JP2969842B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device

Info

Publication number
JP2969842B2
JP2969842B2 JP18918290A JP18918290A JP2969842B2 JP 2969842 B2 JP2969842 B2 JP 2969842B2 JP 18918290 A JP18918290 A JP 18918290A JP 18918290 A JP18918290 A JP 18918290A JP 2969842 B2 JP2969842 B2 JP 2969842B2
Authority
JP
Japan
Prior art keywords
lens
layer
imaging device
state imaging
positive resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18918290A
Other languages
Japanese (ja)
Other versions
JPH0475382A (en
Inventor
英三郎 渡辺
克巳 山本
悟 上山
慎次 伊藤
正浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP18918290A priority Critical patent/JP2969842B2/en
Publication of JPH0475382A publication Critical patent/JPH0475382A/en
Application granted granted Critical
Publication of JP2969842B2 publication Critical patent/JP2969842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、基板上の複数の受光部に対し、夫々固有の
集光体群を形成した固体撮像素子の製造方法に関するも
のである。
The present invention relates to a method for manufacturing a solid-state imaging device in which a unique group of light collectors is formed for a plurality of light receiving units on a substrate.

【従来技術】[Prior art]

一般にこの種の集光体群を有する固体撮像素子の製造
方法としては、例えば特開昭64−10666号公報に開示さ
れたものが従来例として周知である。この従来例におい
ては、複数の受光部及び電荷転送部を形成した半導体基
板上に透明材料層を形成し、その透明材料層上に熱変形
樹脂層を形成し、その熱変形樹脂層を上記受光部に対応
して選択的に除去し、その除去された熱変形樹脂層を加
熱して熱変形させ、その熱変形した熱変形樹脂層を用い
て上記透明材料層を選択的に除去し、前記受光部に夫々
対応する集光体群を略均等な形状をもって半導体基板上
一面に亘って形成するものである。
In general, as a method of manufacturing a solid-state image pickup device having a group of light collectors of this type, for example, a method disclosed in JP-A-64-10666 is well known as a conventional example. In this conventional example, a transparent material layer is formed on a semiconductor substrate on which a plurality of light receiving portions and charge transfer portions are formed, and a heat-deformable resin layer is formed on the transparent material layer. Selective removal corresponding to the portion, heat-deformed the heat-deformed resin layer removed, and selectively remove the transparent material layer using the heat-deformed heat-deformable resin layer, A group of light collectors corresponding to the light receiving portions is formed over the entire surface of the semiconductor substrate in a substantially uniform shape.

【発明が解決しようとする課題】[Problems to be solved by the invention]

前記従来例の製造方法によって製造された固体撮像素
子は、各受光部に対応する夫々の集光体が全てにおいて
略均等な形状をもって形成され、略均等な集光率を持っ
ているものである。このような固体撮像素子を例えばビ
デオカメラに使用した場合に、一般的にカメラ用のレン
ズは、第4図に示したような像面照度分布の特性を示
し、レンズの中央部ほど像面照度(集光率)が高くなっ
ており、そのレンズの特性がそのまま集光体群を介して
夫々の受光部に入り、レンズを介して撮影される画像
は、必然的に中央部が明るく周縁部が暗い画像となるの
である。 従って、従来例の固体撮像素子においては、全面的に
均一な明るさの画像を得る点に解決しなければならない
課題を有している。
In the solid-state imaging device manufactured by the manufacturing method of the above-described conventional example, the respective light collectors corresponding to the respective light receiving sections are all formed in a substantially uniform shape, and have a substantially uniform light collection rate. . When such a solid-state imaging device is used for a video camera, for example, a camera lens generally exhibits the characteristics of the image plane illuminance distribution as shown in FIG. (Light collection rate) is high, and the characteristics of the lens enter each light receiving section through the light collector group as it is, and the image taken through the lens is inevitably bright at the center and at the periphery Is a dark image. Therefore, the conventional solid-state imaging device has a problem that must be solved to obtain an image with uniform brightness over the entire surface.

【課題を解決するたぬの手段】[Means for solving the problems]

前記従来例における課題を解決する具体的手段として
本発明は、多数の受光部を備えた半導体基板の上面にフ
イルタ層と、マイクロレンズ層と、熱変形性のポジレジ
スト層とを順次積層して設け、該ポジレジスト層を受光
部に対応するパターンマスクを介して露光し、続いてカ
メラレンズの光学系と略対応するレンズを用いて露光
し、現像してから所定の温度で加熱して前記ポジレジス
トを水滴状もしくはカマボコ形状のレンズ形状に変形さ
せ、そのレンズ形状を維持して冷却固形化してから異方
性エッチングを行って前記マイクロレンズ層に前記レン
ズ形状の集光体群を形成することを特徴とする固体撮像
素子の製造方法を提供するものであり、そして、本発明
にあっては、マイクロレンズ層の集光体群が、カメラレ
ンズの像面照度分布特性に対応しているものである。
As a specific means for solving the problem in the conventional example, the present invention is to sequentially laminate a filter layer, a microlens layer, and a heat-deformable positive resist layer on the upper surface of a semiconductor substrate having a large number of light receiving sections. Provided, the positive resist layer is exposed through a pattern mask corresponding to the light receiving portion, subsequently exposed using a lens substantially corresponding to the optical system of the camera lens, developed and heated at a predetermined temperature, and The positive resist is deformed into a waterdrop-shaped or lumpy-shaped lens shape, and the lens shape is maintained, cooled and solidified, and then anisotropically etched to form the lens-shaped condensate group on the microlens layer. The present invention also provides a method for manufacturing a solid-state imaging device, and in the present invention, a group of light collectors of a microlens layer includes an image plane illumination distribution characteristic of a camera lens. Those that support.

【実施例】【Example】

次に本発明を図示の実施例により更に詳しく説明す
る。1は半導体基板であり、該半導体基板には多数の受
光部2が所定の配列をもって形成されると共に、各受光
部間に遮光膜で覆われたゲート電極3が設けられ、更に
半導体基板の上面を平坦にするための穴埋め又はフィル
タ層4が設けられている。その平坦になったフィルタ層
4の上部に独特なマイクロレンズ層5が設けられている
点に本発明の特徴が存する。このマイクロレンズ層5の
構成は、前記各受光部2に夫々対応して固有の集光体群
5a,5b,5c……が形成されている。即ち、この固有の集光
体群5a,5b,5c……は、固体撮像素子が適用されるビデオ
カメラ等のレンズにおける像面照度分布の特性に対応し
て、各受光部2が略均等の像面照度が得られるようにし
た固有の集光率を有するのである。 つまり、レンズにおける像面照度分布の特性に対応し
て、像面照度の高い部分は集光率を低下させ、像面照度
の低い部分は集光率を高めるように形成するのである。
これを第2図について説明すると、例えば集光体5aは像
面照度の高い略中央部近傍に位置するものであり、集光
率を低下させるために、その大きさ又は高さhを最も小
さく形成し、その集光体5aから順次外側に位置する集光
体5b,5c……は、順次像面照度が低下するので、集光体5
aよりも集光率を高めるためにその大きさ又は高さh1,h2
……を順次大きく形成するのである。このように形成す
ることを、本発明においては、レンズにおける像面照度
分布の特性に対応すると称しているのである。 次に、前記固体最像素子の製造方法について第3図を
用いて説明する。多数の受光部2を有する半導体基板1
の上面に、第3(a)図に示したように、穴埋め又はフ
ィルタ層4をスピンコートして設けることで平坦にし、
その上部にマイクロレンズ層5をスピンコートして設
け、更にその上部にポジレジスト層6を同様に順次積層
して設ける。カラー用の撮像素子の場合には、当然のご
とく前記フィルタ層4に、夫々対応する受光部毎に所定
のカラーフィルタが設けられることは言うまでもない。 前記カラーフィルタを含む穴埋め用又はフィルタ層4
は例えば透明な樹脂で約10,000〜15,000Åの範囲の厚み
で形成され、前記マイクロレンズ層5は透明な樹脂又は
シリコン等で約30,000〜35,000Åの範囲の厚みで形成す
る。そして、ポジレジスト層6は、感光性で且つ熱変形
するノボラック樹脂等のレジスト、例えばポジ型感光性
樹脂(商品名「AZ1350」ヘキストジャパン社製)であ
り、約20,000〜25,000Åの範囲の厚みで形成される。ま
た、商品名「OFPR800」(東京応化工業株式会社製)等
を使用できる。 このように順次積層して形成した上部のポジレジスト
層6に対し、第3(b)図に示したように、各受光部2
に対応するパターンマスク10を用いて露光する。この露
光によりポジレジスト層6が各受光部2毎に縦方向に区
分された状態になる。続いて、第3(c)図に示したよ
うに、所定のレンズ11を介して露光する。この露光によ
って、縦方向に区分されたポジレジスト層6は、レンズ
自体の有する像面照度分布の特性の像面照度に基づい
て、相対的に深さ方向に露光する。この場合に使用され
るレンズ11は、製造された固体撮像素子が実際に使用さ
れる例えばビデオカメラ等に装備してあるレンズと光学
系(像面照度)が略一致するものが使用される。 この露光が終了した後に現像すると、第3(d)図に
示したように、ポジレジスト層6が各受光部に対応し、
且つ前記レンズ11の持つ像面照度分布の特性に対応し
て、高さの異なるピースに区分される。特に中央部の照
度が高い部分は低く、照度が低い周縁部に行くに従って
順次高くなるように形成される。 このようにポジレジスト層6が形成された後に、所定
の温度(100〜150℃)で加熱することにより、第3
(e)図に示したように、区分された各ポジレジスト層
6が個々に熱変形して水滴状になり、夫々が表面張力に
よる精度の高い曲面を持ったレンズ形状になり、加熱を
停止しそのレンズ形状を維持した状態で固形化させる。 そして、その後異方性エッチングを各ポジレジスト層
6のレンズ形状に沿って行うことにより、そのレンズ形
状がそのままマイクロレンズ層5に再現され、第1〜2
図に示したような各受光部2に対応して固有の集光率を
有する集光体群5a,5b,5c……が形成された固体撮像素子
を製造することが出来るのである。そして、特にマイク
ロレンズ層5においては、所謂固体撮像素子が適用され
るカメラレンズ、又は光学系において対応するレンズの
像面照度分布の特性がポジ的に反映された集光体群5a,5
b,5c……が形成されることに特徴がある。従って、この
マイクロレンズ層5は、ネガ的にはポジ的に強く反映さ
れた部分の受光量が弱くなり、その強弱つまり像面照度
分布の強弱の領域を略全面的に平滑化し、各受光部で受
ける受光量が略均一なるようにする役目を果たすのであ
る。
Next, the present invention will be described in more detail with reference to the illustrated embodiment. Reference numeral 1 denotes a semiconductor substrate, on which a large number of light receiving sections 2 are formed in a predetermined arrangement, and a gate electrode 3 covered with a light shielding film is provided between the respective light receiving sections. Is provided with a hole filling or filter layer 4 for flattening. The feature of the present invention resides in that a unique microlens layer 5 is provided on the flattened filter layer 4. The configuration of the microlens layer 5 is a unique condensing body group corresponding to each of the light receiving sections 2.
5a, 5b, 5c ... are formed. That is, each of the light-receiving units 2 has substantially uniform light-collecting portions 5a, 5b, 5c,... Corresponding to the characteristics of the image plane illuminance distribution in a lens of a video camera or the like to which the solid-state imaging device is applied. It has a unique light-collecting rate so that the image plane illuminance can be obtained. That is, in accordance with the characteristics of the image plane illuminance distribution of the lens, the portion having a high image plane illuminance is formed so as to reduce the light condensing rate, and the portion having a low image plane illuminance is formed so as to increase the light condensing rate.
This will be described with reference to FIG. 2. For example, the light collector 5a is located near the substantially central portion where the image plane illuminance is high, and in order to reduce the light collection rate, its size or height h is minimized. The light collectors 5b, 5c,... Sequentially positioned outside from the light collector 5a are sequentially reduced in the image plane illuminance.
In order to increase the light collection rate than a, its size or height h 1 , h 2
.. Are sequentially formed larger. In the present invention, such a formation is referred to as corresponding to the characteristics of the image plane illuminance distribution of the lens. Next, a method for manufacturing the solid-state image forming element will be described with reference to FIG. Semiconductor substrate 1 having many light receiving sections 2
As shown in FIG. 3 (a), the surface is flattened by filling the hole or providing a filter layer 4 by spin coating, as shown in FIG.
A microlens layer 5 is provided thereon by spin coating, and a positive resist layer 6 is similarly provided thereon by successively laminating. In the case of a color imaging device, it goes without saying that a predetermined color filter is provided in the filter layer 4 for each corresponding light receiving section. Filling or filter layer 4 including the color filter
Is formed of, for example, a transparent resin with a thickness of about 10,000 to 15,000 mm, and the microlens layer 5 is formed of a transparent resin or silicon with a thickness of about 30,000 to 35,000 mm. The positive resist layer 6 is a photosensitive and thermally deformable resist such as a novolak resin, for example, a positive photosensitive resin (trade name “AZ1350” manufactured by Hoechst Japan), and has a thickness of about 20,000 to 25,000 mm. Is formed. Further, a product name such as “OFPR800” (manufactured by Tokyo Ohka Kogyo Co., Ltd.) can be used. As shown in FIG. 3 (b), each light receiving section 2 is applied to the upper positive resist layer 6 formed by sequentially laminating in this manner.
Exposure is performed using the pattern mask 10 corresponding to. By this exposure, the positive resist layer 6 is vertically divided for each light receiving section 2. Subsequently, as shown in FIG. 3C, exposure is performed through a predetermined lens 11. By this exposure, the positive resist layer 6 divided in the vertical direction is relatively exposed in the depth direction based on the image plane illuminance having the characteristic of the image plane illuminance distribution of the lens itself. As the lens 11 used in this case, a lens whose optical system (image plane illuminance) substantially matches a lens provided in, for example, a video camera or the like in which the manufactured solid-state imaging device is actually used. When development is performed after the completion of this exposure, as shown in FIG. 3D, the positive resist layer 6 corresponds to each light receiving section,
In addition, the lens 11 is divided into pieces having different heights according to the characteristics of the image plane illuminance distribution of the lens 11. In particular, the portion where the illuminance is high in the center portion is low, and is formed so as to gradually increase as it goes to the peripheral portion where the illuminance is low. After the positive resist layer 6 is formed as described above, the third resist is heated at a predetermined temperature (100 to 150 ° C.).
(E) As shown in the figure, each of the divided positive resist layers 6 is individually thermally deformed to form water droplets, each having a lens shape having a highly accurate curved surface due to surface tension, and heating is stopped. Then, it is solidified while maintaining the lens shape. After that, by performing anisotropic etching along the lens shape of each positive resist layer 6, the lens shape is reproduced as it is on the microlens layer 5, and
It is possible to manufacture a solid-state imaging device in which light collector groups 5a, 5b, 5c,... Having a specific light collection rate corresponding to each light receiving unit 2 as shown in the figure are formed. In particular, in the microlens layer 5, a group of light collectors 5a and 5 in which the characteristics of the image plane illuminance distribution of a camera lens to which a so-called solid-state imaging device is applied or a corresponding lens in an optical system are positively reflected.
It is characterized in that b, 5c... are formed. Accordingly, in the microlens layer 5, the light receiving amount of the negatively strongly reflected portion is weakened, and the intensity thereof, that is, the region of the image plane illuminance distribution is almost completely smoothed, and each light receiving portion is smoothed. This serves to make the amount of received light substantially uniform.

【発明の効果】【The invention's effect】

以上説明したように本発明に係る固体撮像素子の製造
方法は、多数の受光部を備えた半導体基板の上面にフィ
ルタ層と、マイクロレンズ層と、熱変形性のポジレジス
ト層とを順次積層して設け、該ポジレジスト層を受光部
に対応するパターンマスクを介して露光し、続いてカメ
ラレンズの光学系と略対応するレンズを用いて露光し、
現像してから所定の温度で加熱して前記ポジレジストを
水滴状もしくはカマボコ形状のレンズ形状に変形させ、
そのレンズ形状を維持して冷却固形化してから異方性エ
ッチングを行って前記マイクロレンズ層に前記レンズ形
状の集光体群を形成するようにしたことにより、特に適
用されるカメラレンズの像面照度分布特性に対応させた
精度の高い集光体群を効率良く形成できると言う優れた
効果を奏する。
As described above, the method of manufacturing a solid-state imaging device according to the present invention includes sequentially laminating a filter layer, a microlens layer, and a heat-deformable positive resist layer on the upper surface of a semiconductor substrate having a large number of light receiving sections. Provided, the positive resist layer is exposed through a pattern mask corresponding to the light receiving portion, and then exposed using a lens substantially corresponding to the optical system of the camera lens,
After the development, heated at a predetermined temperature to transform the positive resist into a waterdrop-shaped or Kamaboko-shaped lens shape,
By maintaining the lens shape and cooling and solidifying, and then performing anisotropic etching to form the lens-shaped condensing body group on the microlens layer, the image plane of a camera lens particularly applied. An excellent effect is obtained in that a highly accurate light collector group corresponding to the illuminance distribution characteristics can be efficiently formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法よりなる固体撮像素子の要部のみを
略示的に示した説明図、第2図は同固体撮像素子の要部
のみを拡大して示した断面図、第3図(a)〜(e)は
製造工程を略示的に示した要部の断面図、第4図は一般
的なカメラレンズの像面照度分布の特性を示すグラフで
ある。 1……半導体基板、2……受光部 3……ゲート電極、4……フィルタ層 5……マイクロレンズ層 5a,5b,5c……集光体群 8……ポジレジスト層 10……パターンマスク 11……カメラレンズ又はそれと光学的に対応するレンズ
FIG. 1 is an explanatory view schematically showing only a main part of a solid-state imaging device formed by the method of the present invention, FIG. 2 is a cross-sectional view showing only a main part of the solid-state imaging device in an enlarged manner, and FIG. (A) to (e) are cross-sectional views of essential parts schematically showing a manufacturing process, and FIG. 4 is a graph showing characteristics of image plane illuminance distribution of a general camera lens. DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2, ... Light receiving part 3 ... Gate electrode 4, ... Filter layer 5 ... Micro lens layer 5a, 5b, 5c ... Condenser group 8 ... Positive resist layer 10 ... Pattern mask 11 ... Camera lens or optically corresponding lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 慎次 東京都台東区台東1丁目5番1号 凸版 印刷株式会社内 (72)発明者 伊藤 正浩 東京都台東区台東1丁目5番1号 凸版 印刷株式会社内 (56)参考文献 特開 昭63−147365(JP,A) 特開 平2−65386(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/14 - 27/148 H01L 29/762 - 29/768 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shinji Ito 1-5-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. (72) Inventor Masahiro Ito 1-15-1 Taito, Taito-ku, Tokyo Toppan printing (56) References JP-A-63-147365 (JP, A) JP-A-2-65386 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 27/14 -27/148 H01L 29/762-29/768

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数の受光部を備えた半導体基板の上面に
フィルタ層と、マイクロレンズ層と、熱変形性のポジレ
ジスト層とを順次積層して設け、該ポジレジスト層を受
光部に対応するパターンマスクを介して露光し、続いて
カメラレンズの光学系と略対応するレンズを用いて露光
し、現像してから所定の温度で加熱して前記ポジレジス
トを水滴状もしくはカマボコ形状のレンズ形状に変形さ
せ、そのレンズ形状を維持して冷却固形化してから異方
性エッチングを行って前記マイクロレンズ層に前記レン
ズ形状の集光体群を形成することを特徴とする固体撮像
素子の製造方法。
A filter layer, a microlens layer, and a heat-deformable positive resist layer are sequentially laminated on an upper surface of a semiconductor substrate having a large number of light receiving portions, and the positive resist layer corresponds to the light receiving portion. Exposure through a pattern mask, followed by exposure using a lens substantially corresponding to the optical system of the camera lens, development, and heating at a predetermined temperature to form the positive resist in a waterdrop-shaped or camo-shaped lens shape A solid-state imaging device, wherein the lens shape is maintained, the lens shape is maintained, solidified by cooling, and then anisotropically etched to form the lens-shaped condensers on the microlens layer. .
【請求項2】マイクロレンズ層の集光体群が、カメラレ
ンズの像面照度分布特性に対応している前記請求項
(1)記載の固体撮像素子の製造方法。
2. The method for manufacturing a solid-state imaging device according to claim 1, wherein the group of light collectors of the microlens layer corresponds to an image plane illuminance distribution characteristic of a camera lens.
JP18918290A 1990-07-17 1990-07-17 Method for manufacturing solid-state imaging device Expired - Fee Related JP2969842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18918290A JP2969842B2 (en) 1990-07-17 1990-07-17 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18918290A JP2969842B2 (en) 1990-07-17 1990-07-17 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0475382A JPH0475382A (en) 1992-03-10
JP2969842B2 true JP2969842B2 (en) 1999-11-02

Family

ID=16236873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18918290A Expired - Fee Related JP2969842B2 (en) 1990-07-17 1990-07-17 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2969842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319455B1 (en) * 1999-08-13 2001-11-20 First Quality Nonwovens, Inc. Nonwoven fabric with high CD elongation and method of making same
JP4796287B2 (en) 2004-08-06 2011-10-19 パナソニック株式会社 Solid-state imaging device
JP2007266380A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor image pickup device and its manufacturing method
JP5286821B2 (en) * 2008-02-22 2013-09-11 凸版印刷株式会社 Microlens array manufacturing method and density distribution mask

Also Published As

Publication number Publication date
JPH0475382A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
JP3254759B2 (en) Method of manufacturing optical element and on-chip lens
JP2776810B2 (en) Method for manufacturing solid-state imaging device
JP2001208902A (en) Solid-state image pickup element and its manufacturing method
US5286605A (en) Method for producing solid-state imaging device
JPH06163866A (en) Solid-state image pickup device and its manufacture
JP2002261261A (en) Imaging device and manufacturing method
JP2969842B2 (en) Method for manufacturing solid-state imaging device
JPH0412568A (en) Manufacture of solid-state image pickup device
TW548431B (en) Microlens array and fabrication method thereof
JP3269644B2 (en) Manufacturing method of micro lens
JPH0521769A (en) Solid-state image sensor
JP2000022117A (en) Manufacture of solid-state image-pickup device
JP4465750B2 (en) Manufacturing method of solid-state imaging device
JP2003172804A (en) Microlens array and method for manufacturing the same
JP2892865B2 (en) Method for manufacturing solid-state imaging device
JP2000307090A (en) Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them
JP2604890B2 (en) Method for manufacturing solid-state imaging device
CN116113856A (en) Solid-state imaging element and method of manufacturing the same
JPH0570944B2 (en)
JP2988556B2 (en) Microlens manufacturing method and semiconductor device manufacturing method
JP2000269474A (en) Solid-state image pickup device and manufacture thereof
JP2001358320A (en) Solid state image sensor and its manufacturing method as well as method for manufacturing on-chip lens mold
JP3317506B2 (en) Micro lens and manufacturing method thereof
JP2829066B2 (en) SOLID-STATE IMAGING ELEMENT WITH MICRO LENS AND METHOD OF MANUFACTURING THE SAME
JP3009419B2 (en) Method for manufacturing microlens for solid-state imaging device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees