JP4576011B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4576011B2
JP4576011B2 JP24990499A JP24990499A JP4576011B2 JP 4576011 B2 JP4576011 B2 JP 4576011B2 JP 24990499 A JP24990499 A JP 24990499A JP 24990499 A JP24990499 A JP 24990499A JP 4576011 B2 JP4576011 B2 JP 4576011B2
Authority
JP
Japan
Prior art keywords
frequency
plasma
electrodes
vacuum chamber
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24990499A
Other languages
Japanese (ja)
Other versions
JP2001077091A (en
Inventor
日出夫 竹井
道夫 石川
賀文 太田
正志 菊池
均 池田
雅 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24990499A priority Critical patent/JP4576011B2/en
Publication of JP2001077091A publication Critical patent/JP2001077091A/en
Application granted granted Critical
Publication of JP4576011B2 publication Critical patent/JP4576011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一つの真空チャンバー内に複数の電極を設け、各電極にそれぞれ処理すべき基板を装着し、真空チャンバー内に発生されたプラズマを利用して例えばエッチング、スパッタリングまたは化学気相成長(化学蒸着)などの所定の処理を行うようにしたプラズマ処理装置に関するものである。
【0002】
【従来の技術】
近年、半導体や電子部品における薄膜形成や機能膜形成、パターン形成にプラズマを利用した種々の装置が用いられている。
添付図面の図4にはこの種の装置の従来例を示し、Aはそれぞれ排気系を備えた真空チャンバーで、各真空チャンバーA内には基板電極Bがそれぞれの対向電極Cと対を成して配列されている。各基板電極Bはマッチング回路網Dを介してそれぞれの高周波励起電源Eに接続されている。なお、各対向電極Cは図示したようにそれぞれ接地されている。
【0003】
【発明が解決しようとする課題】
このような従来の装置においては、生産性の観点では満足されるが、基板電極の数だけマッチング回路網及び高周波励起電源を設ける必要がある。そのため高周波電極の設けられる数が増えれば増える程マッチング回路網及び高周波励起電源の使用される数が増え、その分、装置のコストが嵩むことになる。
このようにこの種の従来の装置は、設備に掛かるコストが高く、低コスト化が求められている。
【0004】
装置のコストを低減するために、真空チャンバー内に設けられる複数の高周波電極を共通のマッチング回路網及び高周波励起電源に接続したものも提案されている。しかしながら、そのような構成のものでは、それぞれの電極容量及び電極を装着している接続板(通常銅製)のインダクタンスのばらつきのために一番インピーダンスの低下する電極に放電が集中し、パワー分配が不均一となり、高周波励起の利点である安定したプラズマの生成が困難となる。すなわち隣接した高周波電極はプラズマ空間を共有し、複数の入力源に対して複数の高周波電力の供給がなされるため、一系統の高周波電源で複数の高周波電極を励起させる構成においては、一系統のマッチング回路網及び制御系では適切に制御ができず、ハンチングや高周波電力の印加継続が不可能な状態が生じ得る。このような事情で、それぞれの高周波電極に装着された基板を並列処理することは、例えばスパッタ中や化学蒸着中のクリーニングを除いて実際に行われていなかった。
さらに、投入電力の比較的小さい比較的小型の装置の場合には、隣接した高周波電極のプラズマ空間における相互干渉はそれほど大きくなく抑制可能であるが、大型で大電力を投入する装置ではプラズマ空間における相互干渉が大きく抑制することはできなくなり、大電力を投入する大型の装置の実現を阻んでいた。
【0005】
そこで、このような従来技術の抱える問題点を解決するために、装置の本来の機能を維持しながら真空チャンバー内に設けられるそれぞれの高周波電極のプラズマ空間を画定して基板の並列処理を可能にしたプラズマ処理装置を提供することを目的としている。
【0006】
上記目的を達成するために、本発明によれば、一つの真空チャンバーと、該真空チャンバー内に設けられた複数の高周波電極と、該複数の高周波電極に接続されこれらの高周波電極を励起させる共通の高周波電源とを備え、該真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、
複数の高周波電極に対向する一つの対向電極と、該対向電極と複数の高周波電極の間との間にのびて複数の高周波電極の各々のプラズマ生成空間を画定する仕切り部材を設け、
各仕切り部材が、開口率70〜20%、各開口の径3mm以下のメッシュまたはパンチングメタルから構成され,
