KR20100129369A - Plasma reactor with vertical dual chamber - Google Patents

Plasma reactor with vertical dual chamber Download PDF

Info

Publication number
KR20100129369A
KR20100129369A KR1020090047898A KR20090047898A KR20100129369A KR 20100129369 A KR20100129369 A KR 20100129369A KR 1020090047898 A KR1020090047898 A KR 1020090047898A KR 20090047898 A KR20090047898 A KR 20090047898A KR 20100129369 A KR20100129369 A KR 20100129369A
Authority
KR
South Korea
Prior art keywords
plasma
antenna coil
unit
generating unit
pass filter
Prior art date
Application number
KR1020090047898A
Other languages
Korean (ko)
Other versions
KR101585890B1 (en
Inventor
위순임
Original Assignee
위순임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위순임 filed Critical 위순임
Priority to KR1020090047898A priority Critical patent/KR101585890B1/en
Publication of KR20100129369A publication Critical patent/KR20100129369A/en
Application granted granted Critical
Publication of KR101585890B1 publication Critical patent/KR101585890B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: A large scale plasma reactor composed of a vertical dual chamber is provided to improve workability by generating plasma in a plurality of processing chambers through the supply of a processing gas. CONSTITUTION: A first vertical processing chamber(120a) and a second vertical processing chamber include a substrate supporting stand(124). Bias power supply sources(182a, 182b) are in connection with the substrate supporting stand through an impedance matching unit(184). A first power unit(162) and a second power unit(164) apply different power frequencies to an antenna coil. The first power unit includes a high frequency power unit(162a) and a filter(162c). The second power unit includes a low frequency power unit(164a) and a filter(164c).

Description

수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기{Plasma reactor with vertical dual chamber}Plasma reactor with vertical dual chamber

본 발명은 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기에 관한 것으로, 구체적으로는 대형의 기판을 쉽게 처리할 수 있고 대면적화가 매우 용이한 구조로 플라즈마가 균일하게 형성되는 플라즈마 반응기에 관한 것이다.The present invention relates to a large-area plasma reactor composed of a vertical dual chamber, and more particularly, to a plasma reactor in which a plasma is uniformly formed in a structure that can easily process a large substrate and has a very large area.

플라즈마는 같은 수의 음이온(positive ions)과 전자(electrons)를 포함하는 고도로 이온화된 가스이다. 플라즈마 방전은 이온, 자유 래디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각(etching), 증착(deposition), 세정(cleaning), 에싱(ashing) 등에 다양하게 사용된다.Plasma is a highly ionized gas containing the same number of positive ions and electrons. Plasma discharges are used for gas excitation to generate active gases containing ions, free radicals, atoms, molecules. The active gas is widely used in various fields and is typically used in a variety of semiconductor manufacturing processes such as etching, deposition, cleaning, ashing, and the like.

플라즈마를 발생하기 위한 플라즈마 소스는 여러 가지가 있는데 무선 주파수(radio frequency)를 사용한 용량 결합 플라즈마(capacitive coupled plasma)와 유도 결합 플라즈마(inductive coupled plasma)가 그 대표적인 예이다. 용량 결합 플라즈마 소스는 정확한 용량 결합 조절과 이온 조절 능력이 높아서 타 플라즈마 소스에 비하여 공정 생산력이 높다는 장점을 갖는다. 용량 결합 플라즈마 소스는 무선 주파수 전원의 증가에 따라 이온 밀도를 쉽게 증가시킬 수 있어서 고밀도의 플라즈마를 얻기 위하여 일반적으로 사용되고 있다. 그러나 무선 주파수 전력의 증가는 이온 충격 에너지를 증가시킨다. 결과적으로 이온 충격에 의한 손상을 방지하기 위해서는 무선 주파수 전력의 한계성을 갖게 된다. 유도 결합 플라즈마 소스는 대표적으로 무선 주파수 안테나(RF antenna)를 이용하는 방식과 변압기를 이용한 방식(변압기 결합 플라즈마(transformer coupled plasma)라고도 함)으로 기술 개발이 이루어지고 있다. 여기에 전자석이나 영구 자석을 추가하거나, 용량 결합 전극을 추가하여 플라즈마의 특성을 향상 시키고 재현성과 제어 능력을 높이기 위하여 기술 개발이 이루어지고 있다. 무선 주파수 안테나는 나선형 타입 안테나(spiral type antenna) 또는 실린더 타입의 안테나(cylinder type antenna)가 일반적으로 사용된다. 무선 주파수 안테나는 플라즈마 반응기(plasma reactor)의 외부에 배치되며, 석영과 같은 유전체 위도우(dielectric window)를 통하여 플라즈마 반응기의 내부로 유도 기전력을 전달한다. 무선 주파수 안테나를 이용한 유도 결합 플라즈마는 고밀도의 플라즈마를 비교적 손쉽게 얻을 수 있으나, 안테나의 구조적 특징에 따라서 플라즈마 균일도가 영향을 받는다. 그럼으로 무선 주파수 안테나의 구조를 개선하여 균일한 고밀도의 플라즈마를 얻기 위해 노력하고 있다.There are a number of plasma sources for generating plasma, and the representative examples are capacitive coupled plasma and inductive coupled plasma using radio frequency. Capacitively coupled plasma sources have the advantage of high process productivity compared to other plasma sources due to their high capacity for precise capacitive coupling and ion control. Capacitively coupled plasma sources can easily increase ion density with increasing radio frequency power supply and are therefore commonly used to obtain high density plasma. However, increasing radio frequency power increases ion bombardment energy. As a result, in order to prevent damage due to ion bombardment, radio frequency power is limited. Inductively coupled plasma sources are typically developed using a radio frequency antenna (RF antenna) and a transformer (also called transformer coupled plasma). The development of technology to improve the characteristics of plasma, and to increase the reproducibility and control ability by adding an electromagnet or a permanent magnet or adding a capacitive coupling electrode. As the radio frequency antenna, a spiral type antenna or a cylinder type antenna is generally used. The radio frequency antenna is disposed outside the plasma reactor and transmits induced electromotive force into the plasma reactor through a dielectric window such as quartz. Inductively coupled plasma using a radio frequency antenna can obtain a high density plasma relatively easily, but the plasma uniformity is affected by the structural characteristics of the antenna. Therefore, efforts have been made to improve the structure of the radio frequency antenna to obtain a uniform high density plasma.

그러나 대면적의 플라즈마를 얻기 위하여 안테나의 구조를 넓게 하거나 안테나에 공급되는 전력을 높이는 것은 한계성을 갖는다. 예를 들어, 정상파 효과(standing wave effect)에 의해 방사선상으로 비균일한 플라즈마가 발생되는 것 으로 알려져 있다. 또한, 안테나에 높은 전력이 인가되는 경우 무선 주파수 안테나의 용량성 결합(capacitive coupling)이 증가하게 됨으로 유전체 윈도우를 두껍게 해야 하며, 이로 인하여 무선 주파수 안테나와 플라즈마 사이의 거리가 증가함으로 전력 전달 효율이 낮아지는 문제점이 발생된다. However, in order to obtain a large plasma, it is limited to widen the structure of the antenna or increase the power supplied to the antenna. For example, it is known that a non-uniform plasma is generated in the radio wave by the standing wave effect. In addition, when high power is applied to the antenna, the capacitive coupling of the radio frequency antenna increases, so that the dielectric window must be thickened, thereby increasing the distance between the radio frequency antenna and the plasma, thereby lowering power transmission efficiency. Losing problems occur.

최근 반도체 제조 산업에서는 반도체 소자의 초미세화, 반도체 회로를 제조하기 위한 실리콘 웨이퍼 기판의 대형화, 액정 디스플레이를 제조하기 위한 유리 기판의 대형화 그리고 새로운 처리 대상 물질 등장 등과 같은 여러 요인으로 인하여 더욱 향상된 플라즈마 처리 기술이 요구되고 있다. 특히, 대면적의 피처리물에 대한 우수한 처리 능력을 갖는 향상된 플라즈마 소스 및 플라즈마 처리 기술이 요구되고 있다. 또한 대형화된 기판은 무게가 많이 나갈뿐만 아니라 큰 크기로 인하여 반도체 제조 공정시 이송이 용이하지 않아 플라즈마 처리하기 위하여 기판을 장착하는데 어려움이 존재한다.In the recent semiconductor manufacturing industry, plasma processing technology has been further improved due to various factors such as ultra-miniaturization of semiconductor devices, the enlargement of silicon wafer substrates for manufacturing semiconductor circuits, the enlargement of glass substrates for manufacturing liquid crystal displays, and the emergence of new target materials. This is required. In particular, there is a need for improved plasma sources and plasma processing techniques that have good processing capabilities for large area workpieces. In addition, the large sized substrate is not only heavy, but due to its large size, it is difficult to transport the semiconductor during the semiconductor manufacturing process, and thus there is a difficulty in mounting the substrate for plasma treatment.

본 발명의 목적은 대면적화 되어가는 기판 사이즈의 증가에 맞추어 대면적으로 확장이 매우 용이한 구조를 갖으면서도 더불어 플라즈마 발생 및 처리가 균일하게 형성될 수 있는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기를 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a large-area plasma reactor composed of vertical dual chambers having a structure that is very easy to expand in large area in accordance with an increase in the size of a large-area substrate, and in which plasma generation and processing can be uniformly formed. It is.

상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기에 관한 것이다. One aspect of the present invention for achieving the above technical problem relates to a large-area plasma reactor composed of a vertical dual chamber.

본 발명의 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기는 처리대상 기판이 수직으로 설치될 수 있는 기판 지지대를 구비하고 플라즈마가 발생되는 반응 공간을 갖는 제1, 2 수직 공정 챔버; 상기 제1, 2 수직 공정 챔버 사이에 배치되어 상기 제1, 2 수직 공정 챔버 내부에 공정 가스를 제공하기 위한 공통 가스 공급부; 및 상기 공통 가스 공급부에 구비되고 상기 제1, 2 수직 공정 챔버 내부에 플라즈마를 발생시키기 위한 플라즈마 발생 유닛을 포함한다.The large-area plasma reactor composed of the vertical dual chamber of the present invention comprises: first and second vertical process chambers having a substrate support on which a substrate to be processed may be installed vertically and having a reaction space in which plasma is generated; A common gas supply unit disposed between the first and second vertical process chambers to provide a process gas into the first and second vertical process chambers; And a plasma generation unit provided in the common gas supply unit and configured to generate a plasma in the first and second vertical process chambers.

일 실시예에 있어서, 상기 공통 가스 공급부는 상기 제1, 2 수직 공정 챔버에 각각 공정 가스를 분리하여 공급하기 위해 분리된다.In one embodiment, the common gas supply unit is separated to separate and supply process gases to the first and second vertical process chambers, respectively.

일 실시예에 있어서, 상기 공통 가스 공급부는 일측에 상기 공정 가스를 주입하기 위한 가스 주입구; 상기 플라즈마 발생 유닛을 설치하기 위한 다수의 플라즈마 유닛 설치홈; 및 상기 다수의 플라즈마 유닛 설치홈 사이에 상기 공정 가스가 상기 제1, 2 수직 공정 챔버 내부에 공급될 수 있도록 관통 형성된 복수 개의 가스 분사구를 포함한다,The common gas supply unit may include: a gas injection hole for injecting the process gas into one side; A plurality of plasma unit installation grooves for installing the plasma generation unit; And a plurality of gas injection holes formed therethrough so that the process gas can be supplied into the first and second vertical process chambers between the plurality of plasma unit installation grooves.

일 실시예에 있어서, 상기 공정 가스가 상기 플라즈마 발생 유닛에 접촉되면서 상기 공정 챔버 내부에 공급되도록 상기 플라즈마 유닛 설치홈 상부를 관통하여 상기 가스 분사구가 더 구비된다.In one embodiment, the gas injection hole is further provided through the upper portion of the plasma unit installation groove so that the process gas is in contact with the plasma generating unit is supplied into the process chamber.

일 실시예에 있어서, 상기 가스 공급부는 도체로 형성되어 상기 플라즈마 발생 유닛과의 사이에서 방전이 발생된다.In one embodiment, the gas supply part is formed of a conductor to generate a discharge between the plasma generating unit and the plasma generating unit.

일 실시예에 있어서, 상기 플라즈마 발생 유닛에 서로 다른 주파수 전력을 각각 제공하기 위한 제1, 2 전원 장치; 상기 플라즈마 발생 유닛에 연결되어 상기 플라즈마 발생 유닛을 통해 전달되는 주파수 전력을 분배하기 위한 적어도 하나의 주파수 통과필터를 포함한다.In one embodiment, the first and second power supply for supplying different frequency power to the plasma generating unit, respectively; And at least one frequency pass filter connected to the plasma generation unit to distribute frequency power delivered through the plasma generation unit.

일 실시예에 있어서, 상기 주파수 통과필터는 상기 플라즈마 발생 유닛을 통해 전달되는 고주파 전력을 분배하기 위한 하이패스 필터이다.In one embodiment, the frequency pass filter is a high pass filter for distributing high frequency power delivered through the plasma generating unit.

일 실시예에 있어서, 상기 주파수 통과필터는 상기 플라즈마 발생 유닛을 통해 전달되는 저주파 전력을 분배하기 위한 로우패스 필터이다. In one embodiment, the frequency pass filter is a low pass filter for distributing low frequency power delivered through the plasma generating unit.

일 실시예에 있어서, 상기 플라즈마 발생 유닛은 상기 제1, 2 전원 장치로부터 주파수 전력을 제공받아 상기 공정 챔버의 내부로 유도 결합 플라즈마를 발생시키는 안테나 코일; 및 상기 안테나 코일을 감싸도록 형성된 유전체관을 포함한다.The plasma generating unit may include: an antenna coil receiving frequency power from the first and second power supply units to generate an inductively coupled plasma into the process chamber; And a dielectric tube formed to surround the antenna coil.

일 실시예에 있어서, 상기 플라즈마 발생 유닛은 상기 안테나 코일과 상기 유전체관 사이에 상기 안테나 코일의 상측을 감싸도록 설치되어 공정 챔버 내부로 유도되는 자기장의 세기를 강화시키기 위한 마그네틱 코어를 포함한다,In one embodiment, the plasma generating unit is provided between the antenna coil and the dielectric tube to surround the upper side of the antenna coil includes a magnetic core for enhancing the strength of the magnetic field induced into the process chamber,

일 실시예에 있어서, 상기 제1 전원장치는 상기 제2 전원장치보다 높은 주파수 전력을 상기 플라즈마 발생 유닛에 제공한다,In one embodiment, the first power supply provides a higher frequency power to the plasma generating unit than the second power supply,

일 실시예에 있어서, 상기 제1 전원장치는 상기 안테나 코일과 병렬로 연결된다.In one embodiment, the first power supply is connected in parallel with the antenna coil.

일 실시예에 있어서, 상기 제2 전원장치는 상기 안테나 코일과 직렬로 연결된다.In one embodiment, the second power supply is connected in series with the antenna coil.

일 실시예에 있어서, 상기 하이패스 필터는 복수 개로 상기 안테나 코일과 병렬로 연결된다.In one embodiment, the plurality of high pass filters are connected in parallel with the antenna coil.

일 실시예에 있어서, 상기 로우패스 필터는 상기 안테나 코일과 직렬로 연결된다.In one embodiment, the low pass filter is connected in series with the antenna coil.

일 실시예에 있어서, 상기 하이패스 필터는 캐패시터이다.In one embodiment, the high pass filter is a capacitor.

일 실시예에 있어서, 상기 로우패스 필터는 인덕터이다.In one embodiment, the lowpass filter is an inductor.

일 실시예에 있어서, 상기 공통 가스 공급부는 하나의 가스 공급 채널 또는 둘 이상의 분리된 가스 공급 채널을 포함한다.In one embodiment, the common gas supply includes one gas supply channel or two or more separate gas supply channels.

일 실시예에 있어서, 상기 대면적 플라즈마 반응기는 상기 제1 전원장치로부터 제공되는 전원을 상기 복수개의 플라즈마 발생 유닛으로 분배하는 분배 회로를 포함한다.In one embodiment, the large area plasma reactor includes a distribution circuit for distributing the power provided from the first power supply to the plurality of plasma generating units.

일 실시예에 있어서, 상기 대면적 플라즈마 반응기는 상기 제1 전원장치와 상기 분배 회로 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함한다.In one embodiment, the large area plasma reactor includes an impedance matcher configured between the first power supply and the distribution circuit to perform impedance matching.

일 실시예에 있어서, 상기 대면적 플라즈마 반응기는 상기 제2 전원장치와 상기 플라즈마 발생 유닛 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함한다.In one embodiment, the large area plasma reactor includes an impedance matcher configured between the second power supply and the plasma generating unit to perform impedance matching.

일 실시예에 있어서, 상기 분배 회로는 상기 복수 개의 플라즈마 발생 유닛으로 공급되는 전류의 균형을 조절하는 전류 균형 회로를 포함한다.In one embodiment, the distribution circuit comprises a current balancing circuit for adjusting the balance of the current supplied to the plurality of plasma generating units.

일 실시예에 있어서, 상기 대면적 플라즈마 반응기는 상기 플라즈마 발생 유 닛으로 공급되는 전류 중 상기 제1, 2 전원장치로 서로 다른 주파수가 유입되는 것을 방지하기 위한 필터를 포함한다.In one embodiment, the large-area plasma reactor includes a filter for preventing different frequencies from flowing into the first and second power supplies of the current supplied to the plasma generating unit.

본 발명의 플라즈마 반응기에 의하면, 대형화된 기판의 이송을 용이하게하고, 대면적화 되어가는 기판 사이즈의 증가에 맞추어 대면적으로 플라즈마의 확장이 매우 용이하다. 또한 고주파와 저주파를 이용하여 안테나에 균일한 전류 흐름이 형성되어 대면적의 고밀도 플라즈마를 균일하게 발생할 수 있다. 또한 한번의 공정 가스 공급을 통헤 복수 개의 공정 챔버에서 플라즈마 현상이 발생되기 때문에 작업 효율이 증대된다.According to the plasma reactor of the present invention, it is easy to transfer a large-sized substrate, and it is very easy to expand the plasma in a large area in accordance with an increase in the size of the substrate to be enlarged. In addition, a uniform current flow is formed in the antenna by using a high frequency and a low frequency to uniformly generate a large-area high density plasma. In addition, since the plasma phenomenon occurs in the plurality of process chambers through one process gas supply, the work efficiency is increased.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment of the present invention may be modified in various forms, the scope of the invention should not be construed as limited to the embodiments described in detail below. This embodiment is provided to more completely explain the present invention to those skilled in the art. Therefore, the shape of the elements in the drawings and the like may be exaggerated to emphasize a more clear description. It should be noted that the same members in each drawing are sometimes shown with the same reference numerals. Detailed descriptions of well-known functions and constructions which may be unnecessarily obscured by the gist of the present invention are omitted.

도 1은 본 발명의 바람직한 실시예에 따른 공통 가스 공급부를 갖는 대면적 플라즈마 반응기를 도시한 단면도이다.1 is a cross-sectional view showing a large-area plasma reactor having a common gas supply according to a preferred embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 대면적 플라즈마 반응기(100)는 제1, 2 수직 공정 챔버(120a, 120b)와 공통 가스 공급부(140), 플라즈마 발생 유닛(150) 및 배기 시스템(101)을 포함한다.As shown in FIG. 1, the large-area plasma reactor 100 of the present invention includes first and second vertical process chambers 120a and 120b, a common gas supply unit 140, a plasma generating unit 150, and an exhaust system 101. ).

제1, 2 수직 공정 챔버(120a, 120b)는 피처리 기판(50)이 놓이는 기판 지지대(124)가 구비된다. 이때 기판 지지대(124)은 제1, 2 수직 공정 챔버(120a, 120b)의 측면에 구비되어 피처리 기판(50)이 지면과 수직으로 놓일 수 있도록 한다. 즉, 대형의 피처리 기판(50)을 수직으로 이송시킨 후 플라즈마 반응기(100)에 그대로 장착할 수 있기 때문에 대형 크기의 기판이나 무거운 기판을 쉽고 안전하게 이송 및 장착할 수 있다. 제1, 2 수직 공정 챔버(120a, 120b)에 구비된 기판 지지대(124)은 각각 바이어스 전원 공급원(182)에 연결되어 바이어스 되고, 각각의 바이어스 전원 공급원(182)이 임피던스 정합기(184)를 통하여 기판 지지대(124)에 전기적으로 연결되어 바이어스 된다.The first and second vertical process chambers 120a and 120b are provided with a substrate support 124 on which the substrate 50 to be processed is placed. In this case, the substrate support 124 is provided on the side surfaces of the first and second vertical process chambers 120a and 120b to allow the substrate 50 to be placed perpendicular to the ground. That is, since the large sized substrate 50 may be vertically transferred and then mounted in the plasma reactor 100 as it is, the large sized substrate or the heavy substrate may be easily and safely transferred and mounted. Substrate supports 124 provided in the first and second vertical process chambers 120a and 120b are connected to the bias power source 182 and biased, respectively, and each bias power source 182 is connected to the impedance matcher 184. It is electrically connected to the substrate support 124 through the bias.

기판 지지대(124)의 이중 바이어스 구조는 플라즈마 반응기(100)의 내부에 플라즈마 발생을 용이하게 하고, 플라즈마 이온 에너지 조절을 더욱 개선시켜 공정 생산력을 향상 시킬 수 있다. 이때 서로 다른 주파수 전력을 공급하기 위한 제1, 2 바이어스 전원 공급원(182a, 182b)을 구비한다. 또는 단일 바이어스 구조로 변형 실시할 수도 있다. 또는 기판 지지대(124)는 바이어스 전원의 공급 없이 제로 퍼텐셜(zero potential)을 갖는 구조로 변형 실시될 수도 있다. 그리고 기판 지지 대(124)는 정전척(미도시)을 포함할 수 있다. 또는 기판 지지대(124)는 히터(미도시)를 포함할 수 있다.The dual bias structure of the substrate support 124 facilitates plasma generation inside the plasma reactor 100 and further improves plasma ion energy control to improve process productivity. At this time, the first and second bias power supply (182a, 182b) for supplying different frequency power is provided. Alternatively, it may be modified to a single bias structure. Alternatively, the substrate support 124 may be modified to have a zero potential without supplying bias power. The substrate support 124 may include an electrostatic chuck (not shown). Alternatively, the substrate support 124 may include a heater (not shown).

제1, 2 수직 공정 챔버(120a, 120b)를 구성하는 몸체는 알루미늄, 스테인리스, 구리와 같은 금속 물질이나 코팅된 금속 예를 들어, 양극 처리된 알루미늄이나 니켈 도금된 알루미늄으로 제작될 수도 있다. 또는 내화 금속(refractory metal)으로 제작될 수도 있다. 또 다른 대안으로 몸체를 전체적 또는 부분적으로 석영, 세라믹과 같은 전기적 절연 물질로 제작하는 것도 가능하다. 이와 같이 몸체는 의도된 플라즈마 프로세스가 수행되기에 적합한 어떠한 물질로도 제작될 수 있다. 몸체의 구조는 피처리 기판(50)에 따라 그리고 플라즈마의 균일한 발생을 위하여 적합한 구조를 가질 수 있다.The body constituting the first and second vertical process chambers 120a and 120b may be made of metal material such as aluminum, stainless steel, copper or coated metal, for example anodized aluminum or nickel plated aluminum. Alternatively, it may be made of refractory metal. Alternatively, it is possible to fabricate the body in whole or in part from an electrically insulating material such as quartz or ceramic. As such, the body may be made of any material suitable for carrying out the intended plasma process. The structure of the body may have a structure suitable for the uniform generation of plasma depending on the substrate 50 to be processed.

피처리 기판(50)은 예를 들어, 반도체 집적 회로 장치, 평판 디스플레이 장치, 태양전지 등과 같은 다양한 장치들의 제조를 위한 웨이퍼 기판, 유리 기판, 플라스틱 기판 등과 같은 기판들이다. 플라즈마 반응기(100)는 진공 펌프(미도시)에 연결된다. 플라즈마 반응기(100)는 대기압 이하의 저압 상태에서 피처리 기판(50)에 대한 플라즈마 처리가 이루어진다. 그러나 본 발명의 플라즈마 반응기(100)는 대기압에서 피처리 기판(50)을 처리하는 대기압의 플라즈마 처리 시스템으로도 구현될 수 있다.The substrate 50 to be processed is, for example, substrates such as wafer substrates, glass substrates, plastic substrates, and the like for manufacturing various devices such as semiconductor integrated circuit devices, flat panel display devices, solar cells, and the like. The plasma reactor 100 is connected to a vacuum pump (not shown). The plasma reactor 100 is subjected to plasma processing on the substrate 50 under a low pressure below atmospheric pressure. However, the plasma reactor 100 of the present invention may also be implemented as an atmospheric pressure plasma processing system for treating the substrate 50 at atmospheric pressure.

대면적 플라즈마 반응기(100)는 각각 서로 다른 주파수 전력을 플라즈마 발생 유닛(140)의 안테나 코일(156)에 인가하기 위한 제1, 2 전원장치(162, 164)를 포함한다. The large-area plasma reactor 100 includes first and second power supplies 162 and 164 for respectively applying different frequency power to the antenna coil 156 of the plasma generating unit 140.

제1 전원장치(162)는 임피던스 정합기(162b), 고주파전원부(162a) 및 필터(162c)를 포함한다. 또한 제2 전원장치(164)는 임피던스 정합기(164b), 저주파전원부(164a) 및 필터(164c)를 포함한다. The first power supply 162 includes an impedance matcher 162b, a high frequency power supply 162a, and a filter 162c. The second power supply 164 also includes an impedance matcher 164b, a low frequency power supply 164a, and a filter 164c.

임피던스 정합기(162b)는 고주파전원부(162a)와 안테나 코일(156) 사이에 구비되고, 임피던스 정합기(164b)는 저주파전원부(164b)와 안테나 코일(156) 사이에 구비되어 임피던스 정합 기능을 수행한다. The impedance matcher 162b is provided between the high frequency power supply unit 162a and the antenna coil 156, and the impedance matcher 164b is provided between the low frequency power supply unit 164b and the antenna coil 156 to perform an impedance matching function. do.

고주파전원부(162a)와 임피던스 정합기(162b) 사이에는 필터(162c)가 구비되어 안테나 코일(156)을 통해 전달되는 저주파 전력이 고주파전원부(162a)로 인가되는 것을 방지한다. 또한 저주파전원부(164a)와 임피던스 정합기(164b) 사이에는 필터(164c)가 구비되어 안테나 코일(156)을 통해 전달되는 고주파 전력이 저주파전원부(164a)로 인가되는 것을 방지한다.A filter 162c is provided between the high frequency power supply unit 162a and the impedance matcher 162b to prevent the low frequency power transmitted through the antenna coil 156 from being applied to the high frequency power supply unit 162a. In addition, a filter 164c is provided between the low frequency power source 164a and the impedance matcher 164b to prevent high frequency power transmitted through the antenna coil 156 from being applied to the low frequency power source 164a.

또한 플라즈마 반응기(100)는 전원장치로부터 제공되는 주파수 전력의 소정 대역 주파수를 통과시키기 위한 주파수 통과필터를 포함한다. 이러한 주파수 통과필터는 고주파 전력을 통과시키기 위한 하이패스 필터(170)와 저주파 전력을 통과시키기 위한 로우패스 필터(180)로 구현된다. 주파수 통과 필터에 의한 주파수 전력의 분배는 하기에서 상세하게 설명한다.The plasma reactor 100 also includes a frequency pass filter for passing a predetermined band frequency of the frequency power provided from the power supply. The frequency pass filter is implemented as a high pass filter 170 for passing high frequency power and a low pass filter 180 for passing low frequency power. The distribution of frequency power by the frequency pass filter is described in detail below.

도 2는 공통 가스 공급부를 도시한 사시도이다.2 is a perspective view illustrating a common gas supply unit.

도 2에 도시된 바와 같이, 공통 가스 공급부(140)는 제1, 2 수직 공정 챔버(120a, 120b)의 사이에 위치된다. 공통 가스 공급부(140)는 가스 주입구(142), 플라즈마 유닛 설치홈(146) 및 가스 분사구(144)를 포함한다.As shown in FIG. 2, the common gas supply unit 140 is positioned between the first and second vertical process chambers 120a and 120b. The common gas supply unit 140 includes a gas injection hole 142, a plasma unit installation groove 146, and a gas injection hole 144.

가스 주입구(142)는 공통 가스 공급부(140)의 일측에 형성되어 외부로부터 플라즈마를 발생시키기 위한 공정 가스를 공급받는다. The gas injection hole 142 is formed at one side of the common gas supply unit 140 to receive a process gas for generating a plasma from the outside.

플라즈마 유닛 설치홈(146)은 공통 가스 공급부(140)의 양측, 즉 제1, 2 수직 공정 챔버(120a, 120b)가 결합되는 방향으로 형성되고, 여기에 플라즈마 발생 유닛(150)이 설치된다. 이때 플라즈마 유닛 설치홈(146)은 플라즈마 발생 유닛(150)의 외주면과 동일한 형태로 형성된다. 본 발명은 공통 가스 공급부(140)가 제1, 2 수직 공정 챔버(120a, 120b)의 사이에 위치되기 때문에 공통 가스 공급부(140)의 양측에 플라즈마 유닛 설치홈(146)이 각각 형성된다. 플라즈마 발생 유닛(150)은 공정 챔버 내부에 설치되기 때문에 유전체 윈도우가 불필요하여 전력 전달 효율이 증대된다. The plasma unit installation groove 146 is formed in both sides of the common gas supply unit 140, that is, the direction in which the first and second vertical process chambers 120a and 120b are coupled, and the plasma generation unit 150 is installed therein. In this case, the plasma unit installation groove 146 is formed in the same shape as the outer circumferential surface of the plasma generating unit 150. In the present invention, since the common gas supply unit 140 is positioned between the first and second vertical process chambers 120a and 120b, the plasma unit installation grooves 146 are formed on both sides of the common gas supply unit 140, respectively. Since the plasma generating unit 150 is installed in the process chamber, the dielectric window is unnecessary, thereby increasing power transmission efficiency.

가스 분사구(144)는 가스 주입구(142)를 통해 제공된 공정 가스를 제1, 2 수직 공정 챔버(120a, 120b)의 내부로 공급하기 위해 공통 가스 공급부(140)를 관통하여 형성된다. 이때 가스 분사구(144)는 복수 개의 플라즈마 유닛 설치홈(146) 사이에 각각 구비되어 제1, 2 수직 공정 챔버(120a, 120b) 내부에 공정 가스가 골고루 공급될 수 있도록 한다. The gas injection hole 144 is formed through the common gas supply unit 140 to supply the process gas provided through the gas injection hole 142 into the first and second vertical process chambers 120a and 120b. In this case, the gas injection holes 144 are provided between the plurality of plasma unit installation grooves 146, respectively, so that the process gas may be evenly supplied into the first and second vertical process chambers 120a and 120b.

즉, 가스 주입구(142)를 통해 주입된 공정 가스는 공통 가스 공급부(140)를 통해 공급되고, 공정 가스와 플라즈마 발생 유닛(150)에 의해 플라즈마가 발생되어 제1, 2 수직 공정 챔버(120a, 120b) 내부에서 피처리 기판(50)과 반응하게 된다.That is, the process gas injected through the gas injection hole 142 is supplied through the common gas supply unit 140, and plasma is generated by the process gas and the plasma generating unit 150, so that the first and second vertical process chambers 120a, 120b) reacts with the substrate 50 to be processed.

도 3은 본 발명의 바람직한 실시예에 따른 공통 가스 공급부의 제1 실시예를 도시한 평면도이다.3 is a plan view showing a first embodiment of a common gas supply unit according to a preferred embodiment of the present invention.

도 3에 도시된 바와 같이, 가스 분사구(144)는 가스 주입구(142)를 통해 제공된 공정 가스를 공정 챔버(120)의 내부로 공급하기 위해 공통 가스 공급부(140)를 관통하여 형성된다. 이때 가스 분사구(144)는 복수 개의 플라즈마 유닛 설치홈(146) 사이에 각각 구비되어 제1, 2 수직 공정 챔버(120a, 120b) 내부에 공정 가스가 골고루 공급될 수 있도록 한다. 즉, 공통 가스 공급부(140)를 통해 공급된 공정 가스와 플라즈마 발생 유닛(150)에서 유도된 유도 기전력에 의해 공정 챔버(120) 내부에서 피처리 기판(50)과 반응하게 된다. As shown in FIG. 3, the gas injection hole 144 is formed through the common gas supply unit 140 to supply the process gas provided through the gas injection hole 142 into the process chamber 120. In this case, the gas injection holes 144 are provided between the plurality of plasma unit installation grooves 146, respectively, so that the process gas may be evenly supplied into the first and second vertical process chambers 120a and 120b. That is, the process gas supplied through the common gas supply unit 140 and the induced electromotive force induced in the plasma generating unit 150 react with the processing target substrate 50 in the process chamber 120.

도 4는 본 발명의 바람직한 실시예에 따른 공통 가스 공급부의 제2 실시예를 도시한 평면도이다.4 is a plan view illustrating a second embodiment of a common gas supply unit according to a preferred embodiment of the present invention.

도 4에 도시된 바와 같이, 가스 분사구(144)는 플라즈마 유닛 설치홈(146)에 설치되는 플라즈마 발생 유닛(150)에 분사된 공정 가스가 접촉되면서 제1, 2 수직 공정 챔버(120a, 120b)에 공급될 수 있도록 플라즈마 유닛 설치홈(146)의 상부에 관통되어 형성된다. 즉, 공통 가스 공급부(140)를 통해 제공되는 공정 가스가 플라즈마 유닛 설치홈(146) 사이 및 플라즈마 유닛 설치홈(146)에 구비된 가스 분사구(144)로 골고루 분사되면서 제1, 2 수직 공정 챔버(120a, 120b) 내부에서 고른 플라즈마가 형성될 수 있도록 한다. As shown in FIG. 4, the gas injection holes 144 contact first and second vertical process chambers 120a and 120b while contacting the process gas injected into the plasma generating unit 150 installed in the plasma unit installation groove 146. It is formed through the upper portion of the plasma unit installation groove 146 to be supplied to. That is, the process gas provided through the common gas supply unit 140 is uniformly injected between the plasma unit installation grooves 146 and the gas injection holes 144 provided in the plasma unit installation grooves 146, and thus, the first and second vertical process chambers. The even plasma may be formed inside the 120a and 120b.

도 5는 공통 가스 공급부에 설치된 플라즈마 발생 유닛을 도시한 단면도이다.5 is a cross-sectional view illustrating a plasma generating unit installed in a common gas supply unit.

도 5에 도시된 바와 같이, 플라즈마 발생 유닛(150)은 안테나 코일(156)과 유전체관(152)을 포함한다. As shown in FIG. 5, the plasma generating unit 150 includes an antenna coil 156 and a dielectric tube 152.

안테나 코일(156)은 전원공급장치로부터 주파수 전력을 제공받아 제1, 2 수직 공정 챔버(120a, 120b)의 내부로 유도 결합 플라즈마 발생을 위한 유도 기전력을 전달한다. 이때 안테나 코일(156)은 제공받는 주파수 전력에 의해 발열되기 때문에 내부에 이러한 열을 식혀주기 위한 냉각수(미도시)가 안테나 코일(156) 내부를 따라 흐른다.The antenna coil 156 receives frequency power from a power supply and transfers induced electromotive force for generating inductively coupled plasma into the first and second vertical process chambers 120a and 120b. At this time, since the antenna coil 156 generates heat by the provided frequency power, coolant (not shown) flows along the inside of the antenna coil 156 to cool such heat therein.

유전체관(152)은 내부가 중공인 관 형태로 형성되어 내부에 안테나 코일(156)이 설치된다. 즉, 유전체관(152)은 안테나 코일(156)의 외부를 감싸는 형태로 형성된다. 안테나 코일(156)에 의해 유도되는 유도 자기장은 복수 개의 유전체관(152) 사이에서 발생된다. 그리고 이러한 유도 자기장에 의해서 복수 개의 유전체관(152)을 따라서 유도 전기장이 발생되어 제1, 2 수직 공정 챔버(120a, 120b)의 내부에 대면적의 플라즈마가 형성된다.The dielectric tube 152 is formed in a hollow tube shape, and the antenna coil 156 is installed therein. That is, the dielectric tube 152 is formed in a form surrounding the outside of the antenna coil 156. The induced magnetic field induced by the antenna coil 156 is generated between the plurality of dielectric tubes 152. In addition, an induction electric field is generated along the plurality of dielectric tubes 152 by the induction magnetic field to form a large-area plasma inside the first and second vertical process chambers 120a and 120b.

또한 안테나 코일(156)에 의해 유도되는 자기장의 세기를 강화시키기 위하여 복수 개의 유전체관(152) 내부에 마그네틱 코어(154)가 각각 설치될 수 있다. 마그네틱 코어(154)는 안테나 코일(156)을 상측에서 감싸도록 설치하여 제1, 2 수직 공정 챔버(120a, 120b) 내부로 유도되는 자기장의 세기를 강화한다. In addition, in order to enhance the strength of the magnetic field induced by the antenna coil 156, the magnetic core 154 may be installed in the plurality of dielectric tubes 152, respectively. The magnetic core 154 is installed to surround the antenna coil 156 on the upper side to enhance the strength of the magnetic field induced into the first and second vertical process chambers 120a and 120b.

공통 가스 공급부(140)는 복수 개의 가스 공급 채널을 구비하여 다른 종류의 가스를 제1, 2 수직 공정 챔버(120a, 120b)에 공급할 수 있다. 본 발명의 일 실시예에서는 이층 구조로 가스 공급부(140)가 형성된다. 상층에는 제1 가스를 공급하여 플라즈마 유닛 설치홈(146)의 사이에 구비된 가스 분사구(144)로 분사되도록 한다. 또한 하층에는 제2 가스를 공급하여 플라즈마 유닛 설치홈(146) 상에 구비된 가스 분사구(144)로 분사되도록 한다.The common gas supply unit 140 may include a plurality of gas supply channels to supply different kinds of gases to the first and second vertical process chambers 120a and 120b. In one embodiment of the present invention, the gas supply unit 140 is formed in a two-layer structure. The first gas is supplied to the upper layer to be injected into the gas injection holes 144 provided between the plasma unit installation grooves 146. In addition, the second layer is supplied to the lower layer to be injected into the gas injection hole 144 provided on the plasma unit installation groove 146.

이때 두가지 이상의 공정 가스를 혼합한 혼합가스를 가스 공급부(140)의 상층과 하층에 동일하게 공급할 수도 있고, 서로 다른 공정 가스를 각각 상층과 하층에 공급할 수도 있다.In this case, the mixed gas of two or more process gases may be supplied to the upper and lower layers of the gas supply unit 140 in the same manner, or different process gases may be supplied to the upper and lower layers, respectively.

본 발명의 바람직한 실시예에 따른 공통 가스 공급부(140)는 도체로 형성되어, 공통 가스 공급부(140)에 설치된 플라즈마 발생 유닛(150)과의 사이에서 방전이 일어나 자기장을 형성한다. 즉, 플라즈마 발생 유닛(150)을 통해 유도 결합된 플라즈마가 유도되고, 플라즈마 발생 유닛(150)과 공통 가스 공급부(140) 사이에서 방전이 일어나 플라즈마가 유도된다. 그러므로 플라즈마 반응기(100)에 균일하고 대면적인 플라즈마가 형성된다.The common gas supply unit 140 according to the preferred embodiment of the present invention is formed of a conductor, and discharge occurs between the plasma generating unit 150 installed in the common gas supply unit 140 to form a magnetic field. That is, the plasma inductively coupled through the plasma generation unit 150 is induced, and a discharge occurs between the plasma generation unit 150 and the common gas supply unit 140 to induce the plasma. Therefore, a uniform and large area plasma is formed in the plasma reactor 100.

대면적 플라즈마 반응기(100)는 제1, 2 수직 공정 챔버(120a, 120b)에 각각 분리 형성된 공통 가스 공급부를 설치할 수 있다. 즉, 분리된 공통 가스 공급부는 상기에 설명된 공통 가스 공급부(140)와 동일한 구성으로 형성되어 제1, 2 수직 공정 챔버(120a, 120b)에 각각 별도로 공정 가스를 각각 제공할 수 있다. The large-area plasma reactor 100 may install a common gas supply unit separately formed in the first and second vertical process chambers 120a and 120b. That is, the separated common gas supply unit may be formed in the same configuration as the common gas supply unit 140 described above to provide the process gas to the first and second vertical process chambers 120a and 120b separately.

도 6 및 도 7은 플라즈마 발생 유닛에 복수 개의 안테나 코일이 포함된 것을 도시한 단면도이다. 6 and 7 are cross-sectional views illustrating a plurality of antenna coils included in a plasma generating unit.

본 발명의 일 실시예에서는 유전체관(152) 내부에 하나의 안테나 코일(156)을 설치한 것으로 설명하였으나, 도 6 및 도 7에 도시된 바와 같이, 유전체관(152) 내부에 두 개 또는 세 개의 안테나 코일(156)을 설치할 수도 있다. 즉, 안테나 코일(156)의 개수에 관계없이 유전체관(152) 내부에 안테나 코일(156)을 설치하는 구 성이면 무방하다. In the exemplary embodiment of the present invention, one antenna coil 156 is installed in the dielectric tube 152. However, as shown in FIGS. 6 and 7, two or three inside the dielectric tube 152 are illustrated. Antenna coils 156 may be provided. In other words, the antenna coil 156 may be provided inside the dielectric tube 152 regardless of the number of antenna coils 156.

도 8은 절첩형 안테나 코일을 도시한 도면이고, 도 9는 연속된 안테나 코일을 도시한 도면이다.8 is a view showing a folded antenna coil, Figure 9 is a view showing a continuous antenna coil.

도 8 및 도 9에 도시된 바와 같이, 안테나 코일(156)은 절첩형으로 형성되거나 이중으로 연속된 형태로 형성될 수 있다. 안테나 코일(156)은 전원 장치(162, 164)로부터 주파수 전력을 제공받아 제1, 2 수직 공정 챔버(120a, 120b)의 내부로 유도 결합 플라즈마 발생을 위한 유도 기전력을 전달한다.As shown in FIGS. 8 and 9, the antenna coil 156 may be formed in a folded form or may be formed in a continuous form. The antenna coil 156 receives frequency power from the power supply devices 162 and 164 and transmits induced electromotive force for generating inductively coupled plasma into the first and second vertical process chambers 120a and 120b.

안테나 코일(156)에 의해 유도되는 유도 자기장은 복수 개의 플라즈마 발생 유닛(150) 사이에서 교대적으로 상하 방향으로 발생됨을 알 수 있다. 그리고 이러한 유도 자기장에 의해서 복수 개의 플라즈마 발생 유닛(150)을 따라서 유도 전기장이 발생되어 제1, 2 수직 공정 챔버(120a, 120b)의 내측 상부에 대면적의 플라즈마가 발생된다.It can be seen that the induced magnetic field induced by the antenna coil 156 is alternately generated in the vertical direction between the plurality of plasma generating units 150. In addition, an induction electric field is generated along the plurality of plasma generating units 150 by the induction magnetic field, and a large area plasma is generated in the upper portions of the first and second vertical process chambers 120a and 120b.

도 10 및 도 11은 제1 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 10 and 11 are diagrams illustrating that frequency power is applied and distributed to the antenna coil according to the first embodiment.

도 10 및 도 11에 도시된 바와 같이, 제1, 2 수직 공정 챔버(120a, 120b)에 포함된 안테나 코일(156)에 공통적으로 제1 전원장치(162) 및 제2 전원장치(164)가 연결된다. As shown in FIGS. 10 and 11, the first power supply 162 and the second power supply 164 are common to the antenna coil 156 included in the first and second vertical process chambers 120a and 120b. Connected.

제1 전원장치(162)에서는 고주파 전력이 출력되고, 제2 전원장치(164)에서는 저주파 전력이 출력된다. 즉, 하나의 전원장치에서는 다른 하나의 전원장치보다 높은 주파수가 출력된다. 본 발명의 일 실시예에서는 제1 전원장치(162)가 제2 전원 장치(164)보다 높은 주파수 전력을 출력하는 것으로 설명하였다. The high frequency power is output from the first power supply 162 and the low frequency power is output from the second power supply 164. That is, one power supply device outputs a higher frequency than the other power supply device. In the exemplary embodiment of the present invention, the first power supply 162 outputs higher frequency power than the second power supply 164.

안테나 코일(156)은 하이패스 필터(170)와 로우패스 필터(180)를 통해 접지된다. 이때 하이패스 필터(170)는 캐패시터로 구현되고 로우패스 필터(180)는 인덕터로 구현된다. 이러한 캐패시터와 인덕터는 전원 용량을 조절하여 전원인가지점과 접지지점에 걸리는 전압을 분배해준다. The antenna coil 156 is grounded through the high pass filter 170 and the low pass filter 180. In this case, the high pass filter 170 is implemented as a capacitor and the low pass filter 180 is implemented as an inductor. These capacitors and inductors adjust the power supply capacity to distribute the voltage across the power supply and ground points.

제1 전원장치(162)와 하이패스 필터(170)는 안테나 코일(156)에 병렬로 연결된다.The first power supply 162 and the high pass filter 170 are connected in parallel to the antenna coil 156.

제1 전원장치(162)에서 출력된 고주파 전력은 하이패스 필터(170)가 연결된 안테나 코일(156) 방향으로 분배되어 흐르게 된다. 즉, 하이패스 필터(170)는 고주파 전력이 절첩된 안테나 코일(156)의 노드별로 분배될 수 있도록 한다. 균일하게 분배된 고주파 전력에 의해 안테나 코일(156)에서는 균일하게 유도 자기장이 형성되어 균일하면서 대면적의 플라즈마를 형성할 수 있다. 이때 하이패스 필터(170)는 안테나 코일이 도 10과 같이 절첩된 경우, 제1 전원장치(162)에서 출력된 고주파 전력이 절첩된 각 안테나 코일(156)에 균일하게 분배될 수 있는 개수가 구성되는 것이 바람직하다.The high frequency power output from the first power supply 162 is distributed and flows toward the antenna coil 156 to which the high pass filter 170 is connected. That is, the high pass filter 170 allows high frequency power to be distributed for each node of the folded antenna coil 156. By uniformly distributed high frequency power, the induction magnetic field is uniformly formed in the antenna coil 156 to form a uniform and large-area plasma. In this case, when the antenna coil is folded as shown in FIG. 10, the high pass filter 170 has a number that can be uniformly distributed to each of the folded antenna coils 156. It is preferable to be.

제2 전원장치(164)와 로우패스 필터(180)는 안테나 코일(156)에 직렬로 연결된다.The second power supply 164 and the low pass filter 180 are connected in series to the antenna coil 156.

안테나 코일(156)의 일측에 연결된 제2 전원장치(164)에서 저주파 전력이 출력되고, 안테나 코일(156)의 타측에 연결된 로우패스 필터(180)를 통해 접지된다. The low frequency power is output from the second power supply 164 connected to one side of the antenna coil 156 and grounded through the low pass filter 180 connected to the other side of the antenna coil 156.

본 발명에서는 고주파 전력과 복수 개의 하이패스 필터(170)를 통해 고주파 전력이 균일하게 분배되어 플라즈마를 형성할 수 있도록 하였으나, 저주파 전력과 복수 개의 로우패스 필터(180)를 통해 저주파 전력이 균일하게 분배되어 플라즈마를 형성할 수 있도록 할 수도 있다.In the present invention, the high frequency power is uniformly distributed through the high frequency power and the plurality of high pass filters 170 to form a plasma, but the low frequency power is uniformly distributed through the low frequency power and the plurality of low pass filters 180. To form a plasma.

또한 도 11에 도시된 바와 같이, 절첩된 안테나 코일(156) 중간 부분에 고주파 전력을 공급하는 고주파 전원부(162a)를 연결하고, 양단의 안테나 코일(156) 부분에 하이패스 필터(170)를 연결하여 고주파 전력을 균일하게 분배할 수도 있다.In addition, as shown in FIG. 11, the high frequency power supply unit 162a for supplying high frequency power to the middle portion of the folded antenna coil 156 is connected, and the high pass filter 170 is connected to the antenna coil 156 at both ends. The high frequency power can be evenly distributed.

공통의 제2 전원장치(164)를 통해 제1, 2 수직 공정 챔버(120a, 120b)에 포함된 안테나 코일(156)에 공통적으로 저주파 전력을 인가하고, 각 공정 챔버의 안테나 코일(156)별로 로우패스 필터(180)를 구비한다.Low frequency power is commonly applied to the antenna coils 156 included in the first and second vertical process chambers 120a and 120b through the common second power supply 164, and for each antenna coil 156 of each process chamber. A low pass filter 180 is provided.

도 12는 제2 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 12 is a diagram illustrating that frequency power is applied and distributed to an antenna coil according to a second embodiment.

도 12에 도시된 바와 같이, 제1, 2 수직 공정 챔버(120a, 120b)에 포함된 안테나 코일(156)에 공통적으로 제1 전원장치(162) 및 제2 전원장치(164)가 연결된다. As shown in FIG. 12, the first power supply 162 and the second power supply 164 are commonly connected to the antenna coil 156 included in the first and second vertical process chambers 120a and 120b.

제1, 2전원장치(162, 164)를 통해 전원이 인가되어 분배되는 구조는 상기에서 설명한 바와 동일하다. 한편, 제1 수직 공정 챔버(120a)에 포함된 안테나 코일(156)과 제2 수직 공정 챔버(120b)에 포함된 안테나 코일(156b)은 연결되어 있다. 그러므로, 공통의 제2 전원장치(164)를 통해 제1 수직 공정 챔버(120a)에 포함된 안테나 코일(156)에 인가된 저주파 전력은 제 2 수직 공정 챔버(120b)에 포함된 안테나 코일(156)로 전달되기 때문에 제2 수직 공정 챔버(120b)에 포함된 안테나 코일(156)에 로우패스 필터(180)를 구비한다.The structure in which power is applied and distributed through the first and second power supply devices 162 and 164 is the same as described above. Meanwhile, the antenna coil 156 included in the first vertical process chamber 120a and the antenna coil 156b included in the second vertical process chamber 120b are connected. Therefore, the low frequency power applied to the antenna coil 156 included in the first vertical process chamber 120a through the common second power supply 164 is the antenna coil 156 included in the second vertical process chamber 120b. The low pass filter 180 is provided in the antenna coil 156 included in the second vertical process chamber 120b.

도 13 및 도 14는 제3 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 13 and 14 are diagrams illustrating that frequency power is applied and distributed to an antenna coil according to a third embodiment.

도 13 및 도14에 도시된 바와 같이, 제1, 2 수직 공정 챔버(120a, 120b)에 포함된 안테나 코일(156)에 각각 제1. 2 전원장치(162, 164), 하이패스 필터(170) 및 로우패스 필터(180)를 구비하여 제1, 2 수직 공정 챔버(120a, 120b)에서 각각 별도의 플라즈마 공정 처리를 수행할 수 있다.13 and 14, first and second antenna coils 156 included in the first and second vertical process chambers 120a and 120b, respectively. The second power supply devices 162 and 164, the high pass filter 170, and the low pass filter 180 may be provided to perform separate plasma processing in the first and second vertical process chambers 120a and 120b, respectively.

전류 분배 회로(200)는 전원장치로부터 전원을 플라즈마 발생 유닛(150) 안테나 코일(156)의 여러 지점으로 분배하여 제공한다. 또한 전류 분배 회로(200)는 복수 개의 플라즈마 발생 유닛(150)으로 공급되는 전류의 균형을 조절하는 전류 균형 회로를 포함한다. 이러한 전류 균형 회로는 공지된 사항으로 상세한 설명은 생략한다.The current distribution circuit 200 distributes and supplies power from the power supply unit to various points of the antenna coil 156 of the plasma generation unit 150. In addition, the current distribution circuit 200 includes a current balancing circuit for adjusting the balance of the current supplied to the plurality of plasma generating units 150. Such a current balancing circuit is well known and detailed description thereof will be omitted.

도 15는 안테나 코일의 형태에 따른 하이패스 필터와 로우패스 필터의 연결상태를 도시한 도면이다.FIG. 15 is a diagram illustrating a connection state of a high pass filter and a low pass filter according to the shape of an antenna coil.

도 13에 도시된 바와 같이, 사각 나선형 안테나 코일(300)에 제1 전원장치(162)와 복수 개의 하이패스 필터(170)를 병렬로 연결하고, 제2 전원장치(164)와 로우패스 필터(180)를 직렬로 연결함으로써 주파수 전력이 각 안테나 코일(156)을 따라 균일하게 흘러 균일한 대면적의 플라즈마를 형성할 수 있다. As shown in FIG. 13, the first power supply 162 and the plurality of high pass filters 170 are connected in parallel to the square spiral antenna coil 300, and the second power supply 164 and the low pass filter ( By connecting 180 in series, the frequency power flows uniformly along each antenna coil 156 to form a uniform large area plasma.

즉, 안테나 코일(156)의 형태에 구애받지 않고 안테나 코일(156)에 고주파 또는 저주파 전력을 균일하게 분배할 수 있는 구성이면 바람직하다.That is, it is preferable that the configuration is capable of uniformly distributing high frequency or low frequency power to the antenna coil 156 regardless of the form of the antenna coil 156.

이상에서 설명된 본 발명의 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The embodiment of the large-area plasma reactor composed of the vertical dual chamber of the present invention described above is merely illustrative, and those skilled in the art to which the present invention pertains various modifications and equivalent embodiments from this. You can see that it is possible. Accordingly, it is to be understood that the present invention is not limited to the above-described embodiments. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents, and substitutes within the spirit and scope of the invention as defined by the appended claims.

도 1은 본 발명의 바람직한 실시예에 따른 공통 가스 공급부를 갖는 대면적 플라즈마 반응기를 도시한 단면도이다.1 is a cross-sectional view showing a large-area plasma reactor having a common gas supply according to a preferred embodiment of the present invention.

도 2는 공통 가스 공급부를 도시한 사시도이다.2 is a perspective view illustrating a common gas supply unit.

도 3은 본 발명의 바람직한 실시예에 따른 공통 가스 공급부의 제1 실시예를 도시한 평면도이다.3 is a plan view showing a first embodiment of a common gas supply unit according to a preferred embodiment of the present invention.

도 4는 본 발명의 바람직한 실시예에 따른 공통 가스 공급부의 제2 실시예를 도시한 평면도이다.4 is a plan view illustrating a second embodiment of a common gas supply unit according to a preferred embodiment of the present invention.

도 5는 공통 가스 공급부에 설치된 플라즈마 발생 유닛을 도시한 단면도이다.5 is a cross-sectional view illustrating a plasma generating unit installed in a common gas supply unit.

도 6 및 도 7은 플라즈마 발생 유닛에 복수 개의 안테나 코일이 포함된 것을 도시한 단면도이다. 6 and 7 are cross-sectional views illustrating a plurality of antenna coils included in a plasma generating unit.

도 8은 절첩형 안테나 코일을 도시한 도면이다. 8 illustrates a folded antenna coil.

도 9는 연속된 안테나 코일을 도시한 도면이다.9 illustrates a continuous antenna coil.

도 10 및 도 11은 제1 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 10 and 11 are diagrams illustrating that frequency power is applied and distributed to the antenna coil according to the first embodiment.

도 12는 제2 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 12 is a diagram illustrating that frequency power is applied and distributed to an antenna coil according to a second embodiment.

도 13 및 도 14는 제3 실시예로 안테나 코일에 주파수 전력이 인가되어 분배되는 것을 도시한 도면이다. 13 and 14 are diagrams illustrating that frequency power is applied and distributed to an antenna coil according to a third embodiment.

도 15는 안테나 코일의 형태에 따른 하이패스 필터와 로우패스 필터의 연결상태를 도시한 도면이다.FIG. 15 is a diagram illustrating a connection state of a high pass filter and a low pass filter according to the shape of an antenna coil.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

50: 피처리 기판 100: 플라즈마 반응기50: substrate to be processed 100: plasma reactor

101: 배기 시스템 120a: 제1 수직 공정 챔버101: exhaust system 120a: first vertical process chamber

120b: 제2 수직 공정 챔버 124: 기판 지지대120b: second vertical process chamber 124: substrate support

140: 공통 가스 공급부 142: 가스 주입구140: common gas supply unit 142: gas inlet

144: 가스 분사구 146: 플라즈마 유닛 설치홈144: gas injection hole 146: plasma unit mounting groove

150: 플라즈마 발생 유닛 152: 유전체관150: plasma generating unit 152: dielectric tube

154: 마그네틱 코어 156: 안테나 코일154: magnetic core 156: antenna coil

162: 제1 전원장치 162a: 고주파전원부162: first power supply unit 162a: high frequency power supply unit

162b: 임피던스 정합기 162c, 164c: 필터162b: impedance matcher 162c, 164c: filter

164: 제2 전원장치 164a: 저주파전원부164: second power supply unit 164a: low frequency power supply unit

164b: 임피던스 정합기 170: 하이패스 필터164b: Impedance Matcher 170: High Pass Filter

180: 로우패스 필터 182: 바이어스 전원 공급원180: low pass filter 182: bias power supply

182a, 182b: 바이어스 전원 공급원 184: 임피던스 정합기182a, 182b: bias power supply 184: impedance matcher

200: 전류 분배 회로 300: 사각 나선형 안테나 코일200: current distribution circuit 300: square spiral antenna coil

Claims (23)

처리대상 기판이 수직으로 설치될 수 있는 기판 지지대를 구비하고 플라즈마가 발생되는 반응 공간을 갖는 제1, 2 수직 공정 챔버;First and second vertical process chambers having a substrate support on which a substrate to be processed may be vertically installed and having a reaction space in which plasma is generated; 상기 제1, 2 수직 공정 챔버 사이에 배치되어 상기 제1, 2 수직 공정 챔버 내부에 공정 가스를 제공하기 위한 공통 가스 공급부; 및A common gas supply unit disposed between the first and second vertical process chambers to provide a process gas into the first and second vertical process chambers; And 상기 공통 가스 공급부에 구비되고 상기 제1, 2 수직 공정 챔버 내부에 플라즈마를 발생시키기 위한 플라즈마 발생 유닛을 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And a plasma generating unit provided in the common gas supply unit and configured to generate plasma in the first and second vertical process chambers. 제1항에 있어서,The method of claim 1, 상기 공통 가스 공급부는 The common gas supply unit 상기 제1, 2 수직 공정 챔버에 각각 공정 가스를 분리하여 공급하기 위해 분리된 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.Large-area plasma reactor consisting of a vertical dual chamber, characterized in that separated for supplying the process gas to the first and second vertical process chamber, respectively. 제1항 또는 제2항 중 어느 한 항에 있어서,The method according to claim 1 or 2, 상기 공통 가스 공급부는 The common gas supply unit 일측에 상기 공정 가스를 주입하기 위한 가스 주입구;A gas injection hole for injecting the process gas into one side; 상기 플라즈마 발생 유닛을 설치하기 위한 다수의 플라즈마 유닛 설치홈; 및A plurality of plasma unit installation grooves for installing the plasma generation unit; And 상기 다수의 플라즈마 유닛 설치홈 사이에 상기 공정 가스가 상기 제1, 2 수직 공정 챔버 내부에 공급될 수 있도록 관통 형성된 복수 개의 가스 분사구를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And a plurality of gas injection holes formed therethrough so that the process gas can be supplied into the first and second vertical process chambers between the plurality of plasma unit installation grooves. 제3항에 있어서,The method of claim 3, 상기 공정 가스가 상기 플라즈마 발생 유닛에 접촉되면서 상기 공정 챔버 내부에 공급되도록 상기 플라즈마 유닛 설치홈 상부를 관통하여 상기 가스 분사구가 더 구비된 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the gas injection hole is further provided through the upper portion of the plasma unit installation groove to supply the process gas into the process chamber while being in contact with the plasma generating unit. 제3항에 있어서,The method of claim 3, 상기 가스 공급부는 도체로 형성되어 상기 플라즈마 발생 유닛과의 사이에서 방전이 발생되는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And said gas supply part is formed of a conductor so that discharge occurs between said plasma generating unit and said plasma generating unit. 제1항에 있어서,The method of claim 1, 상기 플라즈마 발생 유닛에 서로 다른 주파수 전력을 각각 제공하기 위한 제 1, 2 전원 장치;First and second power supply devices for providing different frequency power to the plasma generating unit, respectively; 상기 플라즈마 발생 유닛에 연결되어 상기 플라즈마 발생 유닛을 통해 전달되는 주파수 전력을 분배하기 위한 적어도 하나의 주파수 통과필터를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And at least one frequency pass filter coupled to said plasma generating unit for distributing frequency power delivered through said plasma generating unit. 제6항에 있어서,The method of claim 6, 상기 주파수 통과필터는 상기 플라즈마 발생 유닛을 통해 전달되는 고주파 전력을 분배하기 위한 하이패스 필터인 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the frequency pass filter is a high pass filter for distributing high frequency power transmitted through the plasma generating unit. 제6항에 있어서, The method of claim 6, 상기 주파수 통과필터는 상기 플라즈마 발생 유닛을 통해 전달되는 저주파 전력을 분배하기 위한 로우패스 필터인 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And said frequency pass filter is a low pass filter for distributing low frequency power delivered through said plasma generating unit. 제1항에 있어서,The method of claim 1, 상기 플라즈마 발생 유닛은 The plasma generating unit 상기 제1, 2 전원 장치로부터 주파수 전력을 제공받아 상기 공정 챔버의 내부로 유도 결합 플라즈마를 발생시키는 안테나 코일; 및An antenna coil receiving frequency power from the first and second power supplies to generate an inductively coupled plasma into the process chamber; And 상기 안테나 코일을 감싸도록 형성된 유전체관을 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.A large area plasma reactor configured as a vertical dual chamber including a dielectric tube formed to surround the antenna coil. 제9항에 있어서,10. The method of claim 9, 상기 플라즈마 발생 유닛은 상기 안테나 코일과 상기 유전체관 사이에 상기 안테나 코일의 상측을 감싸도록 설치되어 공정 챔버 내부로 유도되는 자기장의 세기를 강화시키기 위한 마그네틱 코어를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The plasma generating unit includes a magnetic core installed between the antenna coil and the dielectric tube to surround an upper side of the antenna coil to enhance a strength of a magnetic field induced into the process chamber. Large area plasma reactor constructed. 제6항에 있어서,The method of claim 6, 상기 제1 전원장치는 상기 제2 전원장치보다 높은 주파수 전력을 상기 플라즈마 발생 유닛에 제공하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the first power supply unit provides a higher frequency power to the plasma generation unit than the second power supply unit. 제11항에 있어서,The method of claim 11, 상기 제1 전원장치는 상기 안테나 코일과 병렬로 연결되는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The first power supply is a large area plasma reactor consisting of a vertical dual chamber, characterized in that connected in parallel with the antenna coil. 제11항에 있어서,The method of claim 11, 상기 제2 전원장치는 상기 안테나 코일과 직렬로 연결되는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The second power supply is a large area plasma reactor consisting of a vertical dual chamber, characterized in that connected in series with the antenna coil. 제7항에 있어서,The method of claim 7, wherein 상기 하이패스 필터는 복수 개로 상기 안테나 코일과 병렬로 연결되는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The high-pass filter is a large area plasma reactor consisting of a vertical dual chamber, characterized in that connected in parallel with the antenna coil in plurality. 제8항에 있어서,The method of claim 8, 상기 로우패스 필터는 상기 안테나 코일과 직렬로 연결되는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the low pass filter is connected in series with the antenna coil. 제14항에 있어서,The method of claim 14, 상기 하이패스 필터는 캐패시터인 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The high-pass filter is a large area plasma reactor consisting of a vertical dual chamber, characterized in that the capacitor. 제15항에 있어서,The method of claim 15, 상기 로우패스 필터는 인덕터인 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the low pass filter is an inductor. 제1항에 있어서,The method of claim 1, 상기 공통 가스 공급부는 하나의 가스 공급 채널 또는 둘 이상의 분리된 가스 공급 채널을 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.Wherein said common gas supply comprises one gas supply channel or two or more separate gas supply channels. 제1항에 있어서,The method of claim 1, 상기 대면적 플라즈마 반응기는 상기 제1 전원장치로부터 제공되는 전원을 상기 복수개의 플라즈마 발생 유닛으로 분배하는 분배 회로를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the large area plasma reactor includes a distribution circuit for distributing power provided from the first power supply device to the plurality of plasma generating units. 제1항에 있어서,The method of claim 1, 상기 대면적 플라즈마 반응기는 상기 제1 전원장치와 상기 분배 회로 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the large area plasma reactor comprises an impedance matcher configured between the first power supply and the distribution circuit to perform impedance matching. 제1항에 있어서,The method of claim 1, 상기 대면적 플라즈마 반응기는 상기 제2 전원장치와 상기 플라즈마 발생 유닛 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.And the large area plasma reactor comprises an impedance matcher configured between the second power supply and the plasma generating unit to perform impedance matching. 제19항에 있어서,The method of claim 19, 상기 분배 회로는 상기 복수 개의 플라즈마 발생 유닛으로 공급되는 전류의 균형을 조절하는 전류 균형 회로를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.Wherein said distribution circuit comprises a current balancing circuit for adjusting the balance of current supplied to said plurality of plasma generating units. 제1항에 있어서,The method of claim 1, 상기 대면적 플라즈마 반응기는 상기 플라즈마 발생 유닛으로 공급되는 전류 중 상기 제1, 2 전원장치로 서로 다른 주파수가 유입되는 것을 방지하기 위한 필터를 포함하는 것을 특징으로 하는 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기.The large-area plasma reactor includes a filter for preventing the inflow of different frequencies into the first and second power supplies among the current supplied to the plasma generating unit. .
KR1020090047898A 2009-05-31 2009-05-31 Plasma reactor with vertical dual chamber KR101585890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090047898A KR101585890B1 (en) 2009-05-31 2009-05-31 Plasma reactor with vertical dual chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090047898A KR101585890B1 (en) 2009-05-31 2009-05-31 Plasma reactor with vertical dual chamber

Publications (2)

Publication Number Publication Date
KR20100129369A true KR20100129369A (en) 2010-12-09
KR101585890B1 KR101585890B1 (en) 2016-01-15

Family

ID=43505982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090047898A KR101585890B1 (en) 2009-05-31 2009-05-31 Plasma reactor with vertical dual chamber

Country Status (1)

Country Link
KR (1) KR101585890B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129058B1 (en) * 2010-12-21 2012-03-23 주식회사 케이씨텍 Spin nozzle unit having gas distribution hole arranged helically and upright type deposition apparatus having the spin nozzle unit
KR20150103964A (en) * 2014-03-04 2015-09-14 주식회사 제우스 Separation type heat treatment apparatus for substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0109515Y1 (en) * 1994-04-18 1998-04-06 김주용 Plasma deposition apparatus
KR20020079300A (en) * 2001-04-12 2002-10-19 (주)울텍 High Density Plasma Source Apparatus and Method
KR20080053631A (en) * 2006-12-11 2008-06-16 주식회사 뉴파워 프라즈마 Plasma reactor having multi-core plasma generator
KR20090040819A (en) * 2007-10-22 2009-04-27 주식회사 뉴파워 프라즈마 Capacitively coupled plasma reactor for processing dual substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0109515Y1 (en) * 1994-04-18 1998-04-06 김주용 Plasma deposition apparatus
KR20020079300A (en) * 2001-04-12 2002-10-19 (주)울텍 High Density Plasma Source Apparatus and Method
KR20080053631A (en) * 2006-12-11 2008-06-16 주식회사 뉴파워 프라즈마 Plasma reactor having multi-core plasma generator
KR20090040819A (en) * 2007-10-22 2009-04-27 주식회사 뉴파워 프라즈마 Capacitively coupled plasma reactor for processing dual substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129058B1 (en) * 2010-12-21 2012-03-23 주식회사 케이씨텍 Spin nozzle unit having gas distribution hole arranged helically and upright type deposition apparatus having the spin nozzle unit
KR20150103964A (en) * 2014-03-04 2015-09-14 주식회사 제우스 Separation type heat treatment apparatus for substrate

Also Published As

Publication number Publication date
KR101585890B1 (en) 2016-01-15

Similar Documents

Publication Publication Date Title
KR101160906B1 (en) Capacitively coupled plasma reactor
KR20100031960A (en) Plasma generating apparatus
KR101496841B1 (en) Compound plasma reactor
KR20120004040A (en) Plasma generating apparatus
KR100845890B1 (en) Large area inductive coupled plasma reactor
KR20100129371A (en) Compound plasma reactor
KR101626039B1 (en) Consecutive substrate processing system using large-area plasma
KR101572100B1 (en) Plasma reactor using multi-frequency
KR100864111B1 (en) Inductively coupled plasma reactor
KR101200726B1 (en) Plasma reactor having top and bottom multi divided electrode
KR100806522B1 (en) Inductively coupled plasma reactor
KR20100010069A (en) Inductively coupled plasma reactor
KR20080028848A (en) Inductively coupled plasma reactor for wide area plasma processing
KR101167952B1 (en) Plasma reactor for generating large size plasma
KR101585893B1 (en) Compound plasma reactor
KR100845917B1 (en) Inductively coupled plasma reactor for wide area plasma processing
KR20100129369A (en) Plasma reactor with vertical dual chamber
KR101236206B1 (en) Inductively coupled plasma reactor for generating high density uniform plasma
KR100753869B1 (en) Compound plasma reactor
KR20090013626A (en) Inductively coupled plasma reactor having multi rf antenna
KR20090022564A (en) Inductively coupled plasma reactor having multi rf antenna
KR100845903B1 (en) Plasma reactor having multi-core plasma generator
KR20100026529A (en) Capacitively coupled plasma reactor and plasma processing method using the same and semiconductor device manufactured thereby
KR101139824B1 (en) Plasma reactor for generating large size plasma
KR100777841B1 (en) Inductive coupled plasma reactor with improved vertical etching efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200109

Year of fee payment: 5