JP2001076756A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001076756A
JP2001076756A JP24756099A JP24756099A JP2001076756A JP 2001076756 A JP2001076756 A JP 2001076756A JP 24756099 A JP24756099 A JP 24756099A JP 24756099 A JP24756099 A JP 24756099A JP 2001076756 A JP2001076756 A JP 2001076756A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24756099A
Other languages
Japanese (ja)
Other versions
JP4306891B2 (en
Inventor
Ryuji Oshita
竜司 大下
Yasuyuki Kusumoto
靖幸 樟本
Masahisa Fujimoto
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24756099A priority Critical patent/JP4306891B2/en
Publication of JP2001076756A publication Critical patent/JP2001076756A/en
Application granted granted Critical
Publication of JP4306891B2 publication Critical patent/JP4306891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery not causing the structural degradation or decomposition of an electrolytic solution even if it is overcharged. SOLUTION: A positive electrode having a graphitic carbon layer 11 formed on a positive electrode collector 12 and a negative electrode having a graphitic carbon layer 13 formed on a negative electrode collector 14 are received in a positive electrode can 16 by facing them to each other through a separator 15, and a negative electrode can 17 is liquid-tightly enclosed in the positive electrode can 16. A nonaqueous electrolyte is impregnated in the separator 15, the solvent of the nonaqueous electrolyte contains ethylene carbonate and chain carbonate such as dimethyl carbonate, methylethyl carbonate and diethyl carbonate by mixing them, and the solvent contains anions intercalated in the graphitic carbon of the positive electrode, and cations intercalated in the graphitic carbon of the negative electrode. Thereby, this nonaqueous electrolyte battery having electromotive force of around 5-6 V in a charged state can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極と負極と非水
電解質とを備えた非水電解質電池に係わり、特に、この
種の非水電解質電池の正極あるいは負極に用いられる活
物質と電解質との組み合わせの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode and a non-aqueous electrolyte, and more particularly to an active material and an electrolyte used for a positive electrode or a negative electrode of this type of non-aqueous electrolyte battery. The improvement of the combination.

【0002】[0002]

【従来の技術】近年、小型ビデオカメラ、携帯電話、ノ
ートパソコン等の携帯用電子・通信機器等に用いられる
電池として、リチウム−コバルト酸化物(LiCo
2)、リチウム−ニッケル酸化物(LiNiO2)、リ
チウム−マンガン酸化物(LiMn24)等のリチウム
含有遷移金属酸化物などを正極活物質材料とし、リチウ
ム金属、リチウム合金あるいはリチウムイオンを吸蔵・
放出できる炭素材料などを負極活物質とするリチウムイ
オン電池で代表されるリチウム二次電池が注目され、炭
素材料を負極活物質とするリチウム二次電池が実用化さ
れるようになった。
2. Description of the Related Art In recent years, lithium-cobalt oxide (LiCo-oxide) has been used as a battery used in portable electronic / communication equipment such as a small video camera, a portable telephone, and a notebook personal computer.
O 2 ), lithium-nickel oxide (LiNiO 2 ), lithium-manganese oxide (LiMn 2 O 4 ) and other lithium-containing transition metal oxides are used as the positive electrode active material, and lithium metal, lithium alloy or lithium ion is used as the positive electrode active material. Occlusion
Attention has been paid to a lithium secondary battery represented by a lithium ion battery using a releasable carbon material as a negative electrode active material, and a lithium secondary battery using a carbon material as a negative electrode active material has come into practical use.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種のリ
チウム二次電池は、過充電状態になると、正極において
は正極活物質となるリチウム含有遷移金属酸化物からリ
チウムが脱離するとともに、正極活物質と電解液とが反
応して電解液の分解が起こる。一方、負極においてはリ
チウムが電解析出するようになる。ここで、正極活物質
となるリチウム含有遷移金属酸化物からリチウムが脱離
するに伴って正極の構造劣化が生じ、結果として電池が
劣化するという問題を生じた。このため、過充電状態に
ならないようにするための保護回路を設けて、この保護
回路により過充電状態にならないようにして、電池の劣
化を防止するようにしていた。
In this type of lithium secondary battery, when the battery is overcharged, lithium is desorbed from the lithium-containing transition metal oxide serving as the positive electrode active material in the positive electrode, and the positive electrode active The substance reacts with the electrolyte to cause decomposition of the electrolyte. On the other hand, in the negative electrode, lithium is electrolytically deposited. Here, as lithium is desorbed from the lithium-containing transition metal oxide serving as the positive electrode active material, the structure of the positive electrode deteriorates, and as a result, the battery deteriorates. For this reason, a protection circuit for preventing the battery from being overcharged is provided to prevent the battery from being deteriorated by preventing the battery from being overcharged by the protection circuit.

【0004】しかしながら、上述したような保護回路を
設けると、電池の構造が複雑になり、かつ製造工程も複
雑になるという問題を生じた。また、保護回路自体も複
雑で小型化することが困難であり、この種のリチウム二
次電池を簡単、容易に製造できないという問題も生じ
た。そこで、この種のリチウム二次電池が過充電状態に
なって、正極の電位が高電位になっても、電解液が分解
されなくする方法が、特開平5−47416号公報ある
いは特開平4−242074号公報において提案される
ようになった。これらの公報で提案された方法は、電解
液中に遷移金属錯体を添加して、遷移金属イオンの酸化
反応により、高電位に保たれた正極による電解液の酸化
を抑制して、電解液が分解されるのを防止するというも
のである。
However, when the above-described protection circuit is provided, there arises a problem that the structure of the battery is complicated and the manufacturing process is also complicated. In addition, the protection circuit itself is complicated and it is difficult to reduce the size, and there has been a problem that this kind of lithium secondary battery cannot be easily and easily manufactured. Therefore, a method for preventing the decomposition of the electrolytic solution even when this type of lithium secondary battery is overcharged and the potential of the positive electrode becomes high is disclosed in Japanese Patent Application Laid-Open No. 5-47416 or Japanese Patent Application Laid-Open No. No. 242074 has been proposed. In the methods proposed in these publications, a transition metal complex is added to the electrolytic solution to suppress the oxidation of the electrolytic solution by the positive electrode kept at a high potential by the oxidation reaction of the transition metal ion, so that the electrolytic solution becomes It is intended to prevent decomposition.

【0005】しかしながら、特開平5−47416号公
報あるいは特開平4−242074号公報において提案
され方法であっても、過充電状態が生じれば電解液が分
解されて、結果として、電池が劣化するという問題を生
じた。そこで、本発明は上記問題点を解消するべくなさ
れたものであり、過充電状態を生じなくして、正極の構
造劣化や電解液の分解が生じない非水電解液電池を提供
することを目的とするものである。
However, even in the method proposed in Japanese Patent Application Laid-Open No. 5-47416 or Japanese Patent Application Laid-Open No. 4-24074, if an overcharged state occurs, the electrolytic solution is decomposed, and as a result, the battery deteriorates. The problem arose. Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a nonaqueous electrolyte battery that does not cause an overcharged state and does not cause structural deterioration of a positive electrode or decomposition of an electrolyte. Is what you do.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】本
発明は電極が過充電状態になる前に電解質中のアニオン
およびカチオンが完全に消費されてしまえば、過充電状
態には至らないという知見に基づいてなされたものであ
る。このため、本発明の非水電解質電池においては、正
極は正極集電体の表面に黒鉛質炭素層を備え、負極は負
極集電体の表面に黒鉛質炭素層を備え、非水電解質は溶
媒として少なくともエチレンカーボネートと鎖状カーボ
ネートとを含有するようにしている。
SUMMARY OF THE INVENTION The present invention is based on the finding that if the anions and cations in the electrolyte are completely consumed before the electrode is overcharged, the electrode will not be overcharged. It was made based on. For this reason, in the nonaqueous electrolyte battery of the present invention, the positive electrode includes a graphitic carbon layer on the surface of the positive electrode current collector, the negative electrode includes the graphitic carbon layer on the surface of the negative electrode current collector, and the nonaqueous electrolyte includes a solvent. At least ethylene carbonate and a chain carbonate.

【0007】このように、黒鉛質炭素を正極および負極
に備えていると、この電池を充電することにより、非水
電解質中のアニオンが正極の黒鉛質炭素にインターカレ
ートされ、非水電解質中のカチオンが負極の黒鉛質炭素
にインターカレートされることにより、起電力が5〜6
V程度である非水電解質電池が得られるようになる。こ
のとき、非水電解質の溶媒にエチレンカーボネートが含
有されていると、エチレンカーボネートは負極で分解さ
れにくいため、電解質の分解を抑制できるようになる。
また、溶媒に鎖状カーボネートが含有されていると、鎖
状カーボネートは高電位領域で黒鉛質炭素との反応を抑
制する作用を有するため、高電位領域での電解質の安定
性が向上する。このため、非水電解質は溶媒として少な
くともエチレンカーボネートと鎖状カーボネートとを含
有させる必要がある。
As described above, when the graphitic carbon is provided in the positive electrode and the negative electrode, the anion in the nonaqueous electrolyte is intercalated into the graphitic carbon of the positive electrode by charging the battery, and the nonaqueous electrolyte in the nonaqueous electrolyte is charged. Is intercalated into the graphite carbon of the negative electrode, so that the electromotive force is 5-6.
A non-aqueous electrolyte battery of about V can be obtained. At this time, if ethylene carbonate is contained in the solvent of the non-aqueous electrolyte, the decomposition of the electrolyte can be suppressed because ethylene carbonate is not easily decomposed at the negative electrode.
In addition, when the solvent contains a chain carbonate, the chain carbonate has a function of suppressing the reaction with the graphitic carbon in the high potential region, so that the stability of the electrolyte in the high potential region is improved. Therefore, the non-aqueous electrolyte needs to contain at least ethylene carbonate and chain carbonate as solvents.

【0008】また、非水電解質の電解質塩としては、L
iPF6、LiBF4、LiAsF6、LiSbF6、Li
ClO4、LiX(SO2R)n(式中、XはN、C、O
またはBであり、RはCF3またはC25またはC37
またはC49であり、nは1〜3の整数である)のいず
れかから選択することが好ましく、これらの少なくとも
1種以上を含有した電解質塩を用いることが好ましい。
これらの電解質塩の内、LiX(SO2R)n(式中、X
はN、C、OまたはBであり、RはCF3またはC25
またはC37またはC49であり、nは1〜3の整数で
ある)は過充電後の容量残存率が優れているので特に好
ましい。
The electrolyte salt of the non-aqueous electrolyte includes L
iPF 6, LiBF 4, LiAsF 6 , LiSbF 6, Li
ClO 4 , LiX (SO 2 R) n (where X is N, C, O
Or B and R is CF 3 or C 2 F 5 or C 3 F 7
Or a C 4 F 9, n is preferably selected from any of a 1 to 3) of the integer, it is preferable to use these electrolyte salt containing at least one more.
Of these electrolyte salts, LiX (SO 2 R) n (where X is
Is N, C, O or B, and R is CF 3 or C 2 F 5
Or C 3 F 7 or C 4 F 9 , and n is an integer of 1 to 3), since the capacity remaining rate after overcharge is excellent.

【0009】このような非水電解質電池に用いる正極集
電体としては、充放電により電解液中に溶け出さない金
属集電体を用いる必要があるが、高電位においてタンタ
ルは充放電により電解液中に溶け出しにくいため、正極
集電体としはタンタルを含むタンタル箔、タンタル合金
箔を用いることが好ましい。
As a positive electrode current collector used in such a non-aqueous electrolyte battery, it is necessary to use a metal current collector that does not dissolve into the electrolytic solution due to charge and discharge. Since it is difficult to dissolve into the inside, it is preferable to use a tantalum-containing tantalum foil or a tantalum alloy foil as the positive electrode current collector.

【0010】そして、このような非水電解質電池を充電
することにより、電解液中のアニオンは正極の黒鉛質炭
素にインターカレートされ、電解液中のカチオンが負極
の黒鉛質炭素にインターカレートされるため、非水電解
質の電気化学当量が正極または負極のいずれか少ない方
の容量よりも少ないと、電解液中のアニオンとカチオン
の全てが正極または負極の黒鉛質炭素にインターカレー
トされ(厳密に言えば、充電の末期になると充電電圧が
上昇するため、電解液中のアニオンとカチオンの全てが
正極または負極の黒鉛質炭素にインターカレートされる
訳ではなく、次回の放電に必要となるだけのアニオンと
カチオンは残存することとなる)るため、これ以上は充
電が進行することはない。したがって、このような構成
とすることにより、過充電の進行が防止でき、電池容量
の劣化がない非水電解質電池が得られるようになる。
By charging such a non-aqueous electrolyte battery, anions in the electrolyte are intercalated into graphitic carbon of the positive electrode, and cations in the electrolyte are intercalated into graphitic carbon of the negative electrode. Therefore, when the electrochemical equivalent of the nonaqueous electrolyte is smaller than the smaller capacity of the positive electrode or the negative electrode, all of the anions and cations in the electrolytic solution are intercalated into the graphitic carbon of the positive electrode or the negative electrode ( Strictly speaking, at the end of charging, the charging voltage rises, so not all of the anions and cations in the electrolyte are intercalated into the graphitic carbon of the positive electrode or negative electrode, and they are necessary for the next discharge. As much anions and cations as possible remain), so that charging does not proceed any further. Therefore, with such a configuration, the progress of overcharge can be prevented, and a nonaqueous electrolyte battery having no deterioration in battery capacity can be obtained.

【0011】なお、本発明の非水電解質電池に用いる非
水電解質の溶媒としては、エチレンカーボネートを含有
させることで負極で溶媒が分解されなくし、鎖状カーボ
ネートを含有させることで高電位領域での電解質の安定
性を確保するための必須の要件となるが、このエチレン
カーボネートを10重量部以上と、ジメチルカーボネー
ト、メチルエチルカーボネート、ジエチルカーボネート
などの鎖状カーボネートとを混合させて含有されていれ
ば、これらに1、2−ジメトキシエタン、1,2−ジエ
トキシエタンなどのエーテル系溶媒や、γ−ブチロラク
トン(γ−BL)、プロピレンカーボネート(PC)、
ブチレンカーボネート(BC)、ビニレンカーボネート
(VC)、テトラヒドロフラン(THF)を混合させる
ようにしてもよい。
The non-aqueous electrolyte solvent used in the non-aqueous electrolyte battery of the present invention contains ethylene carbonate to prevent the solvent from being decomposed at the negative electrode, and contains a chain carbonate to form a non-aqueous electrolyte in a high potential region. It is an essential requirement to ensure the stability of the electrolyte, but if this ethylene carbonate is contained by mixing at least 10 parts by weight of dimethyl carbonate, methyl ethyl carbonate, and a chain carbonate such as diethyl carbonate. And ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane, γ-butyrolactone (γ-BL), propylene carbonate (PC),
Butylene carbonate (BC), vinylene carbonate (VC), and tetrahydrofuran (THF) may be mixed.

【0012】[0012]

【発明の実施の形態】以下に、本発明の非水電解質電池
の実施の形態を詳細に説明するが、本発明はこの実施の
形態に何ら限定されるものではなく、その要旨を変更し
ない範囲において適宜変更して実施することが可能なも
のである。なお、図1は本発明の非水電解質電池を模式
的に示す断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the nonaqueous electrolyte battery of the present invention will be described below in detail, but the present invention is not limited to these embodiments at all, and the scope of the present invention is not changed. It is possible to change and implement as appropriate. FIG. 1 is a cross-sectional view schematically showing the nonaqueous electrolyte battery of the present invention.

【0013】1.正極の作製 平均粒径10μmの天然黒鉛(d=3.354Å)を用
い、この天然黒鉛95重量%に、結着剤としてのポリフ
ッ化ビニリデン(PVdF)5重量%とを混合した。こ
の後、この混合物にN−メチル−2−ピロリドン(NM
P)を加えて混合・混練して正極用スラリーを作製し
た。ついで、この正極用スラリーをタンタル箔からなる
正極集電体12にドクターブレード法により塗着した
後、所定の厚みとなるように圧延した。ついで、130
℃の温度で真空乾燥した後、所定寸法に切断して、正極
集電体12の表面に正極黒鉛層11を形成した正極を作
製した。
1. Preparation of Positive Electrode Natural graphite (d = 3.354 °) having an average particle diameter of 10 μm was used, and 95% by weight of the natural graphite was mixed with 5% by weight of polyvinylidene fluoride (PVdF) as a binder. Thereafter, the mixture was added to N-methyl-2-pyrrolidone (NM
P) was added thereto, followed by mixing and kneading to prepare a positive electrode slurry. Next, the positive electrode slurry was applied to a positive electrode current collector 12 made of tantalum foil by a doctor blade method, and then rolled to a predetermined thickness. Then 130
After vacuum drying at a temperature of ° C., the resultant was cut into a predetermined size to produce a positive electrode in which a positive electrode graphite layer 11 was formed on the surface of a positive electrode current collector 12.

【0014】2.負極の作製 平均粒径10μmの天然黒鉛(d=3.354Å)を用
い、この天然黒鉛95重量%に、結着剤としてのポリフ
ッ化ビニリデン(PVdF)5重量%とを混合した。こ
の後、この混合物にN−メチル−2−ピロリドン(NM
P)を加えて混合・混練して負極用スラリーを作製し
た。ついで、この負極用スラリーを銅箔からなる負極集
電体14にドクターブレード法により塗着した後、所定
の厚みとなるように圧延した。ついで、130℃の温度
で真空乾燥した後、所定寸法に切断して、負極集電体1
4の表面に負極黒鉛層13を形成した負極を作製した。
2. Preparation of Negative Electrode Natural graphite having an average particle size of 10 μm (d = 3.354 °) was used, and 95% by weight of this natural graphite was mixed with 5% by weight of polyvinylidene fluoride (PVdF) as a binder. Thereafter, the mixture was added to N-methyl-2-pyrrolidone (NM
P) was added thereto, followed by mixing and kneading to prepare a negative electrode slurry. Next, the negative electrode slurry was applied to a negative electrode current collector 14 made of copper foil by a doctor blade method, and then rolled to a predetermined thickness. Then, after vacuum drying at a temperature of 130 ° C., it is cut into a predetermined size, and the negative electrode current collector 1
A negative electrode having the negative electrode graphite layer 13 formed on the surface of No. 4 was produced.

【0015】3.電解液の調製 (1)実施例1 環状カーボネートであるエチレンカーボネート(EC:
以下、単にECという)と、鎖状カーボネートであるジ
メチルカーボネート(DMC:以下、単にDMCとい
う)との等体積混合溶媒に、溶質としてLiN(C25
SO22(リチウムペルフルオロアルキルスルホン酸イ
ミド)を1モル/リットル溶解して非水電解液を調製し
た。この非水電解液を実施例1の電解液aとした。
3. Preparation of electrolyte solution (1) Example 1 Ethylene carbonate (EC:
Hereinafter, LiN (C 2 F 5 ) is used as a solute in an equal volume mixed solvent of a chain carbonate and dimethyl carbonate (DMC: hereinafter simply referred to as DMC).
SO 2 ) 2 (lithium perfluoroalkyl sulfonimide) was dissolved at 1 mol / l to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as the electrolyte a in Example 1.

【0016】(2)実施例2 EC(環状カーボネート)と鎖状カーボネートであるジ
エチルカーボネート(DEC:以下、単にDECとい
う)との等体積混合溶媒に、溶質としてLiN(C25
SO22(リチウムペルフルオロアルキルスルホン酸イ
ミド)を1モル/リットル溶解して非水電解液を調製し
た。この非水電解液を実施例2の電解液bとした。
(2) Example 2 LiN (C 2 F 5 ) is used as a solute in an equal volume mixed solvent of EC (cyclic carbonate) and diethyl carbonate (DEC: hereinafter simply referred to as DEC) which is a chain carbonate.
SO 2 ) 2 (lithium perfluoroalkyl sulfonimide) was dissolved at 1 mol / l to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as electrolyte b in Example 2.

【0017】(3)実施例3 EC(環状カーボネート)と、DMC(鎖状カーボネー
ト)と、エーテル系溶媒である1,2−ジメトキシエタ
ン(DME:以下、単にDMEという)とを体積比で
2:1:1の混合比で混合した混合溶媒に、溶質として
LiN(C25SO22(リチウムペルフルオロアルキ
ルスルホン酸イミド)を1モル/リットル溶解して非水
電解液を調製した。この非水電解液を実施例3の電解液
cとした。
(3) Example 3 EC (cyclic carbonate), DMC (chain carbonate), and 1,2-dimethoxyethane (DME: hereinafter simply referred to as DME) which is an ether solvent are used in a volume ratio of 2%. LiN (C 2 F 5 SO 2 ) 2 (lithium perfluoroalkylsulfonimide) as a solute was dissolved at 1 mol / liter in a mixed solvent mixed at a mixing ratio of 1: 1 to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as an electrolyte c in Example 3.

【0018】(4)比較例1 EC(環状カーボネート)と、DME(エーテル系溶
媒)との等体積混合溶媒に、溶質としてLiN(C25
SO22(リチウムペルフルオロアルキルスルホン酸イ
ミド)を1モル/リットル溶解して非水電解液を調製し
た。この非水電解液を比較例1の電解液xとした。
(4) Comparative Example 1 LiN (C 2 F 5 ) was used as a solute in an equal volume mixed solvent of EC (cyclic carbonate) and DME (ether-based solvent).
SO 2 ) 2 (lithium perfluoroalkyl sulfonimide) was dissolved at 1 mol / l to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as the electrolyte x of Comparative Example 1.

【0019】(5)比較例2 環状カーボネートであるプロピレンカーボネート(P
C:以下、単にPCという)からなる溶媒に、溶質とし
てLiN(C25SO22(リチウムペルフルオロアル
キルスルホン酸イミド)を1モル/リットル溶解して非
水電解液を調製した。この非水電解液を比較例2の電解
液yとした。
(5) Comparative Example 2 Propylene carbonate (P) which is a cyclic carbonate
C: 1 mol / liter of LiN (C 2 F 5 SO 2 ) 2 (lithium perfluoroalkylsulfonic acid imide) was dissolved as a solute in a solvent consisting of PC (hereinafter simply referred to as PC) to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as the electrolyte y of Comparative Example 2.

【0020】(6)比較例3 PC(環状カーボネート)とDMC(鎖状カーボネー
ト)との等体積混合溶媒に、溶質としてLiN(C25
SO22(リチウムペルフルオロアルキルスルホン酸イ
ミド)を1モル/リットル溶解して非水電解液を調製し
た。この非水電解液を比較例3の電解液zとした。
(6) Comparative Example 3 LiN (C 2 F 5 ) was used as a solute in an equal volume mixed solvent of PC (cyclic carbonate) and DMC (chain carbonate).
SO 2 ) 2 (lithium perfluoroalkyl sulfonimide) was dissolved at 1 mol / l to prepare a non-aqueous electrolyte. This non-aqueous electrolyte was used as an electrolyte z of Comparative Example 3.

【0021】4.電池の作製 ついで、上述のようにして作製した正極と、上述のよう
にして作製した負極と、上述のようにして調製した実施
例1〜3の各電解液a,b,cおよび比較例1〜3の各
電解液x,y,zとを用いて、図1に示すような非水電
解質電池10を作製した。即ち、まず、金属製の正極缶
16を用意する。ついで、この正極缶16内に正極集電
体12が缶底部に接触するように、正極集電体12が下
側で正極黒鉛層11が上側になるように正極を配置し
た。ついで、この正極黒鉛層11の上部に、上述のよう
にして調製した電解液をそれぞれ含浸させたポリプロピ
レン製微多孔膜よりなるセパレータ15を配置した。
4. Preparation of Battery Next, the positive electrode prepared as described above, the negative electrode prepared as described above, and the electrolyte solutions a, b, c of Examples 1 to 3 prepared as described above, and Comparative Example 1 A non-aqueous electrolyte battery 10 as shown in FIG. 1 was produced using each of the electrolyte solutions x, y, and z. That is, first, the metal positive electrode can 16 is prepared. Then, the positive electrode was arranged in the positive electrode can 16 such that the positive electrode current collector 12 was on the lower side and the positive electrode graphite layer 11 was on the upper side so that the positive electrode current collector 12 was in contact with the bottom of the can. Then, a separator 15 made of a microporous polypropylene membrane impregnated with the electrolyte solution prepared as described above was disposed on the positive graphite layer 11.

【0022】一方、金属製の負極缶17を用意する。な
お、この負極缶17の内周縁には予めポリプロピレン製
の絶緑パッキング18が配置されている。この負極缶1
7内に負極集電体14が缶底部に接触するように、負極
集電体14が下側で負極黒鉛層13が上側になるように
負極を配置した。ついで、負極缶17を逆さにして、セ
パレータ15の上部に負極黒鉛層13が配置されるよう
に、正極缶16の上に負極缶17を載置した。ついで、
正極缶16の上端部を内方に封口することにより密封し
て扁平型の非水電解質電池10を作製した。
On the other hand, a negative electrode can 17 made of metal is prepared. A green packing 18 made of polypropylene is arranged in advance on the inner peripheral edge of the negative electrode can 17. This negative electrode can 1
In FIG. 7, the negative electrode was arranged such that the negative electrode current collector 14 was on the lower side and the negative electrode graphite layer 13 was on the upper side such that the negative electrode current collector 14 was in contact with the bottom of the can. Next, the negative electrode can 17 was inverted, and the negative electrode can 17 was placed on the positive electrode can 16 so that the negative electrode graphite layer 13 was disposed on the separator 15. Then
The upper end of the positive electrode can 16 was sealed inward by sealing it inward to produce a flat nonaqueous electrolyte battery 10.

【0023】ここで、実施例1の電解液aを用いた非水
電解質電池10を実施例1の電池Aとし、実施例2の電
解液bを用いた非水電解質電池10を実施例2の電池B
とし、実施例3の電解液cを用いた非水電解質電池10
を実施例3の電池Cとした。また、比較例1の電解液x
を用いた非水電解質電池10を比較例の電池Xとし、比
較例2の電解液yを用いた非水電解質電池10を比較例
2の電池Yとし、比較例3の電解液zを用いた非水電解
質電池10を比較例3の電池Zとした。
Here, the non-aqueous electrolyte battery 10 using the electrolyte a of the first embodiment is referred to as the battery A of the first embodiment, and the non-aqueous electrolyte battery 10 using the electrolyte b of the second embodiment is used as the battery A of the second embodiment. Battery B
And the nonaqueous electrolyte battery 10 using the electrolytic solution c of Example 3.
Was designated as Battery C of Example 3. The electrolyte x of Comparative Example 1
Was used as a battery X of a comparative example, a nonaqueous electrolyte battery 10 using an electrolyte y of a comparative example 2 was used as a battery Y of a comparative example 2, and an electrolyte z of the comparative example 3 was used. The nonaqueous electrolyte battery 10 was designated as Battery Z of Comparative Example 3.

【0024】5.試験 (1)過充電試験 上述のようにして作製した実施例1〜3の各電池A,
B,C、および比較例1〜3の各電池X,Y,Zを用
い、これらの各電池を室温(25℃)において1mA/
cm2の電流密度で電池電圧が6.0Vになるまで充電
した後、1mA/cm2の電流密度で電池電圧が2.7
5Vになるまで放電させて、放電時間から初期放電容量
を求めた。この後、1mA/cm2の電流密度で電池電
圧が12.0Vになるまで過充電した後、1mA/cm
2の電流密度で電池電圧が2.75Vになるまで放電さ
せて、放電時間から過充電後の放電容量を求めた。つい
で、上述のようにして求めた初期放電容量と、過充電後
の放電容量とから下記の(1)式に基づいて過充電後の
放電容量残存率(過充電後残存率)を求めると、下記の
表1に示すような結果となった。過充電後残存率(%)=
(過充電後の放電容量/初期放電容量)×100%…(1)
5. Test (1) Overcharge test Each battery A of Examples 1 to 3 produced as described above,
B, C, and each of the batteries X, Y, and Z of Comparative Examples 1 to 3 were used.
After the battery voltage at a current density of cm 2 was charged until 6.0V, the battery voltage at a current density of 1 mA / cm 2 2.7
The discharge was performed until the voltage reached 5 V, and the initial discharge capacity was determined from the discharge time. Thereafter, the battery was overcharged at a current density of 1 mA / cm 2 until the battery voltage reached 12.0 V, and then 1 mA / cm 2
The battery was discharged at a current density of 2 until the battery voltage reached 2.75 V, and the discharge capacity after overcharge was determined from the discharge time. Then, based on the initial discharge capacity obtained as described above and the discharge capacity after overcharge, a discharge capacity remaining rate after overcharge (residual rate after overcharge) is obtained based on the following equation (1). The results are as shown in Table 1 below. Residual rate after overcharge (%) =
(Discharge capacity after overcharge / initial discharge capacity) × 100% (1)

【0025】(2)サイクル特性試験 また、上述のようにして作製した実施例1〜3の各電池
A,B,C、および比較例1〜3の各電池X,Y,Zを
用い、これらの各電池を室温(25℃)において1mA
/cm2の電流密度で電池電圧が6.0Vになるまで充
電した後、1mA/cm2の電流密度で電池電圧が2.
75Vになるまで放電させるサイクルを1サイクルとす
る充放電サイクル試験を行った。ついで、各サイクル毎
の充電容量と放電容量との比を求めて、これを充放電効
率(%)とし、各サイクルに対する充放電効率(%)を
グラフで表すと、図2に示すような結果となった。な
お、図2において斜線で示した部分は、電池A,B,C
および電池Y,Zの充放電効率(%)が斜線の範囲でば
らつくことを示している。また、このような充放電サイ
クル試験を行った後、500サイクル後の放電容量を求
め、初期放電容量との比率から500サイクル後の放電
容量残存率(500サイクル後残存率)を求めると、下
記の表1に示すような結果となった。
(2) Cycle Characteristics Test The batteries A, B, and C of Examples 1 to 3 and the batteries X, Y, and Z of Comparative Examples 1 to 3 manufactured as described above were used. 1 mA at room temperature (25 ° C.)
/ After the battery voltage at a current density of cm 2 was charged until 6.0V, the battery voltage at a current density of 1 mA / cm 2 2.
A charge / discharge cycle test was performed in which one cycle was set to discharge to 75 V. Next, the ratio between the charge capacity and the discharge capacity for each cycle is determined, and this is defined as the charge / discharge efficiency (%). The charge / discharge efficiency (%) for each cycle is represented by a graph, as shown in FIG. It became. The hatched portions in FIG. 2 indicate batteries A, B, C
In addition, it shows that the charging and discharging efficiencies (%) of the batteries Y and Z vary in the range of oblique lines. After performing such a charge / discharge cycle test, the discharge capacity after 500 cycles was obtained, and the discharge capacity remaining rate after 500 cycles (residual rate after 500 cycles) was obtained from the ratio to the initial discharge capacity. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】上記表1および図2より明らかなように、
実施例1〜3の各電池A,B,Cのサイクル特性(充放
電効率)、過充電後残存率および500サイクル後残存
率はいずれもが高い値であるのに対して、比較例1〜3
の各電池X,Y,Zのサイクル特性(充放電効率)、過
充電後残存率および500サイクル後残存率はいずれも
が低い値であることが分かる。
As is clear from Table 1 and FIG.
The cycle characteristics (charge / discharge efficiency), the residual ratio after overcharge, and the residual ratio after 500 cycles of each of the batteries A, B, and C of Examples 1 to 3 are all high, whereas Comparative Examples 1 to 5. 3
It can be seen that the cycle characteristics (charge / discharge efficiency), the residual rate after overcharge, and the residual rate after 500 cycles are all low values for each of the batteries X, Y, and Z.

【0028】これは、環状カーボネートであるエチレン
カーボネート(EC)は負極で分解されにくいため、負
極でのサイクル特性が向上して、結果として充放電特性
が向上したと考えられる。また、ジメチルカーボネート
(DMC)、ジエチルカーボネート(DEC)などの鎖
状カーボネートは、正極活物質および負極活物質の利用
率を向上させるだけでなく、高電位領域で黒鉛正極との
反応を抑制する作用を有するため、高電位領域での電解
液の安定性が向上し、過充電後残存率が向上したと考え
られる。
This is presumably because ethylene carbonate (EC), which is a cyclic carbonate, is hardly decomposed at the negative electrode, so that the cycle characteristics at the negative electrode are improved, and as a result, the charge / discharge characteristics are improved. In addition, chain carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC) not only improve the utilization of the positive electrode active material and the negative electrode active material, but also suppress the reaction with the graphite positive electrode in a high potential region. It is considered that the stability of the electrolytic solution in the high-potential region was improved due to the presence of, and the residual ratio after overcharge was improved.

【0029】一方、環状カーボネートであるプロピレン
カーボネート(PC)は、負極で分解され易いため、負
極でのサイクル特性が低下して、結果として充放電特性
が低下したと考えられる。また、1,2−ジメトキシエ
タン(DME)などのエーテル系溶媒は高電位領域で黒
鉛正極と反応して分解されて、高電位領域での電解液の
不安定性となって、過充電後残存率が低下したと考えら
れる。以上のことから、電解液の溶媒としては、環状カ
ーボネートであるエチレンカーボネート(EC)とジメ
チルカーボネート(DMC)、ジエチルカーボネート
(DEC)などの鎖状カーボネートとの混合溶媒とし、
これにエーテル系溶媒などを添加して用いるようにする
のが好ましいということができる。
On the other hand, it is considered that propylene carbonate (PC), which is a cyclic carbonate, is easily decomposed at the negative electrode, so that the cycle characteristics at the negative electrode are reduced, and as a result, the charge / discharge characteristics are reduced. In addition, ether solvents such as 1,2-dimethoxyethane (DME) react with the graphite positive electrode in a high potential region and are decomposed, resulting in instability of the electrolyte in the high potential region, and a residual ratio after overcharge. Is considered to have decreased. From the above, as the solvent of the electrolytic solution, a mixed solvent of a cyclic carbonate such as ethylene carbonate (EC) and a chain carbonate such as dimethyl carbonate (DMC) and diethyl carbonate (DEC),
It can be said that it is preferable to use an ether-based solvent or the like added thereto.

【0030】6.電解質塩の検討(実施例4〜15) ついで、電解質塩の種類による過充電後の放電容量残存
率(過充電後残存率)の影響について検討した。上述し
た実施例1の電池Aを作製する際に用いた電解質塩であ
るリチウムペルフルオロアルキルスルホン酸イミドとし
てのLiN(C25SO2)2に代えて、LiN(CF3SO
2)2、LiN(C49SO2)2、LiN(CF3SO2)(C4
9SO2)、LiC(CF3SO2)3、LiPF6とLiN
(CF3SO 2)(C49SO2)、LiBF4とLiN(CF3
SO2)(C49SO2)、LiPF6、LiBF4、LiA
sF6、LiSbF6、LiClO4、LiCF3SO3
用いたこと以外は上述した実施例1と同様にして、各非
水電解質電池10を作製した。
6. Examination of electrolyte salt (Examples 4 to 15) Next, discharge capacity remaining after overcharging depending on the type of electrolyte salt
The effect of the rate (residual rate after overcharge) was examined. Above
The electrolyte salt used in producing the battery A of Example 1 was
Lithium perfluoroalkyl sulfonimide
LiN (CTwoFFiveSOTwo)TwoInstead of LiN (CFThreeSO
Two)Two, LiN (CFourF9SOTwo)Two, LiN (CFThreeSOTwo) (CFour
F9SOTwo), LiC (CFThreeSOTwo)Three, LiPF6And LiN
(CFThreeSO Two) (CFourF9SOTwo), LiBFFourAnd LiN (CFThree
SOTwo) (CFourF9SOTwo), LiPF6, LiBFFour, LiA
sF6, LiSbF6, LiClOFour, LiCFThreeSOThreeTo
Except for the fact that each non-
The water electrolyte battery 10 was produced.

【0031】ここで、電解質塩として、LiN(CF3
2)2を用いた非水電解質電池10を実施例4の電池D
とし、LiN(C49SO2)2を用いた非水電解質電池1
0を実施例5の電池Eとし、LiN(CF3SO2)(C4
9SO2)を用いた非水電解質電池10を実施例6の電池
Fとし、LiC(CF3SO2)3を用いた非水電解質電池
10を実施例7の電池Gとし、LiPF6とLiN(CF
3SO2)(C49SO2)をそれぞれ0.5モル/リットル
混合した電解質塩を用いた非水電解質電池10を実施例
8の電池Hとした。
Here, LiN (CF 3 S
The nonaqueous electrolyte battery 10 using O 2 ) 2 was replaced with the battery D of Example 4.
And a non-aqueous electrolyte battery 1 using LiN (C 4 F 9 SO 2 ) 2
0 was used as the battery E of Example 5, and LiN (CF 3 SO 2 ) (C 4 F
9 SO 2 ) as a battery F of Example 6, a non-aqueous electrolyte battery 10 using LiC (CF 3 SO 2 ) 3 as a battery G of Example 7, and LiPF 6 and LiN. (CF
A non-aqueous electrolyte battery 10 using an electrolyte salt in which 3 SO 2 ) (C 4 F 9 SO 2 ) was mixed at 0.5 mol / liter was used as a battery H of Example 8.

【0032】また、LiBF4とLiN(CF3SO2)(C
49SO2)をそれぞれ0.5モル/リットル混合した電
解質塩を用いた非水電解質電池10を実施例9の電池I
とし、LiPF6を用いた非水電解質電池10を実施例
10の電池Jとし、LiBF4を用いた非水電解質電池
10を実施例11の電池Kとし、LiAsF6を用いた
非水電解質電池10を実施例12の電池Lとし、LiS
bF6を用いた非水電解質電池10を実施例13の電池
Mとし、LiClO4を用いた非水電解質電池10を実
施例14の電池Nとし、LiCF3SO3を用いた非水電
解質電池10を実施例15の電池Oとした。
Further, LiBF 4 and LiN (CF 3 SO 2 ) (C
Non-aqueous electrolyte battery 10 using an electrolyte salt mixed with 0.5 mol / L of 4 F 9 SO 2 ) was used for battery I of Example 9.
The nonaqueous electrolyte battery 10 using LiPF 6 was used as the battery J of Example 10, the nonaqueous electrolyte battery 10 using LiBF 4 was used as the battery K of Example 11, and the nonaqueous electrolyte battery 10 using LiAsF 6 was used. Is the battery L of Example 12, and LiS
The nonaqueous electrolyte battery 10 using bF 6 is referred to as battery M of Example 13, the nonaqueous electrolyte battery 10 using LiClO 4 is referred to as battery N of Example 14, and the nonaqueous electrolyte battery 10 using LiCF 3 SO 3 is used. Was used as the battery O of Example 15.

【0033】上述のようにして作製した各電池D〜Oを
用い、これらの各電池を室温(25℃)において1mA
/cm2の電流密度で電池電圧が6.0Vになるまで充
電した後、1mA/cm2の電流密度で電池電圧が2.
75Vになるまで放電させて、放電時間から初期放電容
量を求めた。この後、1mA/cm2の電流密度で電池
電圧が12.0Vになるまで過充電した後、1mA/c
2の電流密度で電池電圧が2.75Vになるまで放電
させて、放電時間から過充電後の放電容量を求めた。つ
いで、上述のようにして求めた初期放電容量と、過充電
後の放電容量とから上述した(1)式に基づいて過充電
後残存率を求めると、下記の表2に示すような結果とな
った。なお、表2には実施例1の電池Aの結果も併せて
示している。
Using each of the batteries D to O produced as described above, these batteries were charged at 1 mA at room temperature (25 ° C.).
/ After the battery voltage at a current density of cm 2 was charged until 6.0V, the battery voltage at a current density of 1 mA / cm 2 2.
The battery was discharged until the voltage reached 75 V, and the initial discharge capacity was determined from the discharge time. Thereafter, the battery was overcharged at a current density of 1 mA / cm 2 until the battery voltage reached 12.0 V, and then 1 mA / c
The battery was discharged at a current density of m 2 until the battery voltage reached 2.75 V, and the discharge capacity after overcharge was determined from the discharge time. Next, when the residual rate after overcharge is determined from the initial discharge capacity determined as described above and the discharge capacity after overcharge based on the above equation (1), the results as shown in Table 2 below are obtained. became. Table 2 also shows the results of the battery A of Example 1.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2から明らかなように、LiCF3
SO3を電解質塩とする電池Oは多少低い過充電後残存
率を示しているが、LiN(C25SO2)2、LiN(C
3SO 2)2、LiN(C49SO2)2、LiN(CF3SO
2)(C49SO2)、LiC(CF3SO2)3、LiPF6
LiN(CF3SO2)(C49SO2)、LiBF4とLiN
(CF3SO2)(C49SO2)、LiPF6、LiBF4
LiAsF6、LiSbF6、LiClO4等の電解質塩
を用いると、高い過充電後残存率を維持できることが分
かる。
As is clear from Table 2 above, LiCFThree
SOThreeBattery O with electrolyte salt remains slightly overcharged
Rate, LiN (CTwoFFiveSOTwo)Two, LiN (C
FThreeSO Two)Two, LiN (CFourF9SOTwo)Two, LiN (CFThreeSO
Two) (CFourF9SOTwo), LiC (CFThreeSOTwo)Three, LiPF6When
LiN (CFThreeSOTwo) (CFourF9SOTwo), LiBFFourAnd LiN
(CFThreeSOTwo) (CFourF9SOTwo), LiPF6, LiBFFour,
LiAsF6, LiSbF6, LiClOFourElectrolyte salt
It can be seen that the use of
Call

【0036】そして、これらの電解質塩の内、LiN
(C25SO2)2、LiN(CF3SO2) 2、LiN(C49
SO2)2、LiN(CF3SO2)(C49SO2)等のリチウ
ムペルフルオロアルキルスルホン酸イミド、あるいはL
iC(CF3SO2)3等のリチウムペルフルオロアルキル
スルホン酸メチドが極めて高い過充電後残存率を維持で
きることが分かる。このことから、本発明の非水電解質
電池に用いる電解質塩としては、LiX(SO23n
(式中、XはN、C、OまたはBであり、R3はCF3
たはC25またはC37またはC49であり、nは1〜
3の整数である)で表される電解質塩を用いることが好
ましいということができる。
And, among these electrolyte salts, LiN
(CTwoFFiveSOTwo)Two, LiN (CFThreeSOTwo) Two, LiN (CFourF9
SOTwo)Two, LiN (CFThreeSOTwo) (CFourF9SOTwo)
Mperfluoroalkyl sulfonimide, or L
iC (CFThreeSOTwo)ThreeLithium perfluoroalkyl such as
Sulfonic acid methide maintains extremely high residual rate after overcharge
You can see that you can. From this, the non-aqueous electrolyte of the present invention
As the electrolyte salt used for the battery, LiX (SOTwoRThree)n
Wherein X is N, C, O or B;ThreeIs CFThreeMa
Or CTwoFFiveOr CThreeF7Or CFourF9And n is 1 to
It is preferable to use an electrolyte salt represented by the following formula:
I can say good.

【0037】7.正極集電体材料の検討 ついで、正極集電体材料による過充電後残存率に対する
影響を検討した。ここで、正極集電体12として、実施
例1のタンタル箔に代えてアルミニウム箔を用いること
以外は上述の実施例1と同様にして非水電解質電池10
を作製し、これを実施例16の電池Pとした。また、実
施例1のタンタル箔に代えてステンレススチール(SU
S304)箔を用いること以外は上述の実施例1と同様
にして非水電解質電池10を作製し、これを比較例4の
電池Wとした。
7. Investigation of Positive Electrode Current Collector Material Next, the influence of the positive electrode current collector material on the residual ratio after overcharge was examined. Here, the non-aqueous electrolyte battery 10 was manufactured in the same manner as in Example 1 except that an aluminum foil was used as the positive electrode current collector 12 instead of the tantalum foil of Example 1.
This was used as a battery P of Example 16. Also, stainless steel (SU) was used in place of the tantalum foil of Example 1.
S304) A non-aqueous electrolyte battery 10 was produced in the same manner as in Example 1 except that a foil was used, and this was designated as Battery W of Comparative Example 4.

【0038】ついで、これらの電池P,Wを用い、これ
らの各電池を室温(25℃)において1mA/cm2
電流密度で電池電圧が6.0Vになるまで充電した後、
1mA/cm2の電流密度で電池電圧が2.75Vにな
るまで放電させて、放電時間から初期放電容量を求め
た。この後、1mA/cm2の電流密度で電池電圧が1
2.0Vになるまで過充電した後、1mA/cm2の電
流密度で電池電圧が2.75Vになるまで放電させて、
放電時間から過充電後の放電容量を求めた。ついで、上
述のようにして求めた初期放電容量と、過充電後の放電
容量とから上述した(1)式に基づいて過充電後残存率
を求めると、下記の表3に示すような結果となった。な
お、表3には実施例1の電池Aの結果も併せて示してい
る。
Next, using these batteries P and W, each of these batteries was charged at room temperature (25 ° C.) at a current density of 1 mA / cm 2 until the battery voltage reached 6.0 V.
The battery was discharged at a current density of 1 mA / cm 2 until the battery voltage reached 2.75 V, and the initial discharge capacity was determined from the discharge time. Thereafter, at a current density of 1 mA / cm 2 , the battery voltage becomes 1
After overcharging to 2.0 V, the battery was discharged at a current density of 1 mA / cm 2 until the battery voltage reached 2.75 V,
The discharge capacity after overcharge was determined from the discharge time. Next, when the residual rate after overcharge is determined from the initial discharge capacity determined as described above and the discharge capacity after overcharge based on the above-described equation (1), the results as shown in Table 3 below are obtained. became. Table 3 also shows the results of the battery A of Example 1.

【0039】[0039]

【表3】 [Table 3]

【0040】上記表3より明らかなように、ステンレス
スチール(SUS304)箔からなる正極集電体12を
用いた比較例4の電池Wの過充電後残存率が極めて低い
のに対して、タンタル箔からなる正極集電体12を用い
た実施例1の電池Aおよびアルミニウム箔からなる正極
集電体12を用いた実施例16の電池Pの過充電後残存
率が極めて高いことが分かる。
As is clear from Table 3 above, the battery W of Comparative Example 4 using the positive electrode current collector 12 made of stainless steel (SUS304) foil has a very low residual rate after overcharge, while the tantalum foil It can be seen that the residual rate after overcharge of the battery A of Example 1 using the positive electrode current collector 12 made of aluminum and the battery P of Example 16 using the positive electrode current collector 12 made of aluminum foil was extremely high.

【0041】これは、ステンレススチール箔を正極集電
体12とした電池を過充電すると、ステンレススチール
が電解液中に溶けだして、やがては集電体としての機能
を喪失することとなる。また、電解液中に溶け出したス
テンレススチールにリチウムが結合するため、自己放電
が生じることとなる。このため、ステンレススチール
(SUS304)箔を正極集電体12とした比較例4の
電池Wの過充電後残存率が極めて低くなったと考えられ
る。
This is because, when a battery using a stainless steel foil as the positive electrode current collector 12 is overcharged, the stainless steel melts in the electrolytic solution and eventually loses its function as a current collector. In addition, since lithium is bonded to the stainless steel dissolved in the electrolytic solution, self-discharge occurs. For this reason, it is considered that the residual ratio after overcharge of the battery W of Comparative Example 4 in which the stainless steel (SUS304) foil was used as the positive electrode current collector 12 was extremely low.

【0042】一方、タンタル箔を正極集電体12とした
電池を過充電しても、タンタルは電解液中に溶け出しに
くいため、極めて高い過充電後残存率を示したと考えら
れる。また、アルミニウム箔を正極集電体12とした電
池を過充電すると、アルミニウムはタンタルよりも電解
液中に溶け出し易いが、ステンレススチールよりは電解
液中に溶け出しにくいため、高い過充電後残存率を示し
たと考えられる。以上のことから、正極集電体12に用
いる金属材料としては、過充電しても電解液中に溶け出
しにくいタンタルを用いることが好ましいということが
できる。
On the other hand, even when the battery having the positive electrode current collector 12 made of tantalum foil is overcharged, tantalum is unlikely to dissolve into the electrolytic solution, and therefore, it is considered that an extremely high residual rate after overcharge was exhibited. Also, when a battery having an aluminum foil as the positive electrode current collector 12 is overcharged, aluminum is more easily dissolved in the electrolytic solution than tantalum, but is less easily dissolved in the electrolytic solution than stainless steel. Probably showed the rate. From the above, it can be said that as the metal material used for the positive electrode current collector 12, it is preferable to use tantalum which does not easily dissolve into the electrolytic solution even when overcharged.

【0043】8.容量比の検討(実施例17〜21) ついで、正極の容量と、負極の容量と、電解液の容量
(電気化学当量)との各容量の比率、即ち容量比を代え
た場合の過充電後残存率の影響を検討した。ここで、正
・負極および電解液の容量は以下の(2)式〜(4)式
に基づいて求めた。 正極の容量=正極の比容量×正極重量・・・(2) 負極の容量=負極の比容量×負極重量・・・(3) 電解液の容量(電気化学当量:以下では容量という) =26.8Ah×電解質塩の濃度×アニオンの価数×液量/cc・・・(4)
8. Examination of the capacity ratio (Examples 17 to 21) Next, the ratio of each capacity of the capacity of the positive electrode, the capacity of the negative electrode, and the capacity of the electrolytic solution (electrochemical equivalent), that is, after overcharging when the capacity ratio is changed The effect of the survival rate was studied. Here, the capacities of the positive / negative electrode and the electrolytic solution were determined based on the following equations (2) to (4). Positive electrode capacity = Specific capacity of positive electrode x Positive electrode weight ... (2) Capacity of negative electrode = Specific capacity of negative electrode x Negative electrode weight ... (3) Capacity of electrolytic solution (electrochemical equivalent: hereinafter referred to as capacity) = 26 .8 Ah × concentration of electrolyte salt × valency of anion × liquid amount / cc (4)

【0044】なお、上述した実施例1〜実施例16の電
池A〜Pの容量比は、正極:負極:電解液=1.5:
1.5:1である。そして、容量比を代えること以外は
実施例1の電池Aと同様にして非水電解質電池10を作
製した。ここで、容量比を正極:負極:電解液=2:
1:1とした非水電解質電池10を実施例17の電池Q
とし、正極:負極:電解液=1:2:1とした非水電解
質電池10を実施例18の電池Rとし、正極:負極:電
解液=1:1:1とした非水電解質電池10を実施例1
9の電池Sとし、正極:負極:電解液=1:1:2とし
た非水電解質電池10を実施例20の電池Tとし、正
極:負極:電解液=2:1:2とした非水電解質電池1
0を実施例21の電池Uとした。
The capacity ratio of the batteries A to P in Examples 1 to 16 was as follows: positive electrode: negative electrode: electrolytic solution = 1.5:
1.5: 1. Then, a non-aqueous electrolyte battery 10 was manufactured in the same manner as the battery A of Example 1 except that the capacity ratio was changed. Here, the capacity ratio was defined as positive electrode: negative electrode: electrolytic solution = 2:
The 1: 1 non-aqueous electrolyte battery 10 was replaced with the battery Q of Example 17.
The nonaqueous electrolyte battery 10 in which the positive electrode: the negative electrode: the electrolyte solution was 1: 2: 1 was used as the battery R of Example 18, and the nonaqueous electrolyte battery 10 in which the positive electrode: the negative electrode was the electrolyte solution was 1: 1: 1. Example 1
Non-aqueous electrolyte battery 10 with positive electrode: negative electrode: electrolyte = 1: 1: 2 as battery S of No. 9 and non-aqueous electrolyte with positive electrode: negative electrode: electrolyte = 2: 1: 2 in Example 20 Electrolyte battery 1
0 was designated as battery U of Example 21.

【0045】上述のようにして作製した各電池Q〜Uを
用い、これらの各電池を室温(25℃)において1mA
/cm2の電流密度で電池電圧が6.0Vになるまで充
電した後、1mA/cm2の電流密度で電池電圧が2.
75Vになるまで放電させて、放電時間から初期放電容
量を求めた。この後、1mA/cm2の電流密度で電池
電圧が12.0Vになるまで過充電した後、1mA/c
2の電流密度で電池電圧が2.75Vになるまで放電
させて、放電時間から過充電後の放電容量を求めた。つ
いで、上述のようにして求めた初期放電容量と、過充電
後の放電容量とから上述した(1)式に基づいて過充電
後残存率を求めると、下記の表4に示すような結果とな
った。なお、表4には実施例1の電池Aの結果も併せて
示している。
Using each of the batteries Q to U produced as described above, these batteries were charged at room temperature (25 ° C.) at 1 mA.
/ After the battery voltage at a current density of cm 2 was charged until 6.0V, the battery voltage at a current density of 1 mA / cm 2 2.
The battery was discharged until the voltage reached 75 V, and the initial discharge capacity was determined from the discharge time. Thereafter, the battery was overcharged at a current density of 1 mA / cm 2 until the battery voltage reached 12.0 V, and then 1 mA / c
The battery was discharged at a current density of m 2 until the battery voltage reached 2.75 V, and the discharge capacity after overcharge was determined from the discharge time. Next, when the residual rate after overcharge is determined from the initial discharge capacity determined as described above and the discharge capacity after overcharge based on the above equation (1), the result as shown in Table 4 below is obtained. became. Table 4 also shows the results of the battery A of Example 1.

【0046】[0046]

【表4】 [Table 4]

【0047】上記表4より明らかなように、電解液の容
量が正極あるいは負極の容量以下である電池A,Q,
R,Sは極めて高い過充電後残存率を示しているが、電
解液の容量が正極あるいは負極の容量より大きい電池
T,Uは、これらよりも過充電後残存率が劣っているこ
とが分かる。
As is clear from Table 4 above, batteries A, Q,
Although R and S show extremely high residual rates after overcharge, batteries T and U whose electrolyte capacity is larger than the capacity of the positive electrode or the negative electrode are inferior in residual rate after overcharge. .

【0048】これは、電解液の容量が正極あるいは負極
の容量以下であると、過充電により電解液中のアニオン
とカチオンの全てが正極または負極の黒鉛にインターカ
レートされ(厳密に言えば、充電の末期になると充電電
圧が上昇するため、電解液中のアニオンとカチオンの全
てが正極または負極の黒鉛にインターカレートされる訳
ではなく、次回の放電に必要となるだけのアニオンとカ
チオンは残存することとなる)るため、これ以上は過充
電が進行することはないためと考えられる。
This is because if the capacity of the electrolytic solution is less than the capacity of the positive electrode or the negative electrode, all of the anions and cations in the electrolytic solution are intercalated into the graphite of the positive electrode or the negative electrode by overcharging (strictly speaking, At the end of charging, the charging voltage rises, so not all of the anions and cations in the electrolyte are intercalated into the graphite of the positive electrode or negative electrode, and the only anions and cations required for the next discharge are It is considered that overcharging does not proceed any further.

【0049】一方、電解液の容量が正極あるいは負極の
容量より大きいと、正極あるいは負極の容量がなくなっ
ても電解液中のアニオンとカチオンが正極あるいは負極
に入り込もうとして充電電圧が上昇し、電解液が分解さ
れて電池容量の劣化が起こったためと考えられる。した
がって、電解液の容量が正極あるいは負極の容量以下に
することが好ましく、このような構成とすることによ
り、過充電が防止でき、電池容量の劣化がない非水電解
質電池が得られることとなる。
On the other hand, if the capacity of the electrolyte is larger than the capacity of the positive electrode or the negative electrode, even if the capacity of the positive electrode or the negative electrode is exhausted, the anion and the cation in the electrolyte try to enter the positive electrode or the negative electrode, and the charging voltage increases. It is considered that the liquid was decomposed and the battery capacity was deteriorated. Therefore, it is preferable that the capacity of the electrolytic solution is equal to or less than the capacity of the positive electrode or the negative electrode. With such a configuration, overcharge can be prevented and a nonaqueous electrolyte battery without deterioration of the battery capacity can be obtained. .

【0050】上述したように、本発明においては、正極
の黒鉛質炭素にインターカレートされるアニオンと、負
極の黒鉛質炭素にインターカレートされるカチオンとを
非水電解質中に含有するので、充電することにより非水
電解質中のアニオンが正極の黒鉛質炭素にインターカレ
ートされ、非水電解質中のカチオンが負極の黒鉛質炭素
にインターカレートされて、起電力が5〜6V程度であ
る非水電解質電池が得られるようになる。そして、本発
明の電池においては、過充電が生じることがなく、非水
電解質中のアニオンあるいはカチオンがなくなったとき
に充電すればよいので、特に、トリクル充電が行われる
用途に用いると、本発明の特徴を発揮することができる
ようになるので望ましい。
As described above, in the present invention, the non-aqueous electrolyte contains the anion intercalated in the graphitic carbon of the positive electrode and the cation intercalated in the graphitic carbon of the negative electrode. By charging, the anion in the non-aqueous electrolyte is intercalated into the graphitic carbon of the positive electrode, and the cation in the non-aqueous electrolyte is intercalated into the graphitic carbon of the negative electrode, and the electromotive force is about 5 to 6 V A non-aqueous electrolyte battery can be obtained. In the battery of the present invention, overcharging does not occur, and the battery may be charged when the anion or cation in the non-aqueous electrolyte has disappeared. It is desirable because it becomes possible to exhibit the characteristics of.

【0051】なお、上述した実施の形態においては、黒
鉛質炭素として天然黒鉛を用いる例について説明した
が、天然黒鉛以外の黒鉛質炭素として、人造黒鉛を用い
るようにしてもよい。
In the above-described embodiment, an example has been described in which natural graphite is used as graphite carbon. However, artificial graphite may be used as graphite carbon other than natural graphite.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の非水電解質電池を模式的に示す断面
図である。
FIG. 1 is a cross-sectional view schematically showing a non-aqueous electrolyte battery of the present invention.

【図2】 充放電サイクル特性(充放電効率)を示す図
である。
FIG. 2 is a diagram showing charge / discharge cycle characteristics (charge / discharge efficiency).

【符号の説明】[Explanation of symbols]

10…非水電解質電池、11…正極缶、12…正極集電
体、13…正極、14…セパレータ、15…負極缶、1
6…負極集電体、17…負極、18…絶緑パッキング
DESCRIPTION OF SYMBOLS 10 ... Non-aqueous electrolyte battery, 11 ... Positive electrode can, 12 ... Positive electrode collector, 13 ... Positive electrode, 14 ... Separator, 15 ... Negative electrode can, 1
6 negative electrode current collector, 17 negative electrode, 18 green packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ05 AK07 AL07 AM02 AM03 AM07 BJ03 DJ07 EJ01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahisa Fujimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ05 AK07 AL07 AM02 AM03 AM07 BJ03 DJ07 EJ01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池容器内に少なくとも正極と負極と非
水電解質とを備えた非水電解質電池であって、 前記正極は正極集電体の表面に黒鉛質炭素層を備え、 前記負極は負極集電体の表面に黒鉛質炭素層を備え、 前記非水電解質は溶媒として少なくともエチレンカーボ
ネートと鎖状カーボネートとを含有することを特徴とす
る非水電解質電池。
1. A non-aqueous electrolyte battery including at least a positive electrode, a negative electrode, and a non-aqueous electrolyte in a battery container, wherein the positive electrode includes a graphitic carbon layer on a surface of a positive electrode current collector, and the negative electrode includes a negative electrode. A non-aqueous electrolyte battery comprising a current collector having a graphitic carbon layer on a surface thereof, wherein the non-aqueous electrolyte contains at least ethylene carbonate and a chain carbonate as solvents.
【請求項2】 電池容器内に少なくとも正極と負極と非
水電解質とを備えた非水電解質電池であって、 前記正極は正極集電体の表面に黒鉛質炭素層を備え、 前記負極は負極集電体の表面に黒鉛質炭素層を備え、 前記非水電解質の溶媒は少なくともエチレンカーボネー
トと鎖状カーボネートとを含有するとともに、 前記溶媒中にLiPF6、LiBF4、LiAsF6、L
iSbF6、LiClO 4、LiX(SO2R)n(式中、
XはN、C、OまたはBであり、RはCF3またはC2
5またはC37またはC49であり、nは1〜3の整数
である)のいずれかから選択した少なくとも1種以上を
含有していることを特徴とする非水電解質電池。
2. At least a positive electrode, a negative electrode, and a
A non-aqueous electrolyte battery including a water electrolyte, wherein the positive electrode includes a graphitic carbon layer on a surface of a positive electrode current collector; the negative electrode includes a graphitic carbon layer on a surface of a negative electrode current collector; The solvent for the water electrolyte should be at least ethylene carbonate
And a chain carbonate, and LiPF is contained in the solvent.6, LiBFFour, LiAsF6, L
iSbF6, LiClO Four, LiX (SOTwoR)n(Where
X is N, C, O or B, and R is CFThreeOr CTwoF
FiveOr CThreeF7Or CFourF9And n is an integer of 1 to 3
At least one selected from any of the above)
A non-aqueous electrolyte battery characterized by containing.
【請求項3】 前記正極集電体はタンタルを含有してい
ることを特徴とする請求項1または請求項2に記載の非
水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode current collector contains tantalum.
【請求項4】 前記溶媒中にLiX(SO2R)n(式
中、XはN、C、OまたはBであり、RはCF3または
25またはC37またはC49であり、nは1〜3の
整数である)を含有していることを特徴とする請求項1
または請求項3に記載の非水電解質電池。
4. LiX (SO 2 R) n wherein X is N, C, O or B, and R is CF 3 or C 2 F 5 or C 3 F 7 or C 4 F. 9 wherein n is an integer of 1 to 3).
Or the non-aqueous electrolyte battery according to claim 3.
【請求項5】 前記非水電解質の電気化学当量は前記正
極または負極のいずれか少ない方の容量よりも少ないこ
とを特徴とする請求項1から請求項4のいずかに記載の
非水電解質電池。
5. The nonaqueous electrolyte according to claim 1, wherein the electrochemical equivalent of the nonaqueous electrolyte is smaller than the capacity of the smaller of the positive electrode and the negative electrode. battery.
JP24756099A 1999-09-01 1999-09-01 Non-aqueous electrolyte battery Expired - Fee Related JP4306891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24756099A JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24756099A JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001076756A true JP2001076756A (en) 2001-03-23
JP4306891B2 JP4306891B2 (en) 2009-08-05

Family

ID=17165321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24756099A Expired - Fee Related JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4306891B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
US7049032B2 (en) * 2001-07-25 2006-05-23 Asahi Glass Company, Limited Secondary power source
JP2014127656A (en) * 2012-12-27 2014-07-07 Ricoh Co Ltd Nonaqueous electrolyte storage element
JP2015065052A (en) * 2013-09-25 2015-04-09 国立大学法人 東京大学 Power storage device
JP2016004692A (en) * 2014-06-17 2016-01-12 住友電気工業株式会社 Sodium ion secondary battery
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049032B2 (en) * 2001-07-25 2006-05-23 Asahi Glass Company, Limited Secondary power source
JP2003077544A (en) * 2001-09-06 2003-03-14 Yuasa Corp Secondary battery
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2014127656A (en) * 2012-12-27 2014-07-07 Ricoh Co Ltd Nonaqueous electrolyte storage element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
JP2015065052A (en) * 2013-09-25 2015-04-09 国立大学法人 東京大学 Power storage device
JP2016004692A (en) * 2014-06-17 2016-01-12 住友電気工業株式会社 Sodium ion secondary battery

Also Published As

Publication number Publication date
JP4306891B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP2005203342A (en) Secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP3349399B2 (en) Lithium secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JPH08115742A (en) Lithium secondary battery
JP3831550B2 (en) Non-aqueous electrolyte battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP4082853B2 (en) Lithium secondary battery
JPH11283667A (en) Lithium ion battery
JP4056278B2 (en) Non-aqueous electrolyte battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4194322B2 (en) Lithium secondary battery
JP4204281B2 (en) Nonaqueous electrolyte secondary battery
JP2000228215A (en) Lithium secondary battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
JPH117977A (en) Non-aqueous electrolyte battery
US20040170902A1 (en) Nonaqueous electrolyte battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees