JP2001079667A - Welded steel structure excellent in resistance to weld cold cracking - Google Patents

Welded steel structure excellent in resistance to weld cold cracking

Info

Publication number
JP2001079667A
JP2001079667A JP26338999A JP26338999A JP2001079667A JP 2001079667 A JP2001079667 A JP 2001079667A JP 26338999 A JP26338999 A JP 26338999A JP 26338999 A JP26338999 A JP 26338999A JP 2001079667 A JP2001079667 A JP 2001079667A
Authority
JP
Japan
Prior art keywords
welding
weld
heat affected
value
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26338999A
Other languages
Japanese (ja)
Other versions
JP3624758B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Toshinobu Nishihata
敏伸 西畑
Masahiko Hamada
昌彦 濱田
Kazuya Fujiwara
和哉 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26338999A priority Critical patent/JP3624758B2/en
Publication of JP2001079667A publication Critical patent/JP2001079667A/en
Application granted granted Critical
Publication of JP3624758B2 publication Critical patent/JP3624758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a welded steel structure which can be welded without preheating and has better resistance to weld cold cracking and strength than the conventional welded steel structure. SOLUTION: In the welded structure formed by welding a martensite stainless steel or a low alloy steel, the vol. ratio of a retained austenite in respective welded metal part and weld heat affected part satisfies the formula, YS <950-500log(C-30γ). Wherein, YS is a yield stress (MPa) of the base material, γis the vol. ratio of struce of welded metal part to that of weld heat affected part expressed in terms of the vol. ratio of remaining austenite to residual structure and C is initial hydrogen concn. (ppm) in the welded metal part or the weld heat affected part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板等を溶接して
製造される溶接鋼管、石油や天然ガス等の輸送、貯蔵に
使用されるラインパイプやタンク等の耐溶接低温割れ性
に優れた溶接鋼構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded steel pipe produced by welding a steel plate or the like, a line pipe or a tank used for transportation and storage of petroleum or natural gas, etc., which has excellent resistance to low-temperature cracking at welding. It relates to a welded steel structure.

【0002】[0002]

【従来の技術】最近、石油・ガスの生産、輸送費用の削
減のために、油井管、ラインパイプの材料コストの削減
の観点から、13Cr鋼や低C-Ni含有改良13Cr鋼のような、
安価なマルテンサイトステンレス鋼が使用されるように
なりつつある。特に、プラットフォーム建設が困難な地
域では、井戸から上記のような耐食性鋼管を通して既存
のプラットフォームまで運び、処理することも考えられ
ている。
2. Description of the Related Art Recently, in order to reduce oil and gas production and transportation costs, from the viewpoint of reducing material costs of oil well pipes and line pipes, such as 13Cr steel and improved 13Cr steel containing low C-Ni,
Inexpensive martensitic stainless steel is being used. In particular, in an area where platform construction is difficult, it is considered that the well is transported from the well to the existing platform through the above-described corrosion-resistant steel pipe for processing.

【0003】パイプラインは、UO管やスパイラル管の
ような大径鋼管が用いられ、このような管は、鋼板を管
状に成形した後継ぎ目を溶接することにより製管され、
一定長さの鋼管の管端を周溶接でつないで敷設される。
[0003] A large-diameter steel pipe such as a UO pipe or a spiral pipe is used for a pipeline, and such a pipe is formed by forming a steel sheet into a tube and then welding a seam.
It is laid by connecting the ends of steel pipes of a certain length by girth welding.

【0004】また、化学工業プラントにおけるタンク、
あるいは水力発電で利用される水圧鉄管は、厚板を溶接
で張り合わせて製作されることが多い。この他、橋梁等
の鋼構造物も溶接施工される。
Further, tanks in chemical industry plants,
Alternatively, a penstock used for hydroelectric power generation is often manufactured by bonding thick plates by welding. In addition, steel structures such as bridges are also welded.

【0005】これら鋼の溶接部では、水素が関与する溶
接低温割れがしばしば問題となる。ここでいう水素と
は、鋼中を室温で拡散する拡散性水素(以下、室温拡散
性水素と記す)のことである。
[0005] In these steel welds, welding cold cracking involving hydrogen is often a problem. Here, hydrogen refers to diffusible hydrogen that diffuses in steel at room temperature (hereinafter referred to as room temperature diffusible hydrogen).

【0006】この室温拡散性水素の鋼中に含まれる量
(濃度)が高いほど、溶接低温割れが生じやすいことは
よく知られている。
It is well known that the higher the amount (concentration) of this room-temperature diffusible hydrogen contained in steel, the more easily low-temperature welding cracks occur.

【0007】この水素源は、被覆溶接棒を用いる場合は
被覆材成分である有機物、鉱物成分中に含まれている結
晶水、ケイ酸ソーダ等の固着材成分の中に化学的に含ま
れている水分、継ぎ手部表面の湿気等である。したがっ
て、室温拡散性水素濃度を減らして溶接低温割れを防止
するために、溶接棒の乾燥、継ぎ手部表面の乾燥を目的
とした予熱(溶接前に予め100℃前後に加熱すること)
がおこなわれている。
[0007] When a coated welding rod is used, this hydrogen source is chemically contained in a fixing material component such as an organic substance as a coating material component, water of crystallization contained in a mineral component, and sodium silicate. Moisture, moisture on the joint surface, etc. Therefore, in order to reduce the diffusible hydrogen concentration at room temperature and prevent low-temperature cracking in welding, preheating for the purpose of drying the welding rod and drying the joint surface (heat to about 100 ° C before welding)
Is being performed.

【0008】しかしながら、この予熱は、溶接施工工程
の増加、予熱のための機器、予熱温度の管理等が必要と
なり、製造コストアップの要因となっている。
However, this preheating requires an increase in the number of welding steps, equipment for preheating, management of the preheating temperature, and the like, which causes an increase in manufacturing cost.

【0009】そこで、なるべく低い予熱温度で溶接低温
割れ防止が達成できるように、鋼の化学組成の面からの
検討が古くからなされてきた。その代表的な検討結果と
しては、Pcm(溶接低温割れ感受性指数)の導入があ
る。
[0009] Therefore, studies have been made from a long time on the chemical composition of steel so that the prevention of low-temperature cracking of welding can be achieved at a preheating temperature as low as possible. A typical study result is the introduction of Pcm (weld cold crack susceptibility index).