前記一つの対向電極が、前記真空チャンバの長手方向中央軸線位置に沿って配置されており、前記複数の高周波電極が前記対向電極を挟んで両側に設けられていることを特徴としている。
【0007】
本発明において、各仕切り部材は、好ましくは、高周波プラズマで誘起される電位を最小にするようにアース電位に接続され得る。
【0008】
また、各仕切り部材は、好ましくは、開口率45〜25%、各開口の径3mm以下のメッシュまたはパンチングメタルから成り得る。
【0009】
このように構成した本発明による装置おいては、それぞれの高周波電極で生成されるプラズマは仕切り部材によって画定されたプラズマ生成空間内に有効に閉じ込められると共に、プラズマ処理に必要なガスの導入及び排気機能も維持される。
また、仕切り部材として使用され得るメッシュまたはパンチングメタルにおける各開口の径を3mm以下とすることにより、隣接した高周波電極同志の高周波干渉が避けられ、ハンチング現象の発生を抑制することができる。
このような構成をもつ本発明によれば、隣接した高周波電極同志の高周波干渉が避けられるため、大電力を投入する大型の装置を提供することができる。
【0010】
【発明の実施の形態】
以下、添付図面の図1〜図3を参照して本発明の実施の形態を説明する。
図1には、本発明をプラズマエッチング装置として実施している一つの形態を概略的に示す。1は図示していない排気系及び放電用ガスに接続された真空チャンバーであり、この真空チャンバー1の下側壁には四つの基板電極すなわちカソード電極を構成する高周波電極2が設けられ、これら四つの高周波電極2に対向して真空チャンバー1の上側壁に沿って共通のアノード電極3が設けられ、この対向電極3は接地されている。隣接した二つの高周波電極2は共通のマッチング回路網4を介して共通の高周波電源5に接続されている。
【0011】
また、隣接した高周波電極2の間及び両端の高周波電極2の外方端には、メッシュまたはパンチングメタル製の仕切り部材6が設けられ、各仕切り部材6は高周波電極2側とアノード電極3との間にのびてプラズマ生成空間を画定している。
各仕切り部材6は、高周波プラズマによって誘起される電位を最小にするためにアース電位に接続され、また各仕切り部材6を構成しているメッシュまたはパンチングメタルとしては、各高周波電極2毎のガスの移動すなわちガスの導入及び排気を容易にししかもプラズマの漏れを抑制するために、開口率70〜20%、好ましくは、開口率45〜25%、各孔の径3mm以下のものが使用され得る。ここで開口率に関しては、開口率が大きいと放電の干渉が無視できなくなり、逆に小さすぎるとガス排気ができず、エッチングなどの反応速度が遅くなったり、分布のばらつきが大きくなるため上記の範囲が好ましい。
なお、図示実施の形態において、高周波電極2の数は、単に例示のためのものであり、当然二つまたは三つ或いは四つ以上でもよい。
【0012】
図2及び図3には、アノード電極を挟んで両側に多数のカソード電極を設けた本発明の別の実施の形態を示す。すなわち図示したように、長方形の真空チャンバー10の下側壁とそれに対向した上側壁にはそれぞれカソード電極すなわち高周波電極11が四つずつ対称的に設けられている。そして真空チャンバー10内において上下両側の高周波電極11の中間位置すなわち真空チャンバー1の長手方向中央軸線位置に沿って共通のアノード電極12が配置されている。アノード電極12は図1に示す実施の形態の場合と同様にアースに接続されている。上下各側の高周波電極11は二つずつ対を成して共通のマッチング回路網及び高周波電源13に接続されている。従って、八つの高周波電極11に対してその半分の四つの高周波電源13が使用される。
【0013】
また、各高周波電極11の両側と中央のアノード電極12との間には図示したように、孔径が3mm以下のパンチングメタルまたはメッシュメタルから成るアース電位に接続された仕切り部材14がそれぞれ設けられている。これらの仕切り部材14は、図1における仕切り部材6と同様に、各高周波電極11と中央のアノード電極12との間に画定された空間内に生成される放電プラズマを閉じこめる働きをすると共に、隣接高周波電極11間の高周波干渉を抑制する。
【0014】
図3には、図2の装置における一つの高周波電極11とアノード電極12との関連構成の詳細を拡大して示す。
高周波電極11は真空チャンバー10の壁に設けた開口部に例えばテフロンやアルミナから成る絶縁部材15を介して真空密封的に取付けられている。また高周波電極11は内部に水冷チャネル16を備えている。高周波電極11の表面すなわちアノード電極12に対向した面上にはアルミニウム製の台座17が固着手段18によって固定され、その上に静電吸着電極19が設けられ、この静電吸着電極19上に処理すべき基板、例えばフイルム状基板(図示ていない)がアルミナ製のクランプ20によって装着される。一般に、静電吸着電極19による吸着力は、処理すべき基板の表面形状に依存し、使用される基板としては吸着すべき導体に制限があり、しかもパターン形成のためにレジストマスクを用いる表面に凸凹があるので、強くできない。また、基板の導体パターンでは強く、それ以外の部分では弱い。さらに基板の熱膨張は材質により異なり、基板の導体パターンでは熱膨張も大きく、プラズマ処理中に膨みが発生し易い。この皺寄せが基板の端面に生じると、基板の端部で異常放電が生じることになる。また静電吸着電極19の表面材がプラズマでエッチングされ、その結果寿命が短くなる。そのため、アルミナ製のクランプ20は、図示したように基板の周囲縁部を覆うように構成される。
さらに静電吸着電極19にはリード線21を介して直流電源(図示していない)が接続され、この直流電源は好ましくは全てまたは幾つかの静電吸着電極19に対して共通に設けられ得る。
【0015】
中央のアノード電極12は内部に水冷チャネル22が設けられている。またアノード電極12と各高周波電極11との間の空間において中央のアノード電極12寄りにエッチングガス供給用ガスパイプ23が設けられている。エッチングガスとしてはフッ素を含むハロゲンガスとOやNの混合ガス、或いはこの混合ガスにさらにCHFなどのCHを含むガスを混合したものなどが使用され得る。
【0016】
各高周波電極2の両側に設けら、プラズマ領域を限定する仕切り部材14は、高周波プラズマによって誘起される電位を最小にするために上述のようにアース電位にされ、また各高周波電極11毎のガスの移動すなわちガスの導入及び排気を容易にするため、仕切り部材14は図1の実施の形態の場合と同様に好ましくは開口率45〜25%程度、しかもプラズマの漏れを抑制するため各孔の径3mm以下のメッシュやパンチングメタルで構成される。
【0017】
ところで、図2及び図3に示す実施の形態では、二つの高周波電極11に対して一つの高周波電源13が用いられているが、必要により三つ以上の高周波電極11を一つの高周波電源に接続するように構成することもできる。
また、図示装置は、バッチ型装置として実施しているが、当然他の形式の装置として応用することも可能である。
【0018】
次に、図示装置を用いてポリイミド膜a、b、c、d、e、f、g、hをエッチングした実験例を示す。
装置の動作条件として、高周波電極とアノード電極の距離(これはガス、圧力及び放電周波数によって決められる)を110mmとし、真空チャンバー内にCF4とO2それぞれ200SCCM、2000 SCCM ずつ全部で2200 SCCM 流し、I.真空チャンバー内の圧力を30Pa、投入高周波電力を2.5kW、エッチング時間を20分とした場合と、II.真空チャンバー内の圧力を12Pa、投入高周波電力を2.0kW、エッチング時間20分とした場合にえおける各基板における平均エッチング深さ(μm)を測定したところ下記の結果が得られた

Figure 0004576011
【0019】
【発明の効果】
以上説明してきたように、本発明によるプラズマ処理装置においては、真空チャンバー内に設けられた複数の高周波電極の各々のプラズマ生成空間を画定する仕切り部材を設け、各仕切り部材がガスを通過させるが各高周波電極と組合さった各プラズマ生成空間内に生成されたプラズマの漏れを実質的に抑制するように構成されているので、各高周波電極によるプラズマ領域を限定することができ、それにより隣接高周波電極同志の高周波干渉が避けられ、ハンチング現象などの発生を防止することができ、基板の並列処理を可能して生産性を向上させることができるようになる。
【図面の簡単な説明】
【図1】本発明の一つの実施の形態によるプラズマ処理装置を示す概略線図。
【図2】本発明の別の実施の形態によるプラズマ処理装置を示す概略線図。
【図3】図2に示すプラズマ処理装置の細部の構造を示す拡大縦断面図。
【図4】従来のプラズマ処理装置の一例を示す概略線図。
【符号の説明】
1:真空チャンバー
2:高周波電極
3:アノード電極(対向電極)
4:共通のマッチング回路網
5:共通の高周波電源
6:仕切り部材[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of electrodes are provided in one vacuum chamber, a substrate to be processed is mounted on each electrode, and etching, sputtering, or chemical vapor deposition (for example) is performed using plasma generated in the vacuum chamber. The present invention relates to a plasma processing apparatus that performs a predetermined process such as chemical vapor deposition.
[0002]
[Prior art]
In recent years, various apparatuses using plasma have been used for thin film formation, functional film formation, and pattern formation in semiconductors and electronic components.
FIG. 4 of the accompanying drawings shows a conventional example of this type of apparatus. A is a vacuum chamber provided with an exhaust system, and a substrate electrode B is paired with each counter electrode C in each vacuum chamber A. Are arranged. Each substrate electrode B is connected to a respective high-frequency excitation power source E through a matching network D. Each counter electrode C is grounded as shown.
[0003]
[Problems to be solved by the invention]
In such a conventional apparatus, although it is satisfactory from the viewpoint of productivity, it is necessary to provide matching networks and high-frequency excitation power supplies as many as the number of substrate electrodes. Therefore, as the number of high-frequency electrodes provided increases, the number of matching circuit networks and high-frequency excitation power supplies used increases, and the cost of the apparatus increases accordingly.
As described above, this type of conventional apparatus has a high cost for equipment and is required to be reduced in cost.
[0004]
In order to reduce the cost of the apparatus, there has been proposed one in which a plurality of high-frequency electrodes provided in a vacuum chamber are connected to a common matching network and a high-frequency excitation power source. However, in such a configuration, the discharge is concentrated on the electrode with the lowest impedance due to variations in the inductance of each electrode capacitor and the connection plate (usually made of copper) on which the electrode is mounted, and power distribution is reduced. It becomes non-uniform and it becomes difficult to generate stable plasma, which is an advantage of high-frequency excitation. That is, adjacent high-frequency electrodes share a plasma space, and a plurality of high-frequency powers are supplied to a plurality of input sources. Therefore, in a configuration in which a plurality of high-frequency electrodes are excited by a single high-frequency power source, The matching network and the control system cannot be appropriately controlled, and a state where hunting or continuation of high-frequency power application is impossible may occur. Under such circumstances, parallel processing of the substrates mounted on the respective high-frequency electrodes has not been actually performed except for cleaning during sputtering or chemical vapor deposition, for example.
Furthermore, in the case of a relatively small device with relatively small input power, the mutual interference in the plasma space between adjacent high-frequency electrodes can be suppressed to a relatively small level. Mutual interference cannot be greatly suppressed, which has hindered the realization of a large-scale device for supplying high power.
[0005]
Therefore, in order to solve such problems of the prior art, it is possible to define the plasma space of each high-frequency electrode provided in the vacuum chamber while maintaining the original function of the apparatus and to perform parallel processing of substrates. An object of the present invention is to provide a plasma processing apparatus.
[0006]
In order to achieve the above object, according to the present invention, one vacuum chamber, a plurality of high-frequency electrodes provided in the vacuum chamber, and a common connected to the plurality of high-frequency electrodes to excite these high-frequency electrodes In a plasma processing apparatus comprising a high frequency power source, and performing a predetermined process using plasma generated in the vacuum chamber,
One counter electrode facing the plurality of high-frequency electrodes, and a partition member extending between the counter electrode and the plurality of high-frequency electrodes to define a plasma generation space of each of the plurality of high-frequency electrodes,
Each partition member is composed of a mesh or punching metal with an aperture ratio of 70 to 20% and a diameter of each opening of 3 mm or less,
The one counter electrode is arranged along a longitudinal central axis position of the vacuum chamber, and the plurality of high-frequency electrodes are provided on both sides of the counter electrode .
[0007]
In the present invention, each partition member may preferably be connected to a ground potential so as to minimize the potential induced by the high frequency plasma.
[0008]
Further, the partition member is good Mashiku, the aperture ratio from 45 to 25%, may consist of the following mesh or punching metal diameter 3mm of each opening.
[0009]
In the apparatus according to the present invention configured as described above, the plasma generated by each high-frequency electrode is effectively confined in the plasma generation space defined by the partition member, and the introduction and exhaust of gases necessary for plasma processing are performed. Function is also maintained.
Further, by setting the diameter of each opening in the mesh or punching metal that can be used as a partition member to 3 mm or less, high-frequency interference between adjacent high-frequency electrodes can be avoided, and the occurrence of a hunting phenomenon can be suppressed.
According to the present invention having such a configuration, high-frequency interference between adjacent high-frequency electrodes can be avoided, so that a large-scale device for supplying high power can be provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.
FIG. 1 schematically shows one embodiment in which the present invention is implemented as a plasma etching apparatus. Reference numeral 1 denotes a vacuum chamber connected to an exhaust system (not shown) and a discharge gas. Four substrate electrodes, that is, high-frequency electrodes 2 constituting a cathode electrode are provided on the lower side wall of the vacuum chamber 1. A common anode electrode 3 is provided along the upper wall of the vacuum chamber 1 so as to face the high-frequency electrode 2, and the counter electrode 3 is grounded. Two adjacent high-frequency electrodes 2 are connected to a common high-frequency power source 5 through a common matching network 4.
[0011]
Further, a partition member 6 made of mesh or punching metal is provided between the adjacent high-frequency electrodes 2 and at the outer ends of the high-frequency electrodes 2 at both ends, and each partition member 6 is connected to the high-frequency electrode 2 side and the anode electrode 3. A plasma generation space is defined in between.
Each partition member 6 is connected to a ground potential in order to minimize the potential induced by the high-frequency plasma, and the mesh or punching metal constituting each partition member 6 is a gas for each high-frequency electrode 2. In order to facilitate movement, that is, introduction of gas and exhaust, and suppress plasma leakage, an aperture ratio of 70 to 20%, preferably an aperture ratio of 45 to 25%, and a diameter of each hole of 3 mm or less can be used. Here, regarding the aperture ratio, if the aperture ratio is large, the interference of discharge cannot be ignored. If the aperture ratio is too small, the gas cannot be exhausted, and the reaction rate such as etching becomes slow or the dispersion of the distribution becomes large. A range is preferred.
In the illustrated embodiment, the number of high-frequency electrodes 2 is merely for illustrative purposes, and may be two, three, or four or more.
[0012]
2 and 3 show another embodiment of the present invention in which a large number of cathode electrodes are provided on both sides of the anode electrode. That is, as shown in the figure, four cathode electrodes, that is, high-frequency electrodes 11 are provided symmetrically on the lower side wall of the rectangular vacuum chamber 10 and the upper side wall opposite thereto. In the vacuum chamber 10, a common anode electrode 12 is arranged along the middle position between the upper and lower high-frequency electrodes 11, that is, the longitudinal center axis position of the vacuum chamber 1. The anode electrode 12 is connected to the ground in the same manner as in the embodiment shown in FIG. Two high-frequency electrodes 11 on each of the upper and lower sides are connected to a common matching network and high-frequency power supply 13 in pairs. Accordingly, four high frequency power supplies 13, which are half of the eight high frequency electrodes 11, are used.
[0013]
Further, as shown in the drawing, partition members 14 connected to the ground potential made of punching metal or mesh metal having a hole diameter of 3 mm or less are provided between both sides of each high-frequency electrode 11 and the central anode electrode 12. Yes. These partition members 14 serve to confine discharge plasma generated in a space defined between each high-frequency electrode 11 and the central anode electrode 12 as well as the partition member 6 in FIG. High frequency interference between the high frequency electrodes 11 is suppressed.
[0014]
FIG. 3 shows an enlarged detail of a related configuration of one high-frequency electrode 11 and the anode electrode 12 in the apparatus of FIG.
The high-frequency electrode 11 is attached to an opening provided in the wall of the vacuum chamber 10 in a vacuum-sealed manner via an insulating member 15 made of, for example, Teflon or alumina. The high frequency electrode 11 has a water cooling channel 16 therein. On the surface of the high-frequency electrode 11, that is, on the surface facing the anode electrode 12, an aluminum pedestal 17 is fixed by an adhering means 18, and an electrostatic adsorption electrode 19 is provided on the aluminum pedestal 17. A substrate, for example a film substrate (not shown), to be mounted is mounted by means of an alumina clamp 20. In general, the adsorption force by the electrostatic adsorption electrode 19 depends on the surface shape of the substrate to be processed, and there are restrictions on the conductor to be adsorbed as the substrate to be used, and on the surface where a resist mask is used for pattern formation. Because of the unevenness, it cannot be strengthened. Moreover, it is strong in the conductor pattern of a board | substrate, and is weak in the other part. Furthermore, the thermal expansion of the substrate differs depending on the material, and the thermal expansion is large in the conductive pattern of the substrate, and the swelling is likely to occur during the plasma processing. When this wrinkle occurs on the end surface of the substrate, abnormal discharge occurs at the end portion of the substrate. Further, the surface material of the electrostatic adsorption electrode 19 is etched by plasma, and as a result, the lifetime is shortened. Therefore, the alumina clamp 20 is configured to cover the peripheral edge of the substrate as shown.
Further, a DC power source (not shown) is connected to the electrostatic chucking electrode 19 via a lead wire 21, and this DC power source can be preferably provided in common for all or several electrostatic chucking electrodes 19. .
[0015]
The central anode electrode 12 is provided with a water cooling channel 22 inside. In addition, an etching gas supply gas pipe 23 is provided near the central anode electrode 12 in the space between the anode electrode 12 and each high-frequency electrode 11. As the etching gas, a halogen gas containing fluorine and a mixed gas of O 2 or N 2 , or a mixture of this mixed gas with a gas containing CH such as CHF 3 may be used.
[0016]
The partition members 14 provided on both sides of each high-frequency electrode 2 to limit the plasma region are set to the ground potential as described above in order to minimize the potential induced by the high-frequency plasma, and the gas for each high-frequency electrode 11 is used. In order to facilitate the movement of gas, that is, the introduction and exhaust of gas, the partition member 14 preferably has an aperture ratio of about 45 to 25% as in the embodiment of FIG. Consists of mesh or punching metal with a diameter of 3mm or less.
[0017]
In the embodiment shown in FIGS. 2 and 3, one high frequency power source 13 is used for two high frequency electrodes 11, but if necessary, three or more high frequency electrodes 11 are connected to one high frequency power source. It can also be configured to.
Moreover, although the illustrated apparatus is implemented as a batch type apparatus, it is naturally possible to apply it as another type of apparatus.
[0018]
Next, experimental examples in which polyimide films a, b, c, d, e, f, g, and h are etched using the illustrated apparatus will be described.
As the operating conditions of the apparatus, the distance between the high-frequency electrode and the anode electrode (which is determined by the gas, pressure and discharge frequency) is 110 mm, and 2200 SCCM of CF4 and O2 are flown in the vacuum chamber at a rate of 200 SCCM and 2000 SCCM, respectively. . When the pressure in the vacuum chamber is 30 Pa, the input high frequency power is 2.5 kW, and the etching time is 20 minutes, II. When the average etching depth (μm) in each substrate was measured when the pressure in the vacuum chamber was 12 Pa, the input high frequency power was 2.0 kW, and the etching time was 20 minutes, the following results were obtained.
Figure 0004576011
[0019]
【The invention's effect】
As described above, in the plasma processing apparatus according to the present invention, the partition member that defines the plasma generation space of each of the plurality of high-frequency electrodes provided in the vacuum chamber is provided, and each partition member allows gas to pass therethrough. Since it is configured to substantially suppress leakage of plasma generated in each plasma generation space combined with each high-frequency electrode, it is possible to limit the plasma region by each high-frequency electrode, thereby the adjacent high-frequency electrode The mutual high frequency interference can be avoided, the occurrence of a hunting phenomenon and the like can be prevented, and the substrate can be processed in parallel to improve the productivity.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a plasma processing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a plasma processing apparatus according to another embodiment of the present invention.
3 is an enlarged longitudinal sectional view showing a detailed structure of the plasma processing apparatus shown in FIG.
FIG. 4 is a schematic diagram showing an example of a conventional plasma processing apparatus.
[Explanation of symbols]
1: Vacuum chamber 2: High-frequency electrode 3: Anode electrode (counter electrode)
4: Common matching network 5: Common high-frequency power supply 6: Partition member

Claims (3)

一つの真空チャンバーと、該真空チャンバー内に設けられた複数の高周波電極と、該複数の高周波電極に接続されこれらの高周波電極を励起させる共通の高周波電源とを備え、該真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、
複数の高周波電極に対向する一つの対向電極と、該対向電極と複数の高周波電極の間との間にのびて複数の高周波電極の各々のプラズマ生成空間を画定する仕切り部材を設け、
各仕切り部材が、開口率70〜20%、各開口の径3mm以下のメッシュまたはパンチングメタルから構成され、
前記一つの対向電極が、前記真空チャンバの長手方向中央軸線位置に沿って配置されており、前記複数の高周波電極が前記対向電極を挟んで両側に設けられていることを特徴とするプラズマ処理装置。
One vacuum chamber, a plurality of high-frequency electrodes provided in the vacuum chamber, and a common high-frequency power source connected to the plurality of high-frequency electrodes and exciting these high-frequency electrodes are generated in the vacuum chamber. In the plasma processing apparatus adapted to perform a predetermined processing using the plasma,
One counter electrode facing the plurality of high-frequency electrodes, and a partition member extending between the counter electrode and the plurality of high-frequency electrodes to define a plasma generation space of each of the plurality of high-frequency electrodes,
Each partition member is composed of a mesh or punching metal with an aperture ratio of 70 to 20% and a diameter of each opening of 3 mm or less,
Plasma processing counter electrode of the one, characterized in that said disposed along the longitudinal central axis position of the vacuum chamber over, the plurality of RF electrodes are provided on both sides of the counter electrode apparatus.
各仕切り部材が、開口率45〜25%、各開口の径3mm以下のメッシュまたはパンチングメタルから成ることを特徴とする請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein each partition member is made of a mesh or punching metal having an aperture ratio of 45 to 25% and a diameter of each opening of 3 mm or less . 各仕切り部材が、高周波プラズマで誘起される電位を最小にするようにアース電位に接続されることを特徴とする請求項1又は2に記載のプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein each partition member is connected to a ground potential so as to minimize a potential induced by the high-frequency plasma .
JP24990499A 1999-09-03 1999-09-03 Plasma processing equipment Expired - Fee Related JP4576011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24990499A JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24990499A JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001077091A JP2001077091A (en) 2001-03-23
JP4576011B2 true JP4576011B2 (en) 2010-11-04

Family

ID=17199943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24990499A Expired - Fee Related JP4576011B2 (en) 1999-09-03 1999-09-03 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4576011B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567037B2 (en) * 2003-01-16 2009-07-28 Japan Science And Technology Agency High frequency power supply device and plasma generator
JP4185483B2 (en) 2004-10-22 2008-11-26 シャープ株式会社 Plasma processing equipment
JP4558067B2 (en) * 2008-05-21 2010-10-06 シャープ株式会社 Plasma processing equipment
JP5666888B2 (en) * 2010-11-25 2015-02-12 東京エレクトロン株式会社 Plasma processing apparatus and processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120153A (en) * 1992-10-06 1994-04-28 Canon Inc Film-forming apparatus
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH0817740A (en) * 1994-06-27 1996-01-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JPH08148295A (en) * 1994-11-17 1996-06-07 Tokyo Electron Ltd Plasma treatment apparatus
JPH09320966A (en) * 1996-05-27 1997-12-12 Sharp Corp Plasma enhanced chemical vapor deposition system and plasma etching system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786238A (en) * 1993-06-29 1995-03-31 Kokusai Electric Co Ltd Electrode for plasma excitation
JPH1053883A (en) * 1996-08-07 1998-02-24 Toyo Commun Equip Co Ltd Reactive ion etching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120153A (en) * 1992-10-06 1994-04-28 Canon Inc Film-forming apparatus
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH0817740A (en) * 1994-06-27 1996-01-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JPH08148295A (en) * 1994-11-17 1996-06-07 Tokyo Electron Ltd Plasma treatment apparatus
JPH09320966A (en) * 1996-05-27 1997-12-12 Sharp Corp Plasma enhanced chemical vapor deposition system and plasma etching system

Also Published As

Publication number Publication date
JP2001077091A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
JP3987131B2 (en) Induction enhanced reactive ion etching
JP2748886B2 (en) Plasma processing equipment
JPH08107101A (en) Plasma processing device and plasma processing method
JP2001053060A (en) Plasma processing method and apparatus
JP2002246368A (en) System for processing a wafer using radially uniform plasma over wafer surface
KR20060056972A (en) Method for balancing return currents in plasma processing apparatus
JP4576011B2 (en) Plasma processing equipment
JPH10134995A (en) Plasma processing device and processing method for plasma
JPH10326772A (en) Dry etching device
JP4585648B2 (en) Plasma processing equipment
JPH1070107A (en) Plasma exciting antenna and plasma processor
JP3417328B2 (en) Plasma processing method and apparatus
JPH06122983A (en) Plasma treatment and plasma device
JP2005079416A (en) Plasma processing device
JP4528418B2 (en) Plasma processing equipment
JPH1167725A (en) Plasma etching device
JP3940467B2 (en) Reactive ion etching apparatus and method
JP2569816B2 (en) Dry etching equipment
JP3164188B2 (en) Plasma processing equipment
JP3817171B2 (en) Plasma process equipment
JP3379506B2 (en) Plasma processing method and apparatus
CN214477329U (en) Plasma processing apparatus and lower electrode assembly
JP3357737B2 (en) Discharge plasma processing equipment
JP4580503B2 (en) Plasma etching device for film substrate
JPH118225A (en) Parallel plate plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees