JP2001077091A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JP2001077091A
JP2001077091A JP24990499A JP24990499A JP2001077091A JP 2001077091 A JP2001077091 A JP 2001077091A JP 24990499 A JP24990499 A JP 24990499A JP 24990499 A JP24990499 A JP 24990499A JP 2001077091 A JP2001077091 A JP 2001077091A
Authority
JP
Japan
Prior art keywords
frequency
plasma
electrodes
electrode
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24990499A
Other languages
Japanese (ja)
Other versions
JP4576011B2 (en
Inventor
Hideo Takei
日出夫 竹井
Michio Ishikawa
道夫 石川
Yoshifumi Ota
賀文 太田
Masashi Kikuchi
正志 菊池
Hitoshi Ikeda
均 池田
Masa Osono
雅 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24990499A priority Critical patent/JP4576011B2/en
Publication of JP2001077091A publication Critical patent/JP2001077091A/en
Application granted granted Critical
Publication of JP4576011B2 publication Critical patent/JP4576011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid a high-frequency interference which occurs between adjacent high-frequency electrodes so as to prevent a hunting phenomenon by a method wherein partitioning members which demarcate plasma generating spaces respectively are provided inside a vacuum chamber. SOLUTION: A partitioning member 6 of meshes or punching metal is provided between adjacent high-frequency electrodes 2 and at an outward edge of electrodes 2 located at the ends of a row of electrodes 2. The partitioning members 6 demarcates a plasma generating space between the high-frequency electrode 2 and an anode electrode 3. The partitioning members 6 are connected to a ground potential so as to reduce a potential induced by high-frequency plasma to an irreducible minimum. By this setup, the partitioning members are permeable to gas but substantially restrain plasma, which is generated in the plasma generating spaces demarcated by them combined with the high-frequency electrodes 2, from leaking out, and a high-frequency interference between the adjacent high-frequency electrodes 2 can be avoided, so that a hunting phenomenon can be prevented from occurring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一つの真空チャン
バー内に複数の電極を設け、各電極にそれぞれ処理すべ
き基板を装着し、真空チャンバー内に発生されたプラズ
マを利用して例えばエッチング、スパッタリングまたは
化学気相成長(化学蒸着)などの所定の処理を行うよう
にしたプラズマ処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a plurality of electrodes in one vacuum chamber, mounts a substrate to be processed on each electrode, and performs etching, for example, by using plasma generated in the vacuum chamber. The present invention relates to a plasma processing apparatus that performs a predetermined process such as sputtering or chemical vapor deposition (chemical vapor deposition).

【0002】[0002]

【従来の技術】近年、半導体や電子部品における薄膜形
成や機能膜形成、パターン形成にプラズマを利用した種
々の装置が用いられている。添付図面の図4にはこの種
の装置の従来例を示し、Aはそれぞれ排気系を備えた真
空チャンバーで、各真空チャンバーA内には基板電極B
がそれぞれの対向電極Cと対を成して配列されている。
各基板電極Bはマッチング回路網Dを介してそれぞれの
高周波励起電源Eに接続されている。なお、各対向電極
Cは図示したようにそれぞれ接地されている。
2. Description of the Related Art In recent years, various apparatuses using plasma for forming thin films, functional films, and patterns in semiconductors and electronic parts have been used. FIG. 4 of the accompanying drawings shows a conventional example of this type of apparatus, where A is a vacuum chamber provided with an exhaust system, and a substrate electrode B is provided in each vacuum chamber A.
Are arranged in pairs with the respective counter electrodes C.
Each substrate electrode B is connected to a respective high-frequency excitation power source E via a matching network D. Each counter electrode C is grounded as shown.

【0003】[0003]

【発明が解決しようとする課題】このような従来の装置
においては、生産性の観点では満足されるが、基板電極
の数だけマッチング回路網及び高周波励起電源を設ける
必要がある。そのため高周波電極の設けられる数が増え
れば増える程マッチング回路網及び高周波励起電源の使
用される数が増え、その分、装置のコストが嵩むことに
なる。このようにこの種の従来の装置は、設備に掛かる
コストが高く、低コスト化が求められている。
Although such a conventional apparatus is satisfactory from the viewpoint of productivity, it is necessary to provide matching networks and high-frequency excitation power supplies by the number of substrate electrodes. Therefore, as the number of high-frequency electrodes provided increases, the number of matching circuit networks and high-frequency excitation power supplies used increases, and the cost of the apparatus increases accordingly. As described above, this type of conventional apparatus has a high facility cost and is required to be reduced in cost.

【0004】装置のコストを低減するために、真空チャ
ンバー内に設けられる複数の高周波電極を共通のマッチ
ング回路網及び高周波励起電源に接続したものも提案さ
れている。しかしながら、そのような構成のものでは、
それぞれの電極容量及び電極を装着している接続板(通
常銅製)のインダクタンスのばらつきのために一番イン
ピーダンスの低下する電極に放電が集中し、パワー分配
が不均一となり、高周波励起の利点である安定したプラ
ズマの生成が困難となる。すなわち隣接した高周波電極
はプラズマ空間を共有し、複数の入力源に対して複数の
高周波電力の供給がなされるため、一系統の高周波電源
で複数の高周波電極を励起させる構成においては、一系
統のマッチング回路網及び制御系では適切に制御ができ
ず、ハンチングや高周波電力の印加継続が不可能な状態
が生じ得る。このような事情で、それぞれの高周波電極
に装着された基板を並列処理することは、例えばスパッ
タ中や化学蒸着中のクリーニングを除いて実際に行われ
ていなかった。さらに、投入電力の比較的小さい比較的
小型の装置の場合には、隣接した高周波電極のプラズマ
空間における相互干渉はそれほど大きくなく抑制可能で
あるが、大型で大電力を投入する装置ではプラズマ空間
における相互干渉が大きく抑制することはできなくな
り、大電力を投入する大型の装置の実現を阻んでいた。
In order to reduce the cost of the apparatus, there has been proposed an apparatus in which a plurality of high-frequency electrodes provided in a vacuum chamber are connected to a common matching network and a high-frequency excitation power supply. However, in such a configuration,
Discharge concentrates on the electrode with the lowest impedance due to variations in the inductance of each electrode capacity and the connection plate (usually made of copper) on which the electrode is mounted, and the power distribution becomes uneven, which is an advantage of high frequency excitation. It is difficult to generate stable plasma. That is, since adjacent high-frequency electrodes share a plasma space and a plurality of high-frequency powers are supplied to a plurality of input sources, in a configuration in which a plurality of high-frequency electrodes are excited by one system of high-frequency power, one system is used. The matching network and the control system cannot perform appropriate control, and hunting and a state in which application of high-frequency power cannot be continued may occur. Under such circumstances, parallel processing of the substrates mounted on the respective high-frequency electrodes has not been actually performed except for, for example, cleaning during sputtering or chemical vapor deposition. Further, in the case of a relatively small device with a relatively small input power, the mutual interference in the plasma space between adjacent high-frequency electrodes can be suppressed without being so large, but in a device with a large and high power input, the interference in the plasma space can be reduced. Mutual interference can no longer be greatly suppressed, which hinders the realization of a large-sized device that inputs a large amount of power.

【0005】そこで、このような従来技術の抱える問題
点を解決するために、装置の本来の機能を維持しながら
真空チャンバー内に設けられるそれぞれの高周波電極の
プラズマ空間を画定して基板の並列処理を可能にしたプ
ラズマ処理装置を提供することを目的としている。
[0005] In order to solve the problems of the prior art, a plasma space for each high-frequency electrode provided in a vacuum chamber is defined while maintaining the original function of the apparatus, and the parallel processing of substrates is performed. It is an object of the present invention to provide a plasma processing apparatus that enables the above.

【0006】上記目的を達成するために、本発明によれ
ば、 一つの真空チャンバー内に設けられた複数の高周
波電極のそれぞれに処理すべき基板を装着し、真空チャ
ンバー内に発生されたプラズマを利用して所定の処理を
行うようにしたプラズマ処理装置において、真空チャン
バー内に設けられた複数の高周波電極の各々のプラズマ
生成空間を画定する仕切り部材を設け、各仕切り部材が
ガスを通過させるが各高周波電極と組合さった各プラズ
マ生成空間内に生成されたプラズマの漏れを実質的に抑
制するように構成されていることを特徴としている。
In order to achieve the above object, according to the present invention, a substrate to be processed is mounted on each of a plurality of high-frequency electrodes provided in one vacuum chamber, and plasma generated in the vacuum chamber is supplied. In a plasma processing apparatus configured to perform a predetermined process using a plasma processing apparatus, a partition member that defines a plasma generation space of each of a plurality of high-frequency electrodes provided in a vacuum chamber is provided, and each partition member allows a gas to pass therethrough. It is characterized in that it is configured to substantially suppress leakage of plasma generated in each plasma generation space combined with each high-frequency electrode.

【0007】本発明において、各仕切り部材は、好まし
くは、高周波プラズマで誘起される電位を最小にするよ
うにアース電位に接続され得る。
In the present invention, each partition member is preferably connected to a ground potential so as to minimize the potential induced by the high frequency plasma.

【0008】また、各仕切り部材は、開口率70〜20%、
好ましくは、開口率45〜25%、各開口の径3mm以下のメ
ッシュまたはパンチングメタルから成り得る。
Each partition member has an aperture ratio of 70 to 20%,
Preferably, it may be made of a mesh or punched metal having an opening ratio of 45 to 25% and a diameter of each opening of 3 mm or less.

【0009】このように構成した本発明による装置おい
ては、それぞれの高周波電極で生成されるプラズマは仕
切り部材によって画定されたプラズマ生成空間内に有効
に閉じ込められると共に、プラズマ処理に必要なガスの
導入及び排気機能も維持される。また、仕切り部材とし
て使用され得るメッシュまたはパンチングメタルにおけ
る各開口の径を3mm以下とすることにより、隣接した高
周波電極同志の高周波干渉が避けられ、ハンチング現象
の発生を抑制することができる。このような構成をもつ
本発明によれば、隣接した高周波電極同志の高周波干渉
が避けられるため、大電力を投入する大型の装置を提供
することができる。
In the apparatus according to the present invention, the plasma generated by each of the high-frequency electrodes is effectively confined in the plasma generation space defined by the partition member, and the gas necessary for the plasma processing is removed. The introduction and exhaust functions are also maintained. Further, by setting the diameter of each opening in a mesh or a punching metal that can be used as a partition member to 3 mm or less, high-frequency interference between adjacent high-frequency electrodes can be avoided, and the occurrence of a hunting phenomenon can be suppressed. According to the present invention having such a configuration, high-frequency interference between adjacent high-frequency electrodes can be avoided, so that a large-sized device for supplying large power can be provided.

【0010】[0010]

【発明の実施の形態】以下、添付図面の図1〜図3を参照
して本発明の実施の形態を説明する。図1には、本発明
をプラズマエッチング装置として実施している一つの形
態を概略的に示す。1は図示していない排気系及び放電
用ガスに接続された真空チャンバーであり、この真空チ
ャンバー1の下側壁には四つの基板電極すなわちカソー
ド電極を構成する高周波電極2が設けられ、これら四つ
の高周波電極2に対向して真空チャンバー1の上側壁に
沿って共通のアノード電極3が設けられ、この対向電極
3は接地されている。隣接した二つの高周波電極2は共
通のマッチング回路網4を介して共通の高周波電源5に
接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 schematically shows one embodiment in which the present invention is implemented as a plasma etching apparatus. Reference numeral 1 denotes a vacuum chamber connected to an exhaust system and a discharge gas (not shown), and a lower wall of the vacuum chamber 1 is provided with four substrate electrodes, that is, a high-frequency electrode 2 constituting a cathode electrode. A common anode electrode 3 is provided along the upper side wall of the vacuum chamber 1 so as to face the high-frequency electrode 2, and the counter electrode 3 is grounded. Two adjacent high-frequency electrodes 2 are connected to a common high-frequency power supply 5 via a common matching network 4.

【0011】また、隣接した高周波電極2の間及び両端
の高周波電極2の外方端には、メッシュまたはパンチン
グメタル製の仕切り部材6が設けられ、各仕切り部材6は
高周波電極2側とアノード電極3との間にのびてプラズマ
生成空間を画定している。各仕切り部材6は、高周波プ
ラズマによって誘起される電位を最小にするためにアー
ス電位に接続され、また各仕切り部材6を構成している
メッシュまたはパンチングメタルとしては、各高周波電
極2毎のガスの移動すなわちガスの導入及び排気を容易
にししかもプラズマの漏れを抑制するために、開口率70
〜20%、好ましくは、開口率45〜25%、各孔の径3mm以
下のものが使用され得る。ここで開口率に関しては、開
口率が大きいと放電の干渉が無視できなくなり、逆に小
さすぎるとガス排気ができず、エッチングなどの反応速
度が遅くなったり、分布のばらつきが大きくなるため上
記の範囲が好ましい。なお、図示実施の形態において、
高周波電極2の数は、単に例示のためのものであり、当
然二つまたは三つ或いは四つ以上でもよい。
Further, between adjacent high-frequency electrodes 2 and at outer ends of the high-frequency electrodes 2 at both ends, partition members 6 made of mesh or punched metal are provided, and each partition member 6 is connected to the high-frequency electrode 2 side and the anode electrode. Extends between 3 and defines the plasma generation space. Each partition member 6 is connected to the ground potential to minimize the potential induced by the high-frequency plasma, and the mesh or the punching metal constituting each partition member 6 includes a gas of each high-frequency electrode 2. In order to facilitate movement, that is, gas introduction and exhaust, and to suppress plasma leakage, an aperture ratio of 70
-20%, preferably 45-25%, and each hole has a diameter of 3 mm or less. Here, regarding the aperture ratio, if the aperture ratio is large, the interference of the discharge cannot be ignored, and if it is too small, the gas cannot be exhausted, the reaction speed of etching or the like becomes slow, or the dispersion of the distribution becomes large. A range is preferred. In the illustrated embodiment,
The number of high-frequency electrodes 2 is merely for illustrative purposes, and may be two, three, or four or more.

【0012】図2及び図3には、アノード電極を挟んで
両側に多数のカソード電極を設けた本発明の別の実施の
形態を示す。すなわち図示したように、長方形の真空チ
ャンバー10の下側壁とそれに対向した上側壁にはそれぞ
れカソード電極すなわち高周波電極11が四つずつ対称的
に設けられている。そして真空チャンバー10内において
上下両側の高周波電極11の中間位置すなわち真空チャン
バー1の長手方向中央軸線位置に沿って共通のアノード
電極12が配置されている。アノード電極12は図1に示す
実施の形態の場合と同様にアースに接続されている。上
下各側の高周波電極11は二つずつ対を成して共通のマッ
チング回路網及び高周波電源13に接続されている。従っ
て、八つの高周波電極11に対してその半分の四つの高周
波電源13が使用される。
FIGS. 2 and 3 show another embodiment of the present invention in which a large number of cathode electrodes are provided on both sides of an anode electrode. That is, as shown, four cathode electrodes, that is, four high-frequency electrodes 11 are provided symmetrically on the lower wall of the rectangular vacuum chamber 10 and on the upper wall facing the same, respectively. In the vacuum chamber 10, a common anode electrode 12 is arranged along an intermediate position between the upper and lower high-frequency electrodes 11, that is, a longitudinal central axis position of the vacuum chamber 1. The anode electrode 12 is connected to the ground as in the embodiment shown in FIG. The upper and lower high-frequency electrodes 11 are connected to a common matching circuit network and a high-frequency power supply 13 in pairs. Therefore, four high-frequency power supplies 13 that are half of the eight high-frequency electrodes 11 are used.

【0013】また、各高周波電極11の両側と中央のアノ
ード電極12との間には図示したように、孔径が3mm以下
のパンチングメタルまたはメッシュメタルから成るアー
ス電位に接続された仕切り部材14がそれぞれ設けられて
いる。これらの仕切り部材14は、図1における仕切り部
材6と同様に、各高周波電極11と中央のアノード電極12
との間に画定された空間内に生成される放電プラズマを
閉じこめる働きをすると共に、隣接高周波電極11間の高
周波干渉を抑制する。
As shown in the figure, between each side of each of the high-frequency electrodes 11 and the central anode electrode 12, there is provided a partition member 14 made of a punching metal or mesh metal having a hole diameter of 3 mm or less and connected to a ground potential. Is provided. These partition members 14 are, like the partition member 6 in FIG. 1, each of the high-frequency electrodes 11 and the central anode electrode 12.
And confine the discharge plasma generated in the space defined between them, and suppress high-frequency interference between adjacent high-frequency electrodes 11.

【0014】図3には、図2の装置における一つの高周
波電極11とアノード電極12との関連構成の詳細を拡大し
て示す。高周波電極11は真空チャンバー10の壁に設けた
開口部に例えばテフロンやアルミナから成る絶縁部材15
を介して真空密封的に取付けられている。また高周波電
極11は内部に水冷チャネル16を備えている。高周波電極
11の表面すなわちアノード電極12に対向した面上にはア
ルミニウム製の台座17が固着手段18によって固定され、
その上に静電吸着電極19が設けられ、この静電吸着電極
19上に処理すべき基板、例えばフイルム状基板(図示て
いない)がアルミナ製のクランプ20によって装着され
る。一般に、静電吸着電極19による吸着力は、処理すべ
き基板の表面形状に依存し、使用される基板としては吸
着すべき導体に制限があり、しかもパターン形成のため
にレジストマスクを用いる表面に凸凹があるので、強く
できない。また、基板の導体パターンでは強く、それ以
外の部分では弱い。さらに基板の熱膨張は材質により異
なり、基板の導体パターンでは熱膨張も大きく、プラズ
マ処理中に膨みが発生し易い。この皺寄せが基板の端面
に生じると、基板の端部で異常放電が生じることにな
る。また静電吸着電極19の表面材がプラズマでエッチン
グされ、その結果寿命が短くなる。そのため、アルミナ
製のクランプ20は、図示したように基板の周囲縁部を覆
うように構成される。さらに静電吸着電極19にはリード
線21を介して直流電源(図示していない)が接続され、
この直流電源は好ましくは全てまたは幾つかの静電吸着
電極19に対して共通に設けられ得る。
FIG. 3 is an enlarged view showing details of the configuration of one high-frequency electrode 11 and one anode electrode 12 in the apparatus shown in FIG. The high-frequency electrode 11 has an opening provided in the wall of the vacuum chamber 10 in an insulating member 15 made of, for example, Teflon or alumina.
And is mounted in a vacuum-tight manner through. The high-frequency electrode 11 has a water cooling channel 16 inside. High frequency electrode
A pedestal 17 made of aluminum is fixed on the surface of 11, that is, the surface facing the anode electrode 12, by fixing means 18,
An electrostatic attraction electrode 19 is provided thereon, and this electrostatic attraction electrode
A substrate to be processed, for example, a film-like substrate (not shown) is mounted on the substrate 19 by a clamp 20 made of alumina. In general, the attraction force of the electrostatic attraction electrode 19 depends on the surface shape of the substrate to be processed, and as a substrate to be used, there are restrictions on conductors to be attracted and, moreover, at the surface where a resist mask is used for pattern formation. Because there are irregularities, it cannot be strengthened. Also, it is strong in the conductor pattern of the substrate and weak in other portions. Further, the thermal expansion of the substrate differs depending on the material. The thermal expansion is large in the conductor pattern of the substrate, and swelling is likely to occur during the plasma processing. When this wrinkling occurs on the end surface of the substrate, abnormal discharge occurs at the end of the substrate. Further, the surface material of the electrostatic attraction electrode 19 is etched by the plasma, so that the life is shortened. Therefore, the clamp 20 made of alumina is configured to cover the peripheral edge of the substrate as illustrated. Further, a DC power supply (not shown) is connected to the electrostatic attraction electrode 19 via a lead wire 21.
This DC power supply can preferably be provided in common for all or some of the electrostatic chucking electrodes 19.

【0015】中央のアノード電極12は内部に水冷チャネ
ル22が設けられている。またアノード電極12と各高周波
電極11との間の空間において中央のアノード電極12寄り
にエッチングガス供給用ガスパイプ23が設けられてい
る。エッチングガスとしてはフッ素を含むハロゲンガス
とOやNの混合ガス、或いはこの混合ガスにさらに
CHFなどのCHを含むガスを混合したものなどが使
用され得る。
The central anode electrode 12 has a water cooling channel 22 provided therein. An etching gas supply gas pipe 23 is provided near the center anode electrode 12 in the space between the anode electrode 12 and each high-frequency electrode 11. As the etching gas, a mixed gas of a halogen gas containing fluorine and O 2 or N 2 , or a mixed gas of this mixed gas and a gas containing CH such as CHF 3 can be used.

【0016】各高周波電極2の両側に設けら、プラズマ
領域を限定する仕切り部材14は、高周波プラズマによっ
て誘起される電位を最小にするために上述のようにアー
ス電位にされ、また各高周波電極11毎のガスの移動すな
わちガスの導入及び排気を容易にするため、仕切り部材
14は図1の実施の形態の場合と同様に好ましくは開口率
45〜25%程度、しかもプラズマの漏れを抑制するため各
孔の径3mm以下のメッシュやパンチングメタルで構成さ
れる。
The partition members 14 provided on both sides of each high-frequency electrode 2 for limiting the plasma region are set to the ground potential as described above in order to minimize the potential induced by the high-frequency plasma. In order to facilitate the movement of each gas, that is, the introduction and exhaust of gas, a partition member
14 is preferably an aperture ratio as in the embodiment of FIG.
It is composed of a mesh or punched metal with a diameter of 3 mm or less for each hole to suppress plasma leakage at about 45 to 25%.

【0017】ところで、図2及び図3に示す実施の形態
では、二つの高周波電極11に対して一つの高周波電源13
が用いられているが、必要により三つ以上の高周波電極
11を一つの高周波電源に接続するように構成することも
できる。また、図示装置は、バッチ型装置として実施し
ているが、当然他の形式の装置として応用することも可
能である。
In the embodiment shown in FIGS. 2 and 3, one high-frequency power source 13 is connected to two high-frequency electrodes 11.
Is used, but if necessary, three or more high-frequency electrodes
11 may be connected to one high-frequency power supply. Also, the illustrated apparatus is implemented as a batch type apparatus, but can be applied as another type of apparatus.

【0018】次に、図示装置を用いてポリイミド膜a、
b、c、d、e、f、g、hをエッチングした実験例を
示す。装置の動作条件として、高周波電極とアノード電
極の距離(これはガス、圧力及び放電周波数によって決
められる)を110mmとし、真空チャンバー内にCF4と
O2それぞれ200SCCM、2000 SCCM ずつ全部で2200 SCCM
流し、I.真空チャンバー内の圧力を30Pa、投入高周
波電力を2.5kW、エッチング時間を20分とした場合と、
II.真空チャンバー内の圧力を12Pa、投入高周波電力
を2.0kW、エッチング時間20分とした場合にえおける各
基板における平均エッチング深さ(μm)を測定したと
ころ下記の結果が得られた 基 板 条件Iの場合 条件IIの場合 a 7.1 5.3 b 7.4 5.5 c 7.6 5.4 d 7.0 5.0 e 6.8 4.9 f 6.9 5.0 g 7.1 5.3 h 7.8 4.8
Next, a polyimide film a,
Experimental examples in which b, c, d, e, f, g, and h are etched will be described. The operating conditions of the device are as follows: the distance between the high-frequency electrode and the anode electrode (which is determined by the gas, pressure and discharge frequency) is 110 mm, and CF4 and O2 are 200 SCCM and 2000 SCCM, respectively, in a vacuum chamber.
Sink; When the pressure in the vacuum chamber is 30 Pa, the input high frequency power is 2.5 kW, and the etching time is 20 minutes,
II. When the average etching depth (μm) of each substrate was measured when the pressure in the vacuum chamber was 12 Pa, the applied high frequency power was 2.0 kW, and the etching time was 20 minutes, the following results were obtained. In the case of condition II In the case of condition II a 7.1 5.3 b 7.4 5.5 c 7.6 5.4 d 7.0 5.0 e 6.8 4.9 f 6.9 5.0 g 7 .1 5.3 h 7.8 4.8

【0019】[0019]

【発明の効果】以上説明してきたように、本発明による
プラズマ処理装置においては、真空チャンバー内に設け
られた複数の高周波電極の各々のプラズマ生成空間を画
定する仕切り部材を設け、各仕切り部材がガスを通過さ
せるが各高周波電極と組合さった各プラズマ生成空間内
に生成されたプラズマの漏れを実質的に抑制するように
構成されているので、各高周波電極によるプラズマ領域
を限定することができ、それにより隣接高周波電極同志
の高周波干渉が避けられ、ハンチング現象などの発生を
防止することができ、基板の並列処理を可能して生産性
を向上させることができるようになる。
As described above, in the plasma processing apparatus according to the present invention, the partition members for defining the plasma generation space of each of the plurality of high-frequency electrodes provided in the vacuum chamber are provided, and each partition member is Since it is configured to allow gas to pass therethrough but to substantially suppress leakage of plasma generated in each plasma generation space combined with each high-frequency electrode, it is possible to limit the plasma region by each high-frequency electrode, Thereby, high-frequency interference between adjacent high-frequency electrodes can be avoided, hunting phenomenon and the like can be prevented, and parallel processing of substrates can be performed to improve productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施の形態によるプラズマ処理
装置を示す概略線図。
FIG. 1 is a schematic diagram showing a plasma processing apparatus according to one embodiment of the present invention.

【図2】本発明の別の実施の形態によるプラズマ処理装
置を示す概略線図。
FIG. 2 is a schematic diagram showing a plasma processing apparatus according to another embodiment of the present invention.

【図3】図2に示すプラズマ処理装置の細部の構造を示
す拡大縦断面図。
FIG. 3 is an enlarged vertical sectional view showing a detailed structure of the plasma processing apparatus shown in FIG. 2;

【図4】従来のプラズマ処理装置の一例を示す概略線
図。
FIG. 4 is a schematic diagram illustrating an example of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1:真空チャンバー 2:高周波電極 3:アノード電極(対向電極) 4:共通のマッチング回路網 5:共通の高周波電源 6:仕切り部材 1: vacuum chamber 2: high-frequency electrode 3: anode electrode (counter electrode) 4: common matching circuit network 5: common high-frequency power supply 6: partition member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 賀文 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 菊池 正志 神奈川県茅ケ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 池田 均 神奈川県茅ケ崎市萩園2500番地 日本真空 技術株式会社内 (72)発明者 大園 雅 神奈川県茅ケ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4K030 FA03 GA02 KA08 KA12 4K057 DA20 DD01 DE01 DE06 DE11 DE20 DM03 DM06 DM28 DM33 DM35 DM39 DN01 DN02 5F004 AA16 BA06 BA09 BB11 BB18 BB21 BB22 BB23 BB25 BB29 DA00 DA04 DA16 DA25 DA26 DB25 5F045 AA08 DP03 DP13 DQ10 EH06 EH14 EJ02 EM03 EM05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kafumi Ota 523 Yokota, Sanmu-cho, Yamatake-gun, Chiba Pref. Japan Vacuum Engineering Co., Ltd. Within Technology Co., Ltd. (72) Inventor Hitoshi Ikeda 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Nippon Vacuum Technology Co., Ltd. FA03 GA02 KA08 KA12 4K057 DA20 DD01 DE01 DE06 DE11 DE20 DM03 DM06 DM28 DM33 DM35 DM39 DN01 DN02 5F004 AA16 BA06 BA09 BB11 BB18 BB21 BB22 BB23 BB25 BB29 DA00 DA04 DA16 DA25 DA26 DB25 5F045 AA10 DP03E13D03E03D13E03D13E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一つの真空チャンバー内に設けられた複数
の高周波電極のそれぞれに処理すべき基板を装着し、真
空チャンバー内に発生されたプラズマを利用して所定の
処理を行うようにしたプラズマ処理装置において、 真空チャンバー内に設けられた複数の高周波電極の各々
のプラズマ生成空間を画定する仕切り部材を設け、各仕
切り部材がガスを通過させるが各高周波電極と組合さっ
た各プラズマ生成空間内に生成されたプラズマの漏れを
実質的に抑制するように構成されていることを特徴とす
るプラズマ処理装置。
1. A plasma in which a substrate to be processed is mounted on each of a plurality of high-frequency electrodes provided in one vacuum chamber, and a predetermined process is performed using plasma generated in the vacuum chamber. In the processing apparatus, a partition member that defines a plasma generation space of each of the plurality of high-frequency electrodes provided in the vacuum chamber is provided, and each partition member allows a gas to pass therethrough, but in each plasma generation space combined with each high-frequency electrode. A plasma processing apparatus configured to substantially suppress leakage of generated plasma.
【請求項2】各仕切り部材が、高周波プラズマで誘起さ
れる電位を最小にするようにアース電位に接続されるこ
とを特徴とする請求項1に記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein each partition member is connected to a ground potential so as to minimize a potential induced by the high-frequency plasma.
【請求項3】各仕切り部材が、開口率70〜20%、各開口
の径3mm以下のメッシュまたはパンチングメタルから成
ることを特徴とする請求項1に記載のプラズマ処理装
置。
3. The plasma processing apparatus according to claim 1, wherein each partition member is made of a mesh or punched metal having an opening ratio of 70 to 20% and a diameter of each opening of 3 mm or less.
【請求項4】各仕切り部材が、開口率45〜25%、各開口
の径3mm以下のメッシュまたはパンチングメタルから成
ることを特徴とする請求項1に記載のプラズマ処理装
置。
4. The plasma processing apparatus according to claim 1, wherein each partition member is made of a mesh or punched metal having an opening ratio of 45 to 25% and a diameter of each opening of 3 mm or less.
JP24990499A 1999-09-03 1999-09-03 Plasma processing equipment Expired - Fee Related JP4576011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24990499A JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24990499A JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001077091A true JP2001077091A (en) 2001-03-23
JP4576011B2 JP4576011B2 (en) 2010-11-04

Family

ID=17199943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24990499A Expired - Fee Related JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4576011B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142138A1 (en) * 2008-05-21 2009-11-26 シャープ株式会社 Plasma processing apparatus
JP2010157511A (en) * 2003-01-16 2010-07-15 Japan Science & Technology Agency High-frequency power supply device and plasma generator
US7927455B2 (en) 2004-10-22 2011-04-19 Sharp Kabushiki Kaisha Plasma processing apparatus
KR101351678B1 (en) * 2010-11-25 2014-01-14 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus and processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120153A (en) * 1992-10-06 1994-04-28 Canon Inc Film-forming apparatus
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH0786238A (en) * 1993-06-29 1995-03-31 Kokusai Electric Co Ltd Electrode for plasma excitation
JPH0817740A (en) * 1994-06-27 1996-01-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JPH08148295A (en) * 1994-11-17 1996-06-07 Tokyo Electron Ltd Plasma treatment apparatus
JPH09320966A (en) * 1996-05-27 1997-12-12 Sharp Corp Plasma enhanced chemical vapor deposition system and plasma etching system
JPH1053883A (en) * 1996-08-07 1998-02-24 Toyo Commun Equip Co Ltd Reactive ion etching device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120153A (en) * 1992-10-06 1994-04-28 Canon Inc Film-forming apparatus
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH0786238A (en) * 1993-06-29 1995-03-31 Kokusai Electric Co Ltd Electrode for plasma excitation
JPH0817740A (en) * 1994-06-27 1996-01-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JPH08148295A (en) * 1994-11-17 1996-06-07 Tokyo Electron Ltd Plasma treatment apparatus
JPH09320966A (en) * 1996-05-27 1997-12-12 Sharp Corp Plasma enhanced chemical vapor deposition system and plasma etching system
JPH1053883A (en) * 1996-08-07 1998-02-24 Toyo Commun Equip Co Ltd Reactive ion etching device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157511A (en) * 2003-01-16 2010-07-15 Japan Science & Technology Agency High-frequency power supply device and plasma generator
US7927455B2 (en) 2004-10-22 2011-04-19 Sharp Kabushiki Kaisha Plasma processing apparatus
WO2009142138A1 (en) * 2008-05-21 2009-11-26 シャープ株式会社 Plasma processing apparatus
JP2009283235A (en) * 2008-05-21 2009-12-03 Sharp Corp Plasma treatment device
JP4558067B2 (en) * 2008-05-21 2010-10-06 シャープ株式会社 Plasma processing equipment
KR101351678B1 (en) * 2010-11-25 2014-01-14 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus and processing system

Also Published As

Publication number Publication date
JP4576011B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
CN112768335B (en) Plasma processing apparatus
JP2748886B2 (en) Plasma processing equipment
US20080317965A1 (en) Plasma processing apparatus and method
JP5702968B2 (en) Plasma processing apparatus and plasma control method
JP2001257199A (en) Plasma processing method and device thereof
JPH08107101A (en) Plasma processing device and plasma processing method
JP2001053060A (en) Plasma processing method and apparatus
JP2007043148A (en) Plasma etching system
US4340461A (en) Modified RIE chamber for uniform silicon etching
JPH11260596A (en) Plasma processing device and plasma processing method
JP2001181848A (en) Plasma treatment equipment
US5543688A (en) Plasma generation apparatus with interleaved electrodes and corresponding method
KR100803825B1 (en) Plasma etching system
JP2001077091A (en) Plasma processing device
JP3417328B2 (en) Plasma processing method and apparatus
JP4585648B2 (en) Plasma processing equipment
JPS60123032A (en) Plasma treatment and device thereof
JP2005079416A (en) Plasma processing device
JP2000031121A (en) Plasma discharger and plasma treating device
JPH06216078A (en) Equipment and method for capacitive coupling discharge processing of wafer
US6432730B2 (en) Plasma processing method and apparatus
KR102555016B1 (en) Plasma ethching apparatus
JP4528418B2 (en) Plasma processing equipment
JP2008166844A (en) Plasma processing apparatus
JPS6126223A (en) Method and device for etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees