JP4585648B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4585648B2
JP4585648B2 JP2000145470A JP2000145470A JP4585648B2 JP 4585648 B2 JP4585648 B2 JP 4585648B2 JP 2000145470 A JP2000145470 A JP 2000145470A JP 2000145470 A JP2000145470 A JP 2000145470A JP 4585648 B2 JP4585648 B2 JP 4585648B2
Authority
JP
Japan
Prior art keywords
frequency
vacuum chamber
plasma processing
common
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000145470A
Other languages
Japanese (ja)
Other versions
JP2001140085A (en
Inventor
日出夫 竹井
道夫 石川
賀文 太田
正志 菊池
均 池田
雅 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000145470A priority Critical patent/JP4585648B2/en
Publication of JP2001140085A publication Critical patent/JP2001140085A/en
Application granted granted Critical
Publication of JP4585648B2 publication Critical patent/JP4585648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一つの真空チャンバー内に複数の電極を設け、各電極にそれぞれ処理すべき基板を装着し、真空チャンバー内に発生されたプラズマを利用して例えばエッチング、スパッタリングまたは化学気相成長(化学蒸着)などの所定の処理を行うようにしたプラズマ処理装置に関するものである。
【0002】
【従来の技術】
近年、半導体や電子部品における薄膜形成や機能膜形成、パターン形成にプラズマを利用した種々の装置が用いられている。
添付図面の図4にはこの種の装置の従来例を示し、Aは真空チャンバーで、その中に複数の基板電極Bがそれぞれの対向電極Cと対を成して配列されている。
各基板電極Bはマッチング回路網Dを介してそれぞれの高周波励起電源Eに接続されている。なお、各対向電極Cは図示したようにそれぞれ接地されている。
【0003】
【発明が解決しようとする課題】
このような従来の装置においては、生産性の観点では満足されるが、真空チャンバー内に設けられる基板電極の数だけマッチング回路網及び高周波励起電源を設ける必要がある。そのため高周波電極の設けられる数が増えれば増える程、マッチング回路網及び高周波励起電源の使用される数が増え、その分、装置のコストが嵩むことになる。
このようにこの種の従来の装置は、設備に掛かるコストが高く、低コスト化が求められている。
【0004】
そこで、装置のコストを低減するために、真空チャンバー内に設けられる複数の高周波電極を共通のマッチング回路網及び高周波励起電源に接続することも考えられるが、そのように構成すると、それぞれの電極容量及び電極を装着している接続板(通常銅製)のインダクタンスのばらつきのために一番インピーダンスの低下する電極に放電が集中し、パワー分配が不均一となり、高周波励起の利点である安定したプラズマの生成が困難となる。
【0005】
このような従来技術の問題点を解決するために、本発明は、真空チャンバー内に設けられる高周波電極の数に関わらず、装置の本来の機能を維持しながら使用するマッチング回路網及び高周波励起電源の数を可及的に低減できるプラズマ処理装置を提供することを目的としている。
【0006】
上記目的を達成するために、本発明によれば、 一つの真空チャンバー内に設けられた複数の高周波電極のそれぞれに処理すべき基板を装着し、真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、
真空チャンバー内に設けられた複数の高周波電極をそれぞれの可変真空コンデンサ及び共通のマッチング回路網を介して共通の高周波電源に接続し、それぞれの高周波電極におけるインピーダンスが等しくなるようにそれぞれの可変真空コンデンサの容量を設定して、それぞれの高周波電極に均一に高周波電力を分配するようにしたことを特徴としている。
【0007】
また、本発明によれば、 一つの真空チャンバー内に設けられた複数の高周波電極のそれぞれに処理すべき基板を装着し、真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、
真空チャンバー内に設けられた複数の高周波電極をそれぞれのLC回路及び共通のマッチング回路網を介して共通の高周波電源に接続し、それぞれのLC回路によってそれぞれの高周波電極におけるインピーダンスが等しくなるようにして、それぞれの高周波電極に均一に高周波電力を分配するようにしたことを特徴としている。
【0008】
本発明において、それぞれの高周波電極に接続された真空コンデンサまたはLC回路は、装置の製作上伴い得る高周波電極の容量のばらつき及び高周波電極の装着される接続基体のインダクタンスのばらつきを補正してそれぞれの高周波電極に高周波電力が均一に分配されるように機能する。
【0009】
真空チャンバー内に設けられる高周波電極の数が比較的多い場合には、高周波電極は、それぞれ複数の高周波電極を含む複数のグループに分けられ、各グループにおける複数の高周波電極はそれぞれの真空コンデンサまたはLC回路及び共通のマッチング回路網を介して共通の高周波電源に接続され得る。
また、好ましくは、各高周波電極に接続される真空コンデンサは可変真空コンデンサから成り得る。
【0010】
【発明の実施の形態】
以下、添付図面の図1〜図3を参照して本発明の実施の形態を説明する。
図1には、本発明をプラズマエッチング装置として実施している一つの形態を概略的に示す。1は図示していない排気系及び放電用ガスに接続された真空チャンバーであり、この真空チャンバー1の下側壁には四つの基板電極すなわちカソード電極を構成する高周波電極2が設けられ、これら四つの高周波電極2に対向して真空チャンバー1の上側壁に沿って共通のアノード電極3が設けられ、この対向電極3は接地されている。高周波電極2の各々は可変真空コンデンサ4を介して共通のマッチング回路網5及び共通の高周波電源6に接続されている。
【0011】
なお、図示実施の形態において、高周波電極2の数は、単に例示のためのものであり、当然二つまたは三つ或いは四つ以上でもよい。また各真空コンデンサ4は可変型の代りに固定型のものでもよい。
【0012】
図示実施の形態において、高周波電極2の電極容量をCi(i=1〜4)とし、可変真空コンデンサ4の容量をCi'(i=1〜4)とし、高周波電極2の装着されている銅製の接続基体(図示してない)のインダクタンスをLi(i=1〜4)とすると、それぞれの高周波電極2におけるインピーダンスZi(i=1〜4)は
Zi=jωLi+1/(Ci+Ci')
で表される。ここでZ1=Z2=Z3=Z4となるように、可変真空コンデンサ4の容量Ci'(i=1〜4)を設定する。これにより高周波電極2全体にわたて均一に高周波電力が分配されることになる。
【0013】
次に、図示装置を用いてSiOの基板a、b、c、dをエッチングした実験例を示す。
装置の動作条件として真空チャンバー内にCFとOをそれぞれ800SCCM、200SCCMづつ全部で1000SCCM流し、圧力を10Paとし、基板と対向電極3との距離を110mmとし、投入高周波電力を2.0kWとした条件Iの場合及び真空チャンバーの圧力を7Paにし、他の条件は条件Iと同じにした条件IIの場合についてそれぞれ各基板におけるエッチング速度(オングストローム/分)を測定したところ下記の結果が得られた。なお基板と対向電極3との距離はガス、圧力及び放電周波数によって決定される。

Figure 0004585648
【0014】
図2及び図3には、アノード電極を挟んで両側に多数のカソード電極を設けた本発明の別の実施の形態を示す。すなわち図示したように、長方形の真空チャンバー1の下側壁とそれに対向した上側壁にはそれぞれカソード電極すなわち高周波電極2が四つずつ対称的に設けられている。そして真空チャンバー1内において上下両側の高周波電極2の中間位置すなわち真空チャンバー1の長手方向中央軸線位置に沿って共通のアノード電極3が配置されている。アノード電極3は図1に示す実施の形態の場合と同様に接地されている。上下各側の高周波電極2は二つずつ対を成してそれぞれの可変真空コンデンサ4を介して共通のマッチング回路網5及び共通の高周波電源6に接続されている。従って、八つの高周波電極2に対してその半分の四つの高周波電源6が使用される。
【0015】
また、各高周波電極2の両側と中央のアノード電極3との間には図示したように、孔径が3mm以下のパンチングメタルまたはメッシュメタルから成るアース電位の仕切り部材7がそれぞれ設けられている。これらの仕切り部材7は、各高周波電極2と中央のアノード電極3との間に画定された空間内に生成される放電プラズマを閉じこめる働きをすると共に、隣接高周波電極2間の高周波干渉を抑制する。
【0016】
図3には、図2の装置における一つの高周波電極2とアノード電極3との関連構成の詳細を拡大して示す。
高周波電極2は真空チャンバー1の壁に設けた開口部に例えばテフロン(登録商標)やアルミナから成る絶縁部材8を介して真空密封的に取付けられている。また高周波電極2は内部に水冷チャネル9を備えている。高周波電極2の表面すなわちアノード電極3に対向した面上にはアルミニウム製の台座10が固着手段11によって固定され、その上に静電吸着電極12が設けられ、この静電吸着電極12上に処理すべき基板、例えばフイルム状基板(図示ていない)がアルミナ製のクランプ13によって装着される。一般に、静電吸着電極12による吸着力は、処理すべき基板の表面形状に依存し、使用される基板としては吸着すべき導体に制限があり、しかもパターン形成のためにレジストマスクを用いる表面に凸凹があるので、強くできない。また、基板の導体パターンでは強く、それ以外の部分では弱い。さらに基板の熱膨張は材質により異なり、基板の導体パターンでは熱膨張も大きく、プラズマ処理中に膨みが発生し易い。この皺寄せが基板の端面に生じると、基板の端部で異常放電が生じることになる。また静電吸着電極12の表面材がプラズマでエッチングされ、その結果寿命が短くなる。これらの課題を解決するため、アルミナ製のクランプ13は、図示したように基板の周囲縁部を覆うように構成され、しかも熱膨張を吸収するように構成され得る。
さらに静電吸着電極12にはリード線14を介して直流電源(図示していない)が接続され、この直流電源は好ましくは全てまたは幾つかの静電吸着電極12に対して共通に設けられ得る。
【0017】
中央のアノード電極3は内部に水冷チャネル15が設けられている。またアノード電極3と各高周波電極2との間の空間において中央のアノード電極3寄りにエッチングガス供給用ガスパイプ16が設けられている。エッチングガスとしてはフッ素を含むハロゲンガスとOやNの混合ガス、或いはこの混合ガスにさらにCHFなどのCHを含むガスを混合したものなどが使用され得る。
【0018】
各高周波電極2の両側に設けら、プラズマ領域を限定する仕切り部材7は、高周波プラズマによって誘起される電位を最小にするために上述のようにアース電位にされ、また各高周波電極2毎のガスの移動すなわちガスの導入及び排気を容易にするため、仕切り部材7は好ましくは開口率45%程度、しかもプラズマの漏れを抑制するため各孔の径3mm以下のメッシュやパンチングメタルで構成される。
【0019】
ところで、図2及び図3に示す実施の形態では、二つの高周波電極2に対して一つの高周波電源6が用いられているが、必要により三つ以上の高周波電極2を一つの高周波電源に接続するように構成することもできる。
また、図示装置はバッチ式の装置として実施しているが、当然ロードロック式の装置として実施することも可能である。
さらに、本発明においては 上述のように、真空コンデンサに代えて、LC回路を使用しても同様な作用効果を奏することができる。
【0020】
以上説明してきたように、本発明によるプラズマ処理装置においては、真空チャンバー内に設けられた複数の高周波電極のそれぞれに真空コンデンサまたはLC回路を接続し、共通のマッチング回路網を介して共通の高周波電源に接続するように構成しているので、全高周波電極に高周波電力を均一に分配することができると共に、電源及びマッチング回路網の数を大幅に(実際には半分以下に)削減することができるようになる。その結果、装置のコストを大幅に低減させることができるだけでなく、装置の重量も低減でき、さらにはメンテナンスのための十分な空間が確保できるなどの効果が得られる。
【図面の簡単な説明】
【図1】本発明の一つの実施の形態によるプラズマ処理装置を示す概略線図。
【図2】本発明の別の実施の形態によるプラズマ処理装置を示す概略線図。
【図3】図2に示すプラズマ処理装置の細部の構造を示す拡大縦断面図。
【図4】従来のプラズマ処理装置の一例を示す概略線図。
【符号の説明】
1:真空チャンバー
2:高周波電極
3:アノード電極(対向電極)
4:真空コンデンサ
5:共通のマッチング回路網
6:共通の高周波電源[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of electrodes are provided in one vacuum chamber, a substrate to be processed is mounted on each electrode, and etching, sputtering, or chemical vapor deposition (for example) is performed using plasma generated in the vacuum chamber. The present invention relates to a plasma processing apparatus that performs a predetermined process such as chemical vapor deposition.
[0002]
[Prior art]
In recent years, various apparatuses using plasma have been used for thin film formation, functional film formation, and pattern formation in semiconductors and electronic components.
FIG. 4 of the accompanying drawings shows a conventional example of this type of apparatus. A is a vacuum chamber in which a plurality of substrate electrodes B are arranged in pairs with respective counter electrodes C.
Each substrate electrode B is connected to a respective high-frequency excitation power source E through a matching network D. Each counter electrode C is grounded as shown.
[0003]
[Problems to be solved by the invention]
In such a conventional apparatus, although it is satisfactory from the viewpoint of productivity, it is necessary to provide matching networks and high-frequency excitation power supplies as many as the number of substrate electrodes provided in the vacuum chamber. Therefore, as the number of high-frequency electrodes provided increases, the number of matching circuit networks and high-frequency excitation power supplies used increases, and the cost of the device increases accordingly.
As described above, this type of conventional apparatus has a high cost for equipment and is required to be reduced in cost.
[0004]
Therefore, in order to reduce the cost of the apparatus, it is conceivable to connect a plurality of high-frequency electrodes provided in the vacuum chamber to a common matching network and a high-frequency excitation power source. In addition, due to variations in the inductance of the connection plate (usually made of copper) on which the electrode is mounted, the discharge concentrates on the electrode with the lowest impedance, resulting in uneven power distribution and stable plasma, which is an advantage of high-frequency excitation. Generation becomes difficult.
[0005]
In order to solve such problems of the prior art, the present invention provides a matching circuit network and a high-frequency excitation power source that are used while maintaining the original function of the apparatus regardless of the number of high-frequency electrodes provided in the vacuum chamber. An object of the present invention is to provide a plasma processing apparatus capable of reducing the number of the above as much as possible.
[0006]
In order to achieve the above object, according to the present invention, a substrate to be processed is mounted on each of a plurality of high-frequency electrodes provided in one vacuum chamber, and plasma generated in the vacuum chamber is used. In the plasma processing apparatus configured to perform a predetermined process,
A plurality of high-frequency electrodes provided in the vacuum chamber are connected to a common high-frequency power source via each variable vacuum capacitor and a common matching network, and each variable vacuum capacitor is set so that impedances at the respective high-frequency electrodes are equal. This is characterized in that the high-frequency power is uniformly distributed to the respective high-frequency electrodes .
[0007]
Further, according to the present invention, a substrate to be processed is attached to each of a plurality of high-frequency electrodes provided in one vacuum chamber, and predetermined processing is performed using plasma generated in the vacuum chamber. In the plasma processing apparatus,
A plurality of high-frequency electrodes provided in the vacuum chamber are connected to a common high-frequency power source via each LC circuit and a common matching network so that impedances at the respective high-frequency electrodes are equalized by the respective LC circuits. The high frequency power is uniformly distributed to each high frequency electrode .
[0008]
In the present invention, the vacuum capacitor or LC circuit connected to each high-frequency electrode corrects the variation in the capacitance of the high-frequency electrode and the variation in the inductance of the connection substrate to which the high-frequency electrode is attached, which can be involved in the manufacture of the device. It functions so that the high frequency power is uniformly distributed to the high frequency electrodes.
[0009]
When the number of high-frequency electrodes provided in the vacuum chamber is relatively large, the high-frequency electrodes are divided into a plurality of groups each including a plurality of high-frequency electrodes, and the plurality of high-frequency electrodes in each group are divided into respective vacuum capacitors or LCs. It can be connected to a common high-frequency power source through the circuit and a common matching network.
Preferably, the vacuum capacitor connected to each high-frequency electrode can be a variable vacuum capacitor.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.
FIG. 1 schematically shows one embodiment in which the present invention is implemented as a plasma etching apparatus. Reference numeral 1 denotes a vacuum chamber connected to an exhaust system (not shown) and a discharge gas. Four substrate electrodes, that is, high-frequency electrodes 2 constituting a cathode electrode are provided on the lower side wall of the vacuum chamber 1. A common anode electrode 3 is provided along the upper wall of the vacuum chamber 1 so as to face the high-frequency electrode 2, and the counter electrode 3 is grounded. Each of the high-frequency electrodes 2 is connected to a common matching network 5 and a common high-frequency power source 6 through a variable vacuum capacitor 4.
[0011]
In the illustrated embodiment, the number of high-frequency electrodes 2 is merely for illustrative purposes, and may be two, three, or four or more. Each vacuum capacitor 4 may be a fixed type instead of a variable type.
[0012]
In the illustrated embodiment, the electrode capacity of the high-frequency electrode 2 is Ci (i = 1 to 4), the capacity of the variable vacuum capacitor 4 is Ci ′ (i = 1 to 4), and the high-frequency electrode 2 is mounted on copper. connection substrate when the inductance of the (not shown) and Li (i = 1 to 4), the impedance Zi (i = 1 to 4) in each of the high-frequency electrode 2 Zi = jωLi + 1 / (Ci + Ci ')
It is represented by Here, the capacitance Ci ′ (i = 1 to 4) of the variable vacuum capacitor 4 is set so that Z1 = Z2 = Z3 = Z4. Thus would uniformly high frequency power Tsu cotton throughout the high-frequency electrode 2 is distributed.
[0013]
Next, an experimental example in which the SiO 2 substrates a, b, c, and d are etched using the illustrated apparatus will be described.
As operating conditions of the apparatus, CF 4 and O 2 were flowed into the vacuum chamber at 800 SCCM and 200 SCCM, respectively, 1000 SCCM in total, the pressure was 10 Pa, the distance between the substrate and the counter electrode 3 was 110 mm, and the input high frequency power was 2.0 kW. When the etching rate (angstrom / min) in each substrate was measured under the condition I and under the condition II where the vacuum chamber pressure was 7 Pa and the other conditions were the same as the condition I, the following results were obtained. . The distance between the substrate and the counter electrode 3 is determined by the gas, pressure, and discharge frequency.
Figure 0004585648
[0014]
2 and 3 show another embodiment of the present invention in which a large number of cathode electrodes are provided on both sides of the anode electrode. That is, as shown in the figure, four cathode electrodes, that is, four high-frequency electrodes 2 are provided symmetrically on the lower side wall of the rectangular vacuum chamber 1 and the upper side wall opposite thereto. In the vacuum chamber 1, a common anode electrode 3 is disposed along the middle position between the upper and lower high-frequency electrodes 2, that is, the longitudinal center axis position of the vacuum chamber 1. The anode electrode 3 is grounded as in the embodiment shown in FIG. Two high-frequency electrodes 2 on each of the upper and lower sides are connected to a common matching network 5 and a common high-frequency power source 6 through respective variable vacuum capacitors 4 in pairs. Accordingly, four high-frequency power sources 6, which are half of the eight high-frequency electrodes 2, are used.
[0015]
Further, as shown in the figure, a ground potential partition member 7 made of punching metal or mesh metal having a hole diameter of 3 mm or less is provided between both sides of each high-frequency electrode 2 and the central anode electrode 3. These partition members 7 serve to confine discharge plasma generated in a space defined between each high-frequency electrode 2 and the central anode electrode 3, and suppress high-frequency interference between adjacent high-frequency electrodes 2. .
[0016]
FIG. 3 shows an enlarged detail of a related configuration of one high-frequency electrode 2 and the anode electrode 3 in the apparatus of FIG.
The high-frequency electrode 2 is attached to an opening provided in the wall of the vacuum chamber 1 in a vacuum-sealed manner via an insulating member 8 made of, for example, Teflon (registered trademark) or alumina. The high-frequency electrode 2 has a water-cooling channel 9 inside. On the surface of the high-frequency electrode 2, that is, on the surface facing the anode electrode 3, an aluminum pedestal 10 is fixed by a fixing means 11, and an electrostatic adsorption electrode 12 is provided on the aluminum pedestal 10. should do substrate, for example a film-like substrate (not shown) is attached by an alumina clamp 13. In general, the adsorption force by the electrostatic adsorption electrode 12 depends on the surface shape of the substrate to be processed, and there are restrictions on the conductor to be adsorbed as the substrate to be used, and on the surface using a resist mask for pattern formation. Because of the unevenness, it cannot be strengthened. Moreover, it is strong in the conductor pattern of a board | substrate, and is weak in the other part. Furthermore, the thermal expansion of the substrate differs depending on the material, and the thermal expansion is large in the conductive pattern of the substrate, and the swelling is likely to occur during the plasma processing. When this wrinkle occurs on the end surface of the substrate, abnormal discharge occurs at the end portion of the substrate. Further, the surface material of the electrostatic adsorption electrode 12 is etched by plasma, and as a result, the lifetime is shortened. In order to solve these problems, the alumina clamp 13 is configured to cover the peripheral edge of the substrate as shown in the drawing, and can be configured to absorb thermal expansion.
Further, a DC power source (not shown) is connected to the electrostatic adsorption electrode 12 via a lead wire 14, and this DC power source can be preferably provided in common for all or some of the electrostatic adsorption electrodes 12. .
[0017]
The central anode electrode 3 is provided with a water cooling channel 15 inside. Further, an etching gas supply gas pipe 16 is provided near the central anode electrode 3 in the space between the anode electrode 3 and each high-frequency electrode 2. As the etching gas, a halogen gas containing fluorine and a mixed gas of O 2 or N 2 , or a mixture of this mixed gas with a gas containing CH such as CHF 3 may be used.
[0018]
The partition members 7 which are provided on both sides of each high-frequency electrode 2 and limit the plasma region are set to the ground potential as described above in order to minimize the potential induced by the high-frequency plasma, and the gas for each high-frequency electrode 2 In order to facilitate the movement of gas, that is, the introduction and exhaust of gas, the partition member 7 is preferably made of a mesh or punching metal having an aperture ratio of about 45% and a diameter of each hole of 3 mm or less in order to suppress plasma leakage.
[0019]
By the way, in the embodiment shown in FIGS. 2 and 3, one high frequency power source 6 is used for two high frequency electrodes 2, but if necessary, three or more high frequency electrodes 2 are connected to one high frequency power source. It can also be configured to.
Moreover, although the illustrated apparatus is implemented as a batch type apparatus, it is naturally possible to implement it as a load lock type apparatus.
Furthermore, in the present invention, as described above, the same effects can be obtained even if an LC circuit is used instead of the vacuum capacitor.
[0020]
As described above, in the plasma processing apparatus according to the present invention, a vacuum capacitor or an LC circuit is connected to each of a plurality of high-frequency electrodes provided in the vacuum chamber, and a common high-frequency is connected via a common matching circuit network. Since it is configured to be connected to a power source, high-frequency power can be evenly distributed to all high-frequency electrodes, and the number of power sources and matching networks can be greatly reduced (actually less than half). become able to. As a result, not only the cost of the apparatus can be greatly reduced, but also the weight of the apparatus can be reduced, and further, a sufficient space for maintenance can be secured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a plasma processing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a plasma processing apparatus according to another embodiment of the present invention.
3 is an enlarged longitudinal sectional view showing a detailed structure of the plasma processing apparatus shown in FIG.
FIG. 4 is a schematic diagram showing an example of a conventional plasma processing apparatus.
[Explanation of symbols]
1: Vacuum chamber 2: High-frequency electrode 3: Anode electrode (counter electrode)
4: Vacuum capacitor 5: Common matching network 6: Common high-frequency power supply

Claims (4)

一つの真空チャンバー内に設けられた複数の高周波電極のそれぞれに処理すべき基板を装着し、
真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、
真空チャンバー内に設けられた複数の高周波電極をそれぞれの可変真空コンデンサ及び共通のマッチング回路網を介して共通の高周波電源に接続し、それぞれの高周波電極におけるインピーダンスが等しくなるようにそれぞれの可変真空コンデンサの容量を設定して、それぞれの高周波電極に均一に高周波電力を分配するようにしたことを特徴とするプラズマ処理装置。
A substrate to be processed is attached to each of a plurality of high-frequency electrodes provided in one vacuum chamber,
In a plasma processing apparatus configured to perform a predetermined process using plasma generated in a vacuum chamber,
A plurality of high-frequency electrodes provided in the vacuum chamber are connected to a common high-frequency power source via each variable vacuum capacitor and a common matching network, and each variable vacuum capacitor is set so that impedances at the respective high-frequency electrodes are equal. The plasma processing apparatus is characterized in that the high frequency power is uniformly distributed to the respective high frequency electrodes .
真空チャンバー内に設けられた複数の高周波電極を複数のグループに分け、各グループにおける
複数の高周波電極をそれぞれの真空コンデンサ及び共通のマッチング回路網を介して共通の高周波電源に接続したことを特徴とする請求項1に記載のプラズマ処理装置。
A plurality of high-frequency electrodes provided in the vacuum chamber are divided into a plurality of groups, and a plurality of high-frequency electrodes in each group are connected to a common high-frequency power source through respective vacuum capacitors and a common matching network. The plasma processing apparatus according to claim 1.
一つの真空チャンバー内に設けられた複数の高周波電極のそれぞれに処理すべき基板を装着し、真空チャンバー内に発生されたプラズマを利用して所定の処理を行うようにしたプラズマ処理装置において、In a plasma processing apparatus in which a substrate to be processed is attached to each of a plurality of high-frequency electrodes provided in one vacuum chamber, and predetermined processing is performed using plasma generated in the vacuum chamber.
真空チャンバー内に設けられた複数の高周波電極をそれぞれのLC回路及び共通のマッチング回路網を介して共通の高周波電源に接続し、それぞれのLC回路によってそれぞれの高周波電極におけるインピーダンスが等しくなるようにして、それぞれの高周波電極に均一に高周波電力を分配するようにしたことを特徴とするプラズマ処理装置。A plurality of high-frequency electrodes provided in the vacuum chamber are connected to a common high-frequency power source via each LC circuit and a common matching network so that impedances at the respective high-frequency electrodes are equalized by the respective LC circuits. A plasma processing apparatus characterized in that high-frequency power is uniformly distributed to each high-frequency electrode.
真空チャンバー内に設けられた複数の高周波電極を複数のグループに分け、各グループにおける複数の高周波電極をそれぞれのLC回路及び共通のマッチング回路網を介して共通の高周波電源に接続したことを特徴とする請求項3に記載のプラズマ処理装置。A feature is that a plurality of high-frequency electrodes provided in a vacuum chamber are divided into a plurality of groups, and a plurality of high-frequency electrodes in each group are connected to a common high-frequency power source via respective LC circuits and a common matching network. The plasma processing apparatus according to claim 3.
JP2000145470A 1999-09-03 2000-05-17 Plasma processing equipment Expired - Lifetime JP4585648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000145470A JP4585648B2 (en) 1999-09-03 2000-05-17 Plasma processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24989999 1999-09-03
JP11-249899 1999-09-03
JP2000145470A JP4585648B2 (en) 1999-09-03 2000-05-17 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001140085A JP2001140085A (en) 2001-05-22
JP4585648B2 true JP4585648B2 (en) 2010-11-24

Family

ID=26539541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000145470A Expired - Lifetime JP4585648B2 (en) 1999-09-03 2000-05-17 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4585648B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978754B1 (en) 2008-04-03 2010-08-30 주식회사 테스 Plasma processing apparatus
JP5294669B2 (en) * 2008-03-25 2013-09-18 東京エレクトロン株式会社 Plasma processing equipment
JP2009231247A (en) * 2008-03-25 2009-10-08 Tokyo Electron Ltd Plasma treatment device, and supplying method of high frequency power
JP5656458B2 (en) * 2010-06-02 2015-01-21 株式会社日立ハイテクノロジーズ Plasma processing equipment
KR101839776B1 (en) * 2011-02-18 2018-03-20 삼성디스플레이 주식회사 Plazma treatment apparatus
CN108630511B (en) * 2017-03-17 2020-10-13 北京北方华创微电子装备有限公司 Lower electrode device and semiconductor processing equipment
JP2020066764A (en) * 2018-10-23 2020-04-30 東京エレクトロン株式会社 Film formation device and film formation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198389A (en) * 1992-01-22 1993-08-06 Jeol Ltd High frequency device
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH11509358A (en) * 1995-06-30 1999-08-17 ラム リサーチ コーポレイション Power split electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151091A (en) * 1992-01-21 1994-05-31 Tsukishima Kikai Co Ltd High frequency power source matching device in plasma polymerizing device
JPH0786238A (en) * 1993-06-29 1995-03-31 Kokusai Electric Co Ltd Electrode for plasma excitation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198389A (en) * 1992-01-22 1993-08-06 Jeol Ltd High frequency device
JPH06260450A (en) * 1993-03-04 1994-09-16 Hitachi Ltd Dry-etching device
JPH11509358A (en) * 1995-06-30 1999-08-17 ラム リサーチ コーポレイション Power split electrode

Also Published As

Publication number Publication date
JP2001140085A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
KR100394484B1 (en) Piasma processing method and apparatus
US8080126B2 (en) Plasma processing apparatus
EP1686611B1 (en) Apparatus and method for plasma processing with enhanced confinement and flow conductance
JP3565311B2 (en) Plasma processing equipment
US20130112666A1 (en) Plasma processing apparatus
TWI588864B (en) Plasma processing device
JP4585648B2 (en) Plasma processing equipment
KR20060056972A (en) Method for balancing return currents in plasma processing apparatus
JP3646901B2 (en) Plasma excitation antenna, plasma processing equipment
JP4467667B2 (en) Plasma processing equipment
JP4576011B2 (en) Plasma processing equipment
JP4528418B2 (en) Plasma processing equipment
KR100290158B1 (en) Plasma processing apparatus using large-scaled flat antenna
CN214477329U (en) Plasma processing apparatus and lower electrode assembly
JP3357737B2 (en) Discharge plasma processing equipment
KR20100129369A (en) Plasma reactor with vertical dual chamber
EP3748668B1 (en) Reactive ion etching device
JP4580503B2 (en) Plasma etching device for film substrate
US20020168814A1 (en) Plasma processing method and apparatus
KR200426498Y1 (en) Process kit for using in a plasma processing chamber
JPH0368136A (en) Dry etching device
JPH06120140A (en) Semiconductor manufacturing method and equipment
KR101021874B1 (en) Apparatus for manufacturing large-size LCD substrates using inductively coupled plasma and including insulating plate
JPS6376889A (en) Dry etching device
KR20020012114A (en) Photo-resister ashing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term