【0010】このPcmは、C当量のように、C、S
i、Mn等の合金元素量を項とする下記式で示される多
項式である。
[0010] This Pcm is, like C equivalent, C, S
It is a polynomial expressed by the following equation, with the amount of alloy elements such as i and Mn as terms.

【0011】Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/2
0+Mo/15+V/10+5B この式から分かるように、鋼中の合金元素量が増えるほ
どPcm値は高くなる。実験的に、Pcm、予熱温度、
室温拡散性水素量との相関が明らかにされ、各溶接方法
に適したPcmを有する鋼が使用されている。Pcmが
低い方が、溶接低温割れ防止にとって有利であることか
ら、低Pcm鋼が開発されてきた。
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 2
0 + Mo / 15 + V / 10 + 5B As can be seen from this equation, the Pcm value increases as the amount of alloying elements in the steel increases. Experimentally, Pcm, preheating temperature,
The correlation with the amount of diffusible hydrogen at room temperature has been clarified, and steel having a Pcm suitable for each welding method is used. Low Pcm steels have been developed because a lower Pcm is advantageous for preventing welding cold cracking.

【0012】しかしながら、低Pcm鋼で高強度を得よ
うとする場合、たとえば厚板では、焼入れ、焼戻しや、
圧延後の加速冷却による変態強化が活用されているが、
合金元素が少ないことから強化には自ずと限界がある。
また、Pcm自体、限界を示す指標であるので、その限
界を超えた溶接は不可であることが、最初から示されて
いることになる。さらに、低Pcm鋼では、逆に、溶接
熱影響部(以下、HAZと記す)で軟化する問題があ
る。
However, when high strength is to be obtained with a low Pcm steel, for example, in the case of a thick plate, quenching, tempering,
Transformation strengthening by accelerated cooling after rolling is used,
Due to the small number of alloying elements, there is naturally a limit to strengthening.
Further, since Pcm itself is an index indicating a limit, it is shown from the beginning that welding exceeding the limit is not possible. Further, the low Pcm steel has a problem of softening in the heat affected zone (hereinafter, referred to as HAZ).

【0013】昨今、軽量化および低コスト化の観点か
ら、より一層の高強度化が望まれており、Pcmによら
ないで予熱温度の低温化、できれば予熱しないで(予熱
フリーと称する)溶接できる耐溶接低温割れ性に優れた
鋼の開発が望まれている。
[0013] In recent years, from the viewpoint of weight reduction and cost reduction, higher strength has been desired, and welding can be performed without preheating (called preheating free) without preheating, without using Pcm. There is a demand for the development of steel having excellent low-temperature cracking resistance.

【0014】[0014]

【発明が解決しようとする課題】本発明の課題は、予熱
フリーで溶接でき、従来の溶接鋼構造物以上に耐溶接低
温割れ性と高強度に優れた溶接鋼構造物を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a welded steel structure which can be welded without preheating and which is superior to conventional welded steel structures in terms of low-temperature crack resistance and high strength. .

【0015】[0015]

【課題を解決するための手段】本発明者らは、水素を低
減するための溶接棒の乾燥や鋼を予熱しない場合は、溶
接時の溶融金属やHAZ中に固溶する水素(以下、これ
らを総称して固溶水素と記す)は不可避的なものである
とし、固溶水素と溶接応力との関係に注目して種々実
験、検討した結果、下記の知見を得た。
SUMMARY OF THE INVENTION The present inventors have proposed a method of drying a welding rod for reducing hydrogen and preheating steel, if the molten metal at the time of welding or the hydrogen dissolved in HAZ (hereinafter referred to as "these metals"). Are collectively referred to as insoluble hydrogen), and various experiments and examinations were conducted with attention paid to the relationship between the solute hydrogen and welding stress, and the following findings were obtained.

【0016】a)溶接金属部またはHAZ中の室温拡散
性水素濃度を低めるには、溶接後200℃までの冷却課
程において、固溶水素をできるだけトラップして室温非
拡散性水素とするのがよい。
A) In order to lower the room temperature diffusible hydrogen concentration in the weld metal portion or HAZ, it is preferable to trap solid solution hydrogen as much as possible in the cooling process up to 200 ° C. after welding to form room temperature non-diffusible hydrogen. .

【0017】b)水素のトラップサイトとしては、従来
酸化物が有効であると考えられていたが、溶接直後の溶
融金属の高温域から200℃までの冷却課程では、全く
効果がない。
B) Oxides have conventionally been considered to be effective as hydrogen trap sites, but they have no effect in the cooling process from the high temperature region of the molten metal immediately after welding to 200 ° C.

【0018】c)鋼の組織には、BCC結晶格子からな
るフェライトと、FCC結晶格子からなるオーステナイ
トがあるが、前者に比べて後者は水素の固溶度が高いこ
とが知られている。しかし、一般的な低合金鋼は、高温
ではオーステナイト相、低温ではフェライト相に変態す
るので、オーステナイト相に固溶していた水素も、フェ
ライト変態とともにフェライト相中を拡散すると考えら
れていたが、残留オーステナイトを生成させてトラップ
サイトとするのが有効である。
C) The structure of steel includes ferrite composed of a BCC crystal lattice and austenite composed of an FCC crystal lattice. It is known that the latter has a higher solid solubility of hydrogen than the former. However, general low-alloy steels are transformed into an austenitic phase at high temperatures and into a ferrite phase at low temperatures, so it was thought that hydrogen dissolved in the austenite phase diffuses into the ferrite phase together with the ferrite transformation. It is effective to generate retained austenite to form trap sites.

【0019】d)残留オーステナイトをトラップサイト
として利用する場合、室温拡散性水素は下記式で表すこ
とができ、残留オーステナイト量が多いほど室温拡散性
水素を少なくすることできる。 室温拡散性水素=[固溶水素量−30×残留オーステナ
イト体積率(%)] e)しかし、オーステナイト自体は低強度であるため、
残留オーステナイトが多くなると強度が低下するので、
鋼の強度を確保しつつ、溶接低温割れを防止することの
できる残留オーステナイト量とする必要がある。
D) When residual austenite is used as a trap site, room temperature diffusible hydrogen can be represented by the following formula. The larger the amount of retained austenite, the smaller the room temperature diffusible hydrogen. Room temperature diffusible hydrogen = [Solute hydrogen content-30 x Retained austenite volume fraction (%)] e) However, since austenite itself has low strength,
As the retained austenite increases, the strength decreases,
It is necessary to keep the amount of retained austenite that can prevent low-temperature cracking of the weld while ensuring the strength of the steel.

【0020】f)溶接低温割れは、降伏応力と室温拡散
性水素量とが関係しており、下記式で整理でき、この式
を満足するオーステナイト量であれば強度が確保でき、
溶接低温割れを防止することができる。
F) Welding cold cracking is related to the yield stress and the amount of diffusible hydrogen at room temperature, and can be summarized by the following equation. If the austenite amount satisfies this equation, the strength can be secured.
Welding low-temperature cracking can be prevented.

【0021】YS<950-500log(C−30γ) ここで、YS:母材の降伏応力(MPa) γ:溶接金属部または溶接熱影響部の下記に示す組織の
体積比 残留オーステナイト体積/残部組織の占める体積 C:溶接時の溶融金属部または溶接熱影響部の固溶水素
濃度(ppm) 本発明は、このうような知見に基づきなされたもので、
その要旨は以下の通りである。
YS <950-500log (C-30γ) where YS: Yield stress (MPa) of the base metal γ: Volume ratio of the following structures of the weld metal or weld heat affected zone: Retained austenite volume / remainder structure The volume occupied by C: the solid solution hydrogen concentration (ppm) of the molten metal portion or the weld heat affected zone at the time of welding The present invention has been made based on such knowledge,
The summary is as follows.

【0022】(1)重量%で、C:0.05%以下、C
r:9〜15%およびNi:2〜10%を含有している
マルテンサイトステンレス鋼を溶接して形成した溶接鋼
構造物であって、溶接金属部および溶接熱影響部におけ
るそれぞれの残留オーステナイトの体積率が下記式を満
足している耐溶接低温割れ性に優れた溶接鋼構造物。
(1) By weight%, C: 0.05% or less, C
A welded steel structure formed by welding a martensitic stainless steel containing r: 9 to 15% and Ni: 2 to 10%, wherein a retained austenite in a weld metal portion and a weld heat affected zone is formed. A welded steel structure excellent in low-temperature cracking resistance with a volume ratio satisfying the following formula.

【0023】(2)重量%で、C:0.4%以下、N
i:10%以下を含み、金属組織の50%以上が、ベイ
ナイトであるかマルテンサイトであるか、またはベイナ
イトとマルテンサイトの混合組織である低合金鋼を溶接
して形成した溶接鋼構造物であって、溶接金属部および
溶接熱影響部におけるそれぞれの残留オーステナイトの
体積率が下記式を満足している耐溶接低温割れ性に優れ
た溶接鋼構造物。
(2) By weight%, C: 0.4% or less, N
i: a welded steel structure formed by welding low alloy steel containing 10% or less and 50% or more of the metal structure is bainite, martensite, or a mixed structure of bainite and martensite. A welded steel structure having excellent low-temperature cracking resistance in which the volume fraction of retained austenite in the weld metal portion and the weld heat affected zone satisfies the following expression.

【0024】YS950-500log(C−30γ) ここで、YS:母材の降伏応力(MPa) γ:溶接金属部または溶接熱影響部の下記に示す組織の
体積比 残留オーステナイト体積/残部組織の占める体積 C:溶接時の溶融金属部または溶接熱影響部の固溶水素
濃度(ppm) (3)式中の固溶水素濃度Cを、溶接方法に応じて下記
の値にした上記(1)または(2)に記載の耐溶接低温
割れ性に優れた溶接鋼構造物。
YS950-500log (C-30γ) where YS: yield stress (MPa) of the base metal γ: volume ratio of the following structures in the weld metal or weld heat affected zone: occupied by the volume of residual austenite volume / remainder structure Volume C: solid solution hydrogen concentration (ppm) in the molten metal part or the heat affected zone during welding (ppm) The solid solution hydrogen concentration C in the equation (3) is set to the following value according to the welding method, or (2) A welded steel structure having excellent low-temperature cracking resistance.

【0025】C:溶接時の溶融金属部または溶接熱影響
部の最大固溶水素濃度(ppm) 被覆アーク溶接(SMAW) :吸湿時のC値=18 被覆アーク溶接(SMAW) :通常時のC値= 9サフ゛マーシ゛ト゛アーク 溶接(SAW) :通常時のC値= 5メタルアクティフ゛ 溶接(MAG) :通常時のC値= 2メタルイナートカ゛ス 溶接(MIG) :通常時のC値= 2タンク゛ステンイナートカ゛ス 溶接(TIG):通常時のC値= 2 なお、本発明でいう溶接鋼構造物とは、鋼を溶接して形
成される全ての物品をいい、代表的なものとしては溶接
管、鋼管を周溶接して接続したラインパイプ、タンク、
水力発電で利用される水圧鉄管および橋梁等を挙げるこ
とができる。
C: maximum solid solution hydrogen concentration (ppm) in the molten metal portion or the weld heat affected zone during welding Covered arc welding (SMAW): C value during moisture absorption = 18 Covered arc welding (SMAW): Normal C Value = 9 Smooth arc welding (SAW): Normal C value = 5 Metal active welding (MAG): Normal C value = 2 metal inert gas welding (MIG): Normal C value = 2 tank stainless inert gas welding (MIG) TIG): Normal C value = 2 The term "welded steel structure" as used in the present invention refers to all articles formed by welding steel. And connected line pipes, tanks,
Examples include penstocks and bridges used in hydroelectric power generation.

【0026】以下、本発明の実施の形態について説明す
る。
Hereinafter, embodiments of the present invention will be described.

【0027】[0027]

【発明の実施の形態】本発明の溶接構造物は、マルテン
サイトステンレス鋼または低合金鋼からなり、これらの
鋼を溶接して形成した上記のような鋼構造物である。
BEST MODE FOR CARRYING OUT THE INVENTION The welded structure of the present invention is made of martensitic stainless steel or low alloy steel, and is formed by welding these steels as described above.

【0028】下記の化学組成を有するマルテンサイトス
テンレス鋼は、ラインパイプ、タンク、のような溶接構
造物に適している。
Martensitic stainless steel having the following chemical composition is suitable for welded structures such as line pipes and tanks.

【0029】また、下記の低合金鋼は、水力発電用の水
圧鉄管、橋梁のような溶接構造物に適している。
The following low alloy steels are suitable for welded structures such as penstocks and bridges for hydraulic power generation.

【0030】各鋼の化学組成を規定した理由は、以下の
通りである。なお、化学組成の%表示はすべて重量%を
示す。
The reasons for defining the chemical composition of each steel are as follows. In addition, all percentages of the chemical composition indicate% by weight.

【0031】1)マルテンサイトステンレス鋼 C:Cは、溶接金属部および溶接熱影響部を著しく硬化
させて溶接低温割れ感受性を高める元素であり、0.0
5%以下とする必要がある。好ましくは、0.03%以
下で低い程よい。
1) Martensitic stainless steel C: C is an element which remarkably hardens the weld metal part and the weld heat-affected zone to increase the low-temperature cracking susceptibility.
Must be 5% or less. Preferably, it is as low as 0.03% or less.

【0032】Cr:Crは、耐炭酸ガス食性を高める元
素であり、その効果を得るためには9%以上が必要であ
る。一方、15%を超えるとその効果が飽和するので、
上限を15%とした。好ましくは10.5〜13%であ
る。
Cr: Cr is an element that enhances the resistance to corrosion of carbon dioxide gas, and at least 9% is required to obtain its effect. On the other hand, if it exceeds 15%, the effect will be saturated,
The upper limit was set to 15%. Preferably it is 10.5 to 13%.

【0033】Ni:Niは、低C−Cr含有マルテンサ
イトステンレス鋼で、マルテンサイト組織を得るための
必須の元素であり、その効果を得るためには2%以上が
必要である。一方、11%を超えるとその効果が飽和
し、強度が低下するため上限を11%とした。好ましく
は4〜9%である。
Ni: Ni is a low C-Cr containing martensitic stainless steel and is an essential element for obtaining a martensitic structure, and 2% or more is required to obtain its effect. On the other hand, if it exceeds 11%, the effect is saturated and the strength is reduced, so the upper limit is set to 11%. Preferably it is 4 to 9%.

【0034】さらに、必要により以下のような元素を含
有させることができる。
Further, if necessary, the following elements can be contained.

【0035】Si:Siは、脱酸作用があり、また強化
に有効な元素で、0.01%では効果が小さく、1%を
超えると効果も飽和し、靱性も低下するので、0.01
〜1%とするのが好ましい。
Si: Si has a deoxidizing effect and is an element effective for strengthening. When the content is 0.01%, the effect is small, and when it exceeds 1%, the effect is saturated and the toughness is reduced.
It is preferably set to 11%.

【0036】Mn:Mnは、脱酸作用があり、またマル
テンサイト、残留オーステナイトの組織調整するためオ
ーステナイト生成元素として有効であり、含有させる場
合は0.02〜2%の範囲が好ましい。
Mn: Mn has a deoxidizing effect and is effective as an austenite-forming element for controlling the structure of martensite and retained austenite. When Mn is contained, the content is preferably in the range of 0.02 to 2%.

【0037】Mo:Moは、耐食性、特に耐硫化水素割
れ性改善に有効で、0.1〜3%が好ましい。 Cu:Cuは、耐食性改善効果があり、また組織調整に
有効で、0.1〜1%程度が好ましい。 Al:Alは、脱酸作用があり、0.01〜1%程度が
好ましい。
Mo: Mo is effective for improving corrosion resistance, particularly hydrogen sulfide cracking resistance, and is preferably 0.1 to 3%. Cu: Cu has an effect of improving corrosion resistance and is effective for adjusting the structure, and is preferably about 0.1 to 1%. Al: Al has a deoxidizing effect, and is preferably about 0.01 to 1%.

【0038】Ti:Tiは、Cを固定して強度を安定化
させる効果ががり、含有させる場合は、0.01〜0.
2%が好ましい。
Ti: Ti has an effect of stabilizing the strength by fixing C, and when it is contained, it is contained in an amount of 0.01 to 0.3%.
2% is preferred.

【0039】2)低合金鋼 C:Cは、残留オーステナイトの生成を促すのに有効で
あるが、溶接部の硬度を上昇させるので、0.4%以下
とする必要がある。下限は、0.05%が望ましい。 Ni:Niは、残留オーステナイトを生成させるのに有
効な元素で、10%以下の量で含有させる。10%を超
えると残留オーステナイト量が過剰となるため、上限を
10%とした。下限は特に限定しないが、0.2%とす
るのが好ましい。
2) Low-alloy steel C: C is effective in promoting the generation of retained austenite, but it increases the hardness of the welded portion, so it must be 0.4% or less. The lower limit is desirably 0.05%. Ni: Ni is an element effective for generating retained austenite, and is contained in an amount of 10% or less. If it exceeds 10%, the amount of retained austenite becomes excessive, so the upper limit was made 10%. The lower limit is not particularly limited, but is preferably 0.2%.

【0040】さらに、必要により以下のような元素を含
有させることができる。
Further, if necessary, the following elements can be contained.

【0041】Si、AlおよびCoは、残留オーステナ
イトの生成に有効であり、含有させる場合は、いずれか
1種以上を0.1〜4の範囲とするのがよい。
Si, Al and Co are effective for producing retained austenite, and when they are contained, one or more of them is preferably in the range of 0.1 to 4.

【0042】Mn、Cu、CrおよびMoは、強度を高
めるのに有効な元素であり、0.05%以上が好ましい
が、多量に含有させると溶接部の靱性を劣化させるの
で、いずれも0.05%以下にするのがよい。
Mn, Cu, Cr and Mo are effective elements for increasing the strength, and preferably 0.05% or more. However, if contained in a large amount, the toughness of the welded portion is deteriorated. It is better to make it 05% or less.

【0043】V、Nb、TiおよびBは、溶接部の硬度
を上げる効果があり、いずれも0.05%以下とするの
が好ましい。
V, Nb, Ti and B have the effect of increasing the hardness of the welded portion, and it is preferable that each of them is 0.05% or less.

【0044】Nは、残留オーステナイト生成に有効であ
るが、フェライト相を脆弱にするので0.007%以下
にするのがよく、好ましくは0.005%以下である。
Although N is effective in forming retained austenite, it is preferable that the content of N is 0.007% or less, and more preferably 0.005% or less, because it makes the ferrite phase brittle.

【0045】上記低合金鋼では、CおよびNiは残留オ
ーステナイトを生成するためにそれぞれ重要であるた
め、特にCとNiを規定した。 金属組織:低合金鋼の金属組織は、金属組織の50%以
上が下記の理由によりベイナイトであるかマルテンサイ
トであるか、またはベイナイトとマルテンサイトの混合
組織とする。
In the above low alloy steel, C and Ni are important for generating retained austenite, respectively, and therefore C and Ni are particularly specified. Metal structure: The metal structure of low alloy steel is such that 50% or more of the metal structure is bainite, martensite, or a mixed structure of bainite and martensite for the following reasons.

【0046】残オーステナイトを生成するには、ベイナ
イト組織においてセメンタイトの析出を抑制するか、あ
るいはマルテンサイト終了温度を室温以下にする必要が
ある。このような鋼において、ベイナイトかマルテンサ
イトあるいは両者が50%未満になる場合には、残留オ
ーステナイトが生成せず、溶接低温割れを防止すること
ができない。
ベイナイトおよび/またはマルテン
サイト以外はフェライト、パーライトおよび残留オース
テナイト等である。
In order to form residual austenite, it is necessary to suppress the precipitation of cementite in the bainite structure or to set the martensite end temperature to room temperature or lower. In such a steel, when the content of bainite or martensite or both is less than 50%, retained austenite is not generated, and it is impossible to prevent low-temperature cracking in welding.
Other than bainite and / or martensite are ferrite, pearlite, retained austenite, and the like.

【0047】3)YS<950-500log(C−30γ) 溶接低温割れは、200℃程度以下から室温の範囲で発生
し、溶接金属またはHAZ中の室温拡散性水素が割れを
引き起こす。上記式は、溶接低温割れの発生を防止する
ための式で、YSは母材の降伏応力(MPa)、γは溶接金属
部またはHAZの下記の組織の体積比、Cは溶接したと
きの溶融金属部またはHAZの固溶水素濃度(ppm)を
示す。
3) YS <950-500log (C-30γ) Weld low-temperature cracking occurs in the range of about 200 ° C. or less to room temperature, and room-temperature diffusible hydrogen in the weld metal or HAZ causes cracking. The above equation is an equation for preventing the occurrence of low-temperature cracking in welding. YS is the yield stress (MPa) of the base metal, γ is the volume ratio of the following structure of the weld metal or HAZ, and C is the melting when welding. Shows the solid solution hydrogen concentration (ppm) of the metal part or HAZ.

【0048】 γ= 残留オーステナイト体積/残部組織の占める体積 この式の右辺の(C−30γ)は、室温拡散性水素濃度を示
す項であるが、計算される値は限界応力である。限界応
力とは、溶接金属部またはHAZにおいて低温溶接割れ
を発生させないところの最大応力である。溶接後に生じ
る残留応力が、限界応力以上であると低温溶接割れが発
生することになる。
Γ = volume of retained austenite / volume occupied by the remaining structure (C-30γ) on the right side of this equation is a term indicating the diffusible hydrogen concentration at room temperature, and the calculated value is the critical stress. The critical stress is a maximum stress at which a low-temperature welding crack does not occur in a weld metal portion or a HAZ. If the residual stress generated after welding is not less than the critical stress, low-temperature welding cracks will occur.

【0049】式の左辺は、母材の鋼自体の降伏応力、Y
Sである。溶接後の残留応力の最大値は、降伏応力に等
しい応力と想定できるので、右辺で示される限界応力
は、YSを超える値でなければ、低温溶接割れが発生す
る。したがって、YSは用いる鋼種の規格の最大のYS
としておくことが望ましい。
The left side of the equation is the yield stress of the base steel itself, Y
S. Since the maximum value of the residual stress after welding can be assumed to be a stress equal to the yield stress, unless the critical stress shown on the right side exceeds YS, low-temperature welding cracks occur. Therefore, YS is the largest YS of the standard of the steel type used.
It is desirable to keep it.

【0050】式から理解されるように、室温拡散性水素
濃度の項が大きくなるほど、限界応力は低下する。すな
わち、低い応力で割れやすくなる。
As understood from the equation, the larger the term of the diffusible hydrogen concentration at room temperature, the lower the critical stress. That is, cracking easily occurs with low stress.

【0051】この式を満足するように残留オーステナイ
ト量とすることにより溶接低温割れの発生を防止するこ
とができる。
By setting the amount of retained austenite so as to satisfy this equation, it is possible to prevent the occurrence of low-temperature cracking in welding.

【0052】溶接金属部またはHAZに残留オーステナ
イトを生成させるためには、オーステナイトを安定化さ
せるMnやNiのような合金元素を高めればよく、オー
ステナイト安定化元素の含有量を調整することにより、
残留オーステナイト量を調整することができる。残留オ
ーステナイト体積率を求めるには、溶接金属部およびH
AZから薄膜試験片を採取して、X線回析法により求め
ることができる。
In order to form retained austenite in the weld metal portion or HAZ, alloy elements such as Mn and Ni for stabilizing austenite may be increased, and by adjusting the content of the austenite stabilizing element,
The amount of retained austenite can be adjusted. To determine the retained austenite volume fraction, the weld metal and H
A thin film test piece can be obtained from AZ and determined by X-ray diffraction.

【0053】上記のように本発明では、合金元素を低め
る低Pcm鋼とは反対に合金元素を高めることができ、
その結果として耐溶接低温割れ性を確保しつつ高強度を
得やすくすることができる。
As described above, in the present invention, the alloying element can be increased as opposed to the low Pcm steel which lowers the alloying element,
As a result, it is possible to easily obtain high strength while ensuring low-temperature crack resistance against welding.

【0054】この溶接時の溶融金属中またはHAZ中の
固溶水素濃度は、溶接直後に急冷して拡散性水素の放散
を防止した状態で測定すれば正確な値が得られる。後記
の実施例での固溶水素濃度は実測値である。この固溶水
素濃度は、管理あるいは材料設計の観点からは、各溶接
法において雰囲気や溶接条件を考慮した最大値を予め決
めておくことが望ましい。そうすることにより、実際の
溶接施工時に固溶水素の分析をする必要がなくなる。固
溶水素濃度を下記の値(単位ppm)に設定して置くとよ
い。なお、溶接条件を通して水素濃度を制御できる場合
は、その限りではない。
An accurate value can be obtained by measuring the solid solution hydrogen concentration in the molten metal or HAZ at the time of this welding in a state in which the diffusion of diffusible hydrogen is prevented by rapid cooling immediately after welding. The dissolved hydrogen concentration in Examples described later is an actually measured value. From the viewpoint of control or material design, it is desirable that the maximum concentration of the solute hydrogen be determined in advance in consideration of the atmosphere and welding conditions in each welding method. By doing so, there is no need to analyze solid solution hydrogen during actual welding. The dissolved hydrogen concentration may be set to the following value (unit: ppm). This is not the case when the hydrogen concentration can be controlled through the welding conditions.

【0055】 被覆アーク溶接(SMAW) :吸湿時のC値=18 被覆アーク溶接(SMAW) :通常時のC値= 9サフ゛マーシ゛ト゛アーク 溶接(SAW) :通常時のC値= 5メタルアクティフ゛ 溶接(MAG) :通常時のC値= 2メタルイナートカ゛ス 溶接(MIG) :通常時のC値= 2タンク゛ステンイナートカ゛ス 溶接(TIG):通常時のC値= 2Covered arc welding (SMAW): C value at the time of moisture absorption = 18 Covered arc welding (SMAW): C value at the time of normal = 9 Supmer sheet arc welding (SAW): C value at the time of normal = 5 metal active welding ( MAG): Normal C value = 2 Metal inert gas welding (MIG): Normal C value = 2 Tank stainless steel gas welding (TIG): Normal C value = 2

【0056】[0056]

【実施例】(実施例1)表1に示す6種の化学組成のマ
ルテンサイトステンレス鋼を、150キロの小型真空溶
解炉で溶製してインゴットとし、熱間鍛造した後熱間圧
延によって板厚25mmの鋼板を製造した。各鋼板を9
50℃で1時間加熱して水焼入れし、さらに640℃で
1時間加熱して焼き戻して強度をX80級に調整した。
(Example 1) Martensitic stainless steel having the six chemical compositions shown in Table 1 was melted in a small vacuum melting furnace of 150 kg to form an ingot, hot forged and then hot-rolled. A steel plate having a thickness of 25 mm was manufactured. 9 each steel plate
Heating was carried out at 50 ° C. for 1 hour, followed by water quenching, followed by heating at 640 ° C. for 1 hour and tempering to adjust the strength to X80 class.

【0057】[0057]

【表1】 [Table 1]

【0058】一方、鍛造材の一部を用いて伸線により溶
接ワイヤーを作製した。
On the other hand, a welding wire was produced by drawing a part of the forged material.

【0059】これらの各鋼板と溶接ワイヤーを用いて、
JIS Z3158に規定されるy割れ試験によって溶
接低温割れ感受性を評価した。溶接は、製管溶接法とし
て一般的なSAW、その管の周溶接法として一般的なT
IG及びSMAWとした。
Using these steel plates and welding wires,
Weld cracking susceptibility was evaluated by a y-cracking test specified in JIS Z3158. Welding is performed using SAW, which is a general method for welding pipes, and T, which is generally used as a welding method for pipes
IG and SMAW.

【0060】割れの発生有無は、100倍の光学顕微鏡
により判定すると共に、発生起点を溶接金属とHAZで
区別した。
The presence or absence of cracks was determined by an optical microscope at a magnification of 100, and the starting points were distinguished between the weld metal and the HAZ.

【0061】固溶水素濃度分析は、上記鋼板から厚さ1
2mm、幅25mm、長さ100mmの試験鋼板を採取
し、y割れ試験と同じ溶接条件、同じ雰囲気、同じ機会
に、ビードオン溶接をおこない、溶接金属を作製した。
そして、低合金鋼の溶接金属の固溶水素濃度は、JIS
Z3118の規定に従って、拡散性水素量をガスクロ
マトグラフ法に従って測定した。また、低合金鋼のHA
Zは、昇温分析法により測定した。なお、マルテンサイ
トステンレス鋼に対しては、JIS Z3118に規定
の方法を用いないのは、JISに規定の温度では、水素
の放出が遅くて十分放出されないためである。
The solid solution hydrogen concentration analysis was carried out by
A test steel plate having a size of 2 mm, a width of 25 mm, and a length of 100 mm was sampled and subjected to bead-on welding under the same welding conditions, the same atmosphere, and the same opportunity as in the y crack test to produce a weld metal.
The concentration of dissolved hydrogen in the weld metal of low alloy steel is determined according to JIS.
The amount of diffusible hydrogen was measured according to the gas chromatography method according to the provisions of Z3118. In addition, HA of low alloy steel
Z was measured by a temperature rising analysis method. The reason why the method prescribed in JIS Z3118 is not used for martensitic stainless steel is that hydrogen is not released sufficiently at a temperature prescribed in JIS due to slow release of hydrogen.

【0062】なお、昇温分析法とは、真空中で試験片を
室温から1000℃近傍まで1〜20℃/分の昇温速度
で昇温して、放出される水素ガス量を温度に対してプロ
ットして水素放出曲線を求め、100〜200℃近傍に
できるピークを含む曲線一山部分の放出水素量を拡散性
水素量と定義して分析する方法である。
The temperature rising analysis method means that a test piece is heated in a vacuum from room temperature to about 1000 ° C. at a temperature rising rate of 1 to 20 ° C./min, and the amount of released hydrogen gas relative to the temperature is increased. This is a method in which a hydrogen release curve is obtained by plotting the peaks and a hydrogen release curve is obtained, and the amount of released hydrogen in one peak portion of the curve including a peak formed at around 100 to 200 ° C. is defined and analyzed as a diffusible hydrogen amount.

【0063】マルテンサイトステンレス鋼の溶接金属部
の固溶水素濃度は、昇温分析法により測定した。また、
マルテンサイトステンレス鋼のHAZの固溶水素濃度
は、以下に示す残留オーステナイト測定用の薄膜試験片
と同じ試験片を用いて昇温分析法により測定した。
The concentration of dissolved hydrogen in the weld metal of martensitic stainless steel was measured by a temperature rising analysis method. Also,
The solid solution hydrogen concentration of HAZ in martensitic stainless steel was measured by a temperature rising analysis method using the same test piece as the thin film test piece for measuring retained austenite shown below.

【0064】また、残留オーステナイトの分析は、溶接
金属およびHAZから薄膜試験片を採取して、X線回析
法により残留オーステナイト体積率を求めた。なお、H
AZからの試験片は、マクロエッチした後、溶融線から
1mmの範囲で溶融線に沿って採取した。
For analysis of retained austenite, a thin film specimen was sampled from the weld metal and HAZ, and the volume fraction of retained austenite was determined by X-ray diffraction. Note that H
A test piece from AZ was taken along the melting line within 1 mm from the melting line after macroetching.

【0065】求めた固溶水素濃度および残留オーステナ
イト体積率およびy割れ試験結果を表2に示す。また、
各鋼板の引張試験をおこない降伏応力(YS)を求め、
それらの最大のYSを660Mpaとした。
Table 2 shows the obtained dissolved hydrogen concentration, residual austenite volume ratio, and y-crack test results. Also,
A tensile test is performed on each steel sheet to determine the yield stress (YS).
Their maximum YS was 660 Mpa.

【0066】[0066]

【表2】 [Table 2]

【0067】(実施例2)表3に示す6種の化学組成の
HT80級の炭素鋼系高強度低合金鋼を、150キロの
小型真空溶解炉で溶製してインゴットとし、熱間鍛造し
た後熱間圧延によって板厚50mmの鋼板を製造した。
各鋼板を900℃で1時間加熱して水焼入れし、さら
に、600℃で1時間加熱して焼き戻した。最大YSは
920MPaとした。溶接ワイヤーは、試験番号8〜1
2については実施例1Bから作製したもの、試験番号1
3については市販のHT80用のワイヤーを用いた。
Example 2 HT80-grade carbon steel high-strength low-alloy steels having the six chemical compositions shown in Table 3 were melted in a small vacuum melting furnace of 150 kg to form ingots and hot forged. A steel plate having a thickness of 50 mm was manufactured by post-hot rolling.
Each steel sheet was heated at 900 ° C. for 1 hour and water-quenched, and further heated at 600 ° C. for 1 hour and tempered. The maximum YS was 920 MPa. For the welding wire, test numbers 8 to 1
2 was prepared from Example 1B, test number 1
For No. 3, a commercially available wire for HT80 was used.

【0068】[0068]

【表3】 [Table 3]

【0069】この鋼板と溶接ワイヤとを用いて低水素雰
囲気のMAG法で溶接をおこなった。溶接方法としては
SMAWが一般的であるが、この溶接方法では水素濃度
が高くなりすぎて、予熱しないで割れを防止できる方法
が見あたらないので、MAG法とした。
Using the steel sheet and the welding wire, welding was performed by the MAG method in a low hydrogen atmosphere. Although SMAW is generally used as a welding method, the MAG method was used because the hydrogen concentration in this welding method was too high and there was no method that could prevent cracking without preheating.

【0070】溶接後、実施例1と同様の方法でY割れ試
験をおこなうと共に、固溶水素濃度、および残留オース
テナイト体積率を求めた。また、各鋼板の引張試験をお
こない降伏応力(YS)を求め、それらの最大のYSを
900MPaとした。結果を表4に示す。
After welding, a Y crack test was performed in the same manner as in Example 1, and the concentration of dissolved hydrogen and the volume fraction of retained austenite were determined. Further, a tensile test was performed on each steel sheet to determine a yield stress (YS), and the maximum YS was 900 MPa. Table 4 shows the results.

【0071】[0071]

【表4】 [Table 4]

【0072】表2および4から明らかなように、YS<
950-500log(C−30γ)を満足する領域では、溶接金属部
およびHAZ共に割れが発生していない。また、従来例
として、一般的なHT80の溶接結果を示した。予熱フ
リーでは、MAG法でも割れが生じた。
As is apparent from Tables 2 and 4, YS <
In the region satisfying 950-500 log (C-30γ), no crack occurs in both the weld metal portion and the HAZ. Further, as a conventional example, a result of welding of a general HT80 is shown. In the preheating-free condition, cracking occurred even in the MAG method.

【0073】[0073]

【発明の効果】本発明によれば、溶接施工が容易な予熱
フリーの溶接ができ、低Pcm鋼とする必要はなく、低
Pcm鋼より耐溶接低温割れ性に優れ、かつ、高強度の
溶接鋼構造物を得ることができる。
According to the present invention, it is possible to perform preheating-free welding that is easy to carry out welding work, and it is not necessary to use a low Pcm steel. A steel structure can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 昌彦 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 藤原 和哉 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 Fターム(参考) 4E001 AA03 BB01 BB05 BB07 BB08 BB12 CA03 CC03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Hamada 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Sumitomo Metal Industries, Ltd. (72) Kazuya Fujiwara 4-chome, Kitahama, Chuo-ku, Osaka-shi, Osaka No.5-33 F-term in Sumitomo Metal Industries, Ltd. (reference) 4E001 AA03 BB01 BB05 BB07 BB08 BB12 CA03 CC03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.05%以下、Cr:9
〜15%およびNi:2〜11%を含有しているマルテ
ンサイトステンレス鋼を溶接して形成した溶接鋼構造物
であって、溶接金属部および溶接熱影響部におけるそれ
ぞれの残留オーステナイトの体積率が下記式を満足して
いることを特徴とする耐溶接低温割れ性に優れた溶接鋼
構造物。 YS<950-500log(C−30γ) ここで、YS:母材の降伏応力(MPa) γ:溶接金属部または溶接熱影響部の下記に示す組織の
体積比 残留オーステナイト体積/残部組織の占める体積 C:溶接時の溶融金属部または溶接熱影響部の固溶水素
濃度(ppm)
(1) C: 0.05% or less, Cr: 9% by weight
A welded steel structure formed by welding martensitic stainless steel containing 〜15% and Ni: 2 : 11%, wherein the volume fraction of each retained austenite in the weld metal part and the weld heat affected zone is A welded steel structure having excellent low-temperature cracking resistance, characterized by satisfying the following formula. YS <950-500log (C-30γ) where, YS: Yield stress of base metal (MPa) γ: Volume ratio of the following structures in the weld metal or weld heat affected zone: Retained austenite volume / volume occupied by remaining structure C: concentration of dissolved hydrogen (ppm) in the molten metal part or the heat affected zone during welding
【請求項2】重量%で、C:0.4%以下、Ni:10
%以下を含み、金属組織の50%以上が、ベイナイトで
あるかマルテンサイトであるか、またはベイナイトとマ
ルテンサイトの混合組織である低合金鋼を溶接して形成
した溶接鋼構造物であって、溶接金属部および溶接熱影
響部におけるそれぞれの残留オーステナイトの体積率が
下記式を満足していることを特徴とする耐溶接低温割れ
性に優れた溶接鋼構造物。 YS<950-500log(C−30γ) ここで、YS:母材の降伏応力(MPa) γ:溶接金属部または溶接熱影響部の下記に示す組織の
体積比 残留オーステナイト体積/残部組織の占める体積 C:溶接時の溶融金属部または溶接熱影響部の固溶水素
濃度(ppm)
2. C: 0.4% or less, Ni: 10% by weight
% Or less, and 50% or more of the metal structure is a welded steel structure formed by welding a low alloy steel that is bainite, martensite, or a mixed structure of bainite and martensite, A welded steel structure having excellent low-temperature cracking resistance, characterized in that the volume fraction of retained austenite in a weld metal part and a weld heat affected zone satisfies the following equation. YS <950-500log (C-30γ) where, YS: Yield stress of base metal (MPa) γ: Volume ratio of the following structures in the weld metal or weld heat affected zone: Retained austenite volume / volume occupied by remaining structure C: concentration of dissolved hydrogen (ppm) in the molten metal part or the heat affected zone during welding
【請求項3】式中の固溶水素濃度Cを、溶接方法に応じ
て下記の値にしたことを特徴とする請求項1または2に
記載の耐溶接低温割れ性に優れた溶接鋼構造物。 C:溶接時の溶融金属部または溶接熱影響部の最大固溶
水素濃度(ppm) 被覆アーク溶接(SMAW) :吸湿時のC値=18 被覆アーク溶接(SMAW) :通常時のC値= 9サフ゛マーシ゛ト゛アーク 溶接(SAW) :通常時のC値= 5メタルアクティフ゛ 溶接(MAG) :通常時のC値= 2メタルイナートカ゛ス 溶接(MIG) :通常時のC値= 2タンク゛ステンイナートカ゛ス 溶接(TIG):通常時のC値= 2
3. A welded steel structure having excellent low-temperature cracking resistance according to claim 1, wherein the solid solution hydrogen concentration C in the formula is set to the following value according to the welding method. . C: Maximum dissolved hydrogen concentration (ppm) in the molten metal part or welding heat affected zone during welding Covered arc welding (SMAW): C value during moisture absorption = 18 Covered arc welding (SMAW): Normal C value = 9 Sulfur Seat Arc Welding (SAW): Normal C value = 5 Metal Active Welding (MAG): Normal C value = 2 Metal inert gas welding (MIG): Normal C value = 2 Tank stainless steel gas welding (TIG): Normal C value = 2
JP26338999A 1999-09-17 1999-09-17 A welded steel structure with excellent cold cracking resistance Expired - Fee Related JP3624758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26338999A JP3624758B2 (en) 1999-09-17 1999-09-17 A welded steel structure with excellent cold cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26338999A JP3624758B2 (en) 1999-09-17 1999-09-17 A welded steel structure with excellent cold cracking resistance

Publications (2)

Publication Number Publication Date
JP2001079667A true JP2001079667A (en) 2001-03-27
JP3624758B2 JP3624758B2 (en) 2005-03-02

Family

ID=17388823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26338999A Expired - Fee Related JP3624758B2 (en) 1999-09-17 1999-09-17 A welded steel structure with excellent cold cracking resistance

Country Status (1)

Country Link
JP (1) JP3624758B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160324A (en) * 2005-12-12 2007-06-28 Jfe Steel Kk Welded joint made of stainless steel
US8049131B2 (en) 2003-07-25 2011-11-01 Nippon Steel Corporation Ultrahigh strength welded joint and ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal, and methods for producing the same
CN112388195A (en) * 2020-09-28 2021-02-23 巨力索具股份有限公司 Welding method of medium carbon quenched and tempered cast steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049131B2 (en) 2003-07-25 2011-11-01 Nippon Steel Corporation Ultrahigh strength welded joint and ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal, and methods for producing the same
JP2007160324A (en) * 2005-12-12 2007-06-28 Jfe Steel Kk Welded joint made of stainless steel
CN112388195A (en) * 2020-09-28 2021-02-23 巨力索具股份有限公司 Welding method of medium carbon quenched and tempered cast steel

Also Published As

Publication number Publication date
JP3624758B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
EP1435399B1 (en) A welding method for improving resistance to cold cracking
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
EP2130937A1 (en) High-strength welded steel pipe having weld metal excelling in low-temperature cracking resistance and process for manufacturing the same
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
JP7135649B2 (en) Welding consumables for austenitic stainless steel
EP3276027B1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP3339403B2 (en) Method of manufacturing welded steel structure and welded steel structure
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JPH10324950A (en) High-strength welded steel structure, and its manufacture
CN102057070B (en) Steel plate excellent in sour resistance and steel pipe for linepipes
KR20170138505A (en) After steel plate and welding joint
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
JP2001115238A (en) Martensitic stainless steel welded steel pipe
KR101937005B1 (en) Weld joint
Fan et al. Microstructures and properties of a novel 115 mm thick 08Cr9W3Co3VNbCuBN heat-resistant steel tube joints welded by shielded metal arc welding
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP3624758B2 (en) A welded steel structure with excellent cold cracking resistance
JP3582463B2 (en) Welding material and metal for low alloy heat resistant steel
EP2258884B1 (en) High-strength steel sheet excellent in resistance to stress-relief annealing and low-temperature joint toughness
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JPH068487B2 (en) Ferritic heat resistant steel with excellent toughness at weld bond

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Ref document number: 3624758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees