining lens formation by defocusing and deformation by heating. Finally, a transparent layer 10 such as an acrylic resin is formed on the microlens 9 as necessary.

半導体基板1の表面に光電変換領域2、電荷転送部4を形成し、半導体基板1上部に転送電極3、層間絶縁膜5、遮光膜6および透明平坦化層7を形成する。この上に、酸化チタン、ブリーチング感光剤、熱硬化剤を含有するポリイミド系ポジ型レジスト層8を形成し、レンズ位置にマスクを合わせて、デフォーカスで露光する。このときの露光波長は365nmであり,300mJ/cm2の強度であった。その後加熱処理してマイクロレンズを得る。 A photoelectric conversion region 2 and a charge transfer portion 4 are formed on the surface of the semiconductor substrate 1, and a transfer electrode 3, an interlayer insulating film 5, a light shielding film 6, and a transparent planarizing layer 7 are formed on the semiconductor substrate 1. A polyimide positive resist layer 8 containing titanium oxide, a bleaching photosensitive agent, and a thermosetting agent is formed thereon, and a mask is aligned with the lens position, and exposure is performed with defocus. The exposure wavelength at this time was 365 nm and the intensity was 300 mJ / cm 2 . Thereafter, heat treatment is performed to obtain a microlens.

本発明の一実施例の固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor of one Example of this invention. マイクロレンズ形成までの固体撮像素子の製造工程図である。It is a manufacturing-process figure of the solid-state image sensor to microlens formation. 従来のマイクロレンズが形成された固体撮像素子の工程断面図である。It is process sectional drawing of the solid-state image sensor in which the conventional microlens was formed.

符号の説明Explanation of symbols

1 半導体基板
2 光電変換領域
3 転送電極
4 電荷転送部
5 層間絶縁膜
6 遮光膜
7 透明平坦化膜
8 ポジ型レジスト層
9 マイクロレンズ
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Photoelectric conversion area | region 3 Transfer electrode 4 Charge transfer part 5 Interlayer insulation film 6 Light-shielding film 7 Transparent planarization film 8 Positive type resist layer 9 Micro lens

Claims (7)

基体上に平板状にマイクロレンズ材料層を形成する工程と、
前記平板状に形成されたマイクロレンズ材料層をデフォーカスで露光する工程と、
現像してパターニングを行う工程とからなり、
前記マイクロレンズ材料層は、金属酸化物を含有する熱可塑性を有するポリマーを主成分とするポジ型レジスト層からなることを特徴とするマイクロレンズの形成方法。
Forming a microlens material layer in a flat plate shape on a substrate;
Exposing the microlens material layer formed in the flat plate shape by defocusing;
Ri Do and a step of patterning developed to,
The method for forming a microlens, wherein the microlens material layer comprises a positive resist layer mainly composed of a thermoplastic polymer containing a metal oxide .
前記パターニング工程の後、さらにリフローする工程
を備えることを特徴とする請求項1に記載のマイクロレンズの形成方法。
The method of forming a microlens according to claim 1, further comprising a step of reflowing after the patterning step.
前記金属酸化物が酸化チタンであることを特徴とする請求項1又は2に記載のマイクロレンズの形成方法。 Forming a microlens according to claim 1 or 2, wherein the metal oxide is titanium oxide. 前記基体が固体撮像素子であることを特徴とする請求項1乃至のいずれかに記載のマイクロレンズの形成方法。 Forming a microlens according to any one of claims 1 to 3, wherein the substrate is a solid-state imaging device. 前記基体が液晶表示装置であることを特徴とする請求項1乃至のいずれかに記載のマイクロレンズの形成方法。 Forming a microlens according to any one of claims 1 to 3, wherein the substrate is a liquid crystal display device. 請求項1乃至のいずれかのマイクロレンズの形成方法により形成されたマイクロレンズを、半導体基板に形成された光電変換領域に焦点を結ぶように備えたことを特徴とする固体撮像素子。 A solid-state imaging device, characterized in that claim a microlens formed by the formation method of any one of the microlens of claim 1 to 3, provided so as to focus on the photoelectric conversion region formed in a semiconductor substrate. 請求項1乃至のいずれかのマイクロレンズの形成方法により形成されたマイクロレンズを、画素領域に焦点を結ぶように備えたことを特徴とする液晶表示装置。 The liquid crystal display device, characterized in that a microlens formed by the formation method of any one of the microlenses of claims 1 to 3, provided so as to focus on the pixel area.
JP2004133726A 2004-04-28 2004-04-28 Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device Expired - Fee Related JP4439326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133726A JP4439326B2 (en) 2004-04-28 2004-04-28 Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133726A JP4439326B2 (en) 2004-04-28 2004-04-28 Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2005317752A JP2005317752A (en) 2005-11-10
JP4439326B2 true JP4439326B2 (en) 2010-03-24

Family

ID=35444855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133726A Expired - Fee Related JP4439326B2 (en) 2004-04-28 2004-04-28 Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4439326B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129984A (en) * 2010-12-27 2013-11-29 디아이씨 가부시끼가이샤 Birefringent lens material for stereoscopic image display device, and method of manufacturing birefringent lens for stereoscopic image display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794309B1 (en) 2006-08-11 2008-01-11 삼성전자주식회사 Image sensor and method for fabricating the same
JP2010010331A (en) * 2008-06-26 2010-01-14 Sharp Corp Solid-state imaging device and method for manufacturing same
JP2011109033A (en) * 2009-11-20 2011-06-02 Sharp Corp In-layer lens and method for manufacturing the same, color filter and method for manufacturing the same, solid-state image pickup element and method for manufacturing the same and electronic information equipment
JP2018190884A (en) * 2017-05-10 2018-11-29 シャープ株式会社 Solid-state imaging element, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129984A (en) * 2010-12-27 2013-11-29 디아이씨 가부시끼가이샤 Birefringent lens material for stereoscopic image display device, and method of manufacturing birefringent lens for stereoscopic image display device
KR101952697B1 (en) * 2010-12-27 2019-02-28 디아이씨 가부시끼가이샤 Birefringent lens material for stereoscopic image display device, and method of manufacturing birefringent lens for stereoscopic image display device

Also Published As

Publication number Publication date
JP2005317752A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
AU2005227046B2 (en) Lens array and method for making same
KR100698091B1 (en) CMOS Image sensor and method for manufacturing the same
TWI363194B (en) Method for manufacturing microlens
US7829965B2 (en) Touching microlens structure for a pixel sensor and method of fabrication
JP2006215547A (en) Methods of manufacturing microlenses, microlens arrays and image sensors
KR20060136072A (en) CMOS Image sensor and method for manufacturing the same
KR100720509B1 (en) Image Sensor and Method for Manufacturing the Same
US20090206430A1 (en) Solid-state imaging device and method for manufacturing the same
JPH0812904B2 (en) Method of manufacturing solid-state image sensor
KR100628235B1 (en) CMOS Image sensor and Method for fabricating of the same
JP4439326B2 (en) Method for forming microlens, solid-state imaging device including microlens, and liquid crystal display device
JP3269644B2 (en) Manufacturing method of micro lens
JPH0922995A (en) Solid state imaging device and manufacture thereof
JP4465750B2 (en) Manufacturing method of solid-state imaging device
KR20090051353A (en) Method for manufacturing an image sensor
JPH03190166A (en) Manufacture of solid-state image sensing element microlens
JP3317506B2 (en) Micro lens and manufacturing method thereof
US7642120B2 (en) CMOS image sensor and manufacturing method thereof
JP3598855B2 (en) Solid-state imaging device and method of manufacturing the same
JP2000260970A (en) Solid-state image pickup element and its manufacture
JP2000260969A (en) Manufacture of solid-state image pickup element
KR100672697B1 (en) Method for fabricating of CMOS Image sensor
US20070069261A1 (en) CMOS image sensor and a method for manufacturing the same
JPH03152973A (en) Manufacture of solid-state image sensing device
KR100935762B1 (en) A mask for micro lens fabrication of CMOS image sensor and a method for fabrication of micro lens by using the mask.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees