JP2001072476A - Light-weight cellular concrete having excellent resistance to carbonation - Google Patents

Light-weight cellular concrete having excellent resistance to carbonation

Info

Publication number
JP2001072476A
JP2001072476A JP24538099A JP24538099A JP2001072476A JP 2001072476 A JP2001072476 A JP 2001072476A JP 24538099 A JP24538099 A JP 24538099A JP 24538099 A JP24538099 A JP 24538099A JP 2001072476 A JP2001072476 A JP 2001072476A
Authority
JP
Japan
Prior art keywords
carbonation
cellular concrete
light
weight
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24538099A
Other languages
Japanese (ja)
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24538099A priority Critical patent/JP2001072476A/en
Priority to PCT/JP1999/005585 priority patent/WO2000035827A1/en
Priority to EP99973406A priority patent/EP1055648A4/en
Priority to AU60066/99A priority patent/AU6006699A/en
Publication of JP2001072476A publication Critical patent/JP2001072476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the resistance to carbonation of light-weight cellular concrete by including a specific amount of dimethylpolysiloxane bearing methyl groups as all of the side chains. SOLUTION: In an example, 40 wt.% of quartzite, as a raw material for siliceous substance, 5 wt.% of quick lime as a raw material for calciferous substance, 30 wt.% of cement, 5 wt.% of plaster and 20 wt.% of the repeatedly used raw materials are mixed; water, an Al powder and a surfactant are admixed to the mixture and they are kneaded to a slurry. After this slurry hardens by the hydration of the calciferous substance, the hardened product is steam-aged at elevated temperature and high pressure in an autoclave whereby objective light-weight cellular concrete. In this production process, when the slurry is mixed, 0.001-15 wt.% of an organopolysiloxane is admixed in an amount of 0.001-15 wt.%. As a result, the light-weight cellular concrete having a higher carbonation resistance than the usual cellular concrete is obtained. The organopolysiloxane may have a usual viscosity range, when it is usually used as a siliceous material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁、屋
根、床などに使用される耐炭酸化性に優れた軽量気泡コ
ンクリートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lightweight cellular concrete excellent in carbonation resistance used for walls, roofs, floors and the like of buildings.

【0002】[0002]

【従来の技術】軽量気泡コンクリート(以下、ALCと
記す)は、軽量で、耐火性・断熱性・施工性に優れてい
るため、建築材料として広く使用されている。
2. Description of the Related Art Light-weight cellular concrete (hereinafter referred to as ALC) is widely used as a building material because it is lightweight and has excellent fire resistance, heat insulation and workability.

【0003】ALCは次のようにして製造される。すな
わち、珪石などの珪酸質原料と、セメント・生石灰など
の石灰質原料とを主原料とし、これらの微粉末に水とア
ルミニウム粉末などの添加物とを加えてスラリー状す
る。このスラリーを、アルミニウム粉末の反応により発
泡させ、石灰質原料の反応により半硬化させて、所定寸
法に成形する。その後、オートクレーブによる高温高圧
水蒸気養生を行ってALCとする。
[0003] ALC is manufactured as follows. That is, a siliceous raw material such as silica stone and a calcareous raw material such as cement and quicklime are used as main raw materials, and water and an additive such as aluminum powder are added to these fine powders to form a slurry. The slurry is foamed by the reaction of the aluminum powder, semi-cured by the reaction of the calcareous raw material, and formed into a predetermined size. Thereafter, high-temperature and high-pressure steam curing is performed by an autoclave to obtain ALC.

【0004】このようにして製造されたALCは、珪酸
質成分および石灰質成分を主成分とし、主要構成鉱物が
トバモライトである。そして、気泡と細孔が全体積の約
8割を占める空隙の非常に多い微細構造を持ち、絶乾か
さ比重が約0.5程度である。
[0004] The ALC thus produced contains a siliceous component and a calcareous component as main components, and the main constituent mineral is tobermorite. It has a microstructure with very large voids, in which bubbles and pores occupy about 80% of the total volume, and has a specific gravity of about 0.5 in absolute dryness.

【0005】上記のようにALCは気泡と細孔が非常に
多いので、水分やガス(炭酸ガスなど)は容易にALC
内部へ浸入する。ALCの主要構成鉱物であるトバモラ
イトは、浸入した水分と炭酸ガスと反応し、シリカゲル
と炭酸カルシウムとに分解する。これが炭酸化である。
炭酸化は、炭酸化現象、すなわち強度の低下、ひび割れ
の発生などの劣化をALCに引き起こす。そこで、AL
Cの炭酸化を防止するか遅延させるために、(1)水分
や炭酸ガスの浸入を防ぐこと、(2)トバモライトに耐
炭酸化性を持たせることが求められる。根本的な対策と
なり得るので期待される上記(2)に対する手段は、種
々の研究にもかかわらず、工業的に有効なものが見出さ
れていない。そのため、上記(1)に対する手段、すな
わちALCの表面仕上げ(塗装など)がこれまで専ら用
いられていた。しかし、表面仕上げによる耐炭酸化は必
ずしも十分でなく、ALCの使用年数と共に炭酸化が進
行することが確認されている。
[0005] As described above, ALC has a large number of bubbles and pores, so that moisture and gas (such as carbon dioxide) can be easily removed by ALC.
Infiltrate inside. Tobermorite, the main constituent mineral of ALC, reacts with the infiltrated water and carbon dioxide to decompose into silica gel and calcium carbonate. This is carbonation.
Carbonation causes ALC to undergo a carbonation phenomenon, that is, deterioration such as a decrease in strength and generation of cracks. So AL
In order to prevent or delay carbonation of C, it is required to (1) prevent the intrusion of moisture and carbon dioxide gas, and (2) to make tobermorite resistant to carbonation. As a means for the above (2), which can be a fundamental measure, no industrially effective means has been found despite various studies. Therefore, the means for the above (1), that is, the ALC surface finish (painting or the like) has been exclusively used until now. However, carbonation resistance by surface finishing is not always sufficient, and it has been confirmed that carbonation progresses with the life of ALC.

【0006】本発明者らは、様々な研究と試行錯誤の結
果、主原料の混合物スラリーに種々のオルガノポリシロ
キサンを添加する撥水性ALCが耐炭酸化性に優れてい
ることを発見した。耐炭酸化性に優れる原因はまだ明ら
かになっていないが、撥水性に優れた全てのALCが必
ずしも耐炭酸化性に優れているとは限らず、炭酸化反応
は水分の存在下において進行するため、オルガノポリシ
ロキサンがトバモライトの表面の水分の存在状態等に変
化をもたらしていることが原因ではないかと考えてい
る。
As a result of various studies and trial and error, the present inventors have found that a water-repellent ALC obtained by adding various organopolysiloxanes to a mixture slurry of a main raw material has excellent carbonation resistance. Although the cause of the excellent carbonation resistance has not yet been elucidated, not all ALCs having excellent water repellency are necessarily necessarily excellent in carbonation resistance, and the carbonation reaction proceeds in the presence of moisture. Therefore, it is considered that the cause may be that the organopolysiloxane changes the state of the presence of moisture on the surface of tobermorite.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
事情に鑑み、耐炭酸化性に優れるALCを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ALC having excellent carbonation resistance in view of the above circumstances.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明における耐炭酸化性に優れたALCは、珪酸
質成分および石灰質成分を主成分とするALCにおい
て、側鎖がすべてメチル基であるジメチルポリシロキサ
ンを0.001〜15重量%含むことを特徴とする。
In order to achieve the above-mentioned object, ALC having excellent carbonation resistance according to the present invention comprises an ALC containing a siliceous component and a calcareous component as main components, all of the side chains of which are methyl groups. It is characterized by containing 0.001 to 15% by weight of a certain dimethylpolysiloxane.

【0009】[0009]

【発明の実施の形態】これまで、オルガノポリシロキサ
ンはALCや珪酸質建築材料に撥水性を付与するために
添加されている。撥水性の付与に関しては、特開昭55
−42272号のようにジメチルポリシロキサンを0.
2〜10重量%添加したり、特公平1−58148号の
ようにアルキル基を含むオルガノポリシロキサンを0.
05〜10重量%添加するなど、オルガノポリシロキサ
ンの添加量は比較的多かった。これは、撥水性の発現機
構が材料と水との接触角をオルガノポリシロキサンの添
加により変化させ、多孔質であるALCや珪酸質建築材
料への毛細管現象による水の侵入を防ぐものであり、そ
のためにある程度の添加量が必要であったと考えられ
る。
Heretofore, organopolysiloxanes have been added to impart water repellency to ALC and siliceous building materials. Regarding the provision of water repellency, see
Dimethylpolysiloxane as described in JP-A-42272.
2 to 10% by weight, or an organopolysiloxane containing an alkyl group as described in JP-B-1-58148.
The addition amount of the organopolysiloxane was relatively large, such as addition of 05 to 10% by weight. This is because the expression mechanism of water repellency changes the contact angle between the material and water by the addition of organopolysiloxane, preventing water from entering the porous ALC or siliceous building material by capillary action, It is considered that a certain amount of addition was necessary for that purpose.

【0010】一方、炭酸化の反応の場となるのは液体の
水ではなく、表面吸着水であり、作用機構が異なるため
に、有効な添加量は異なるのではないかと考えた。そこ
で、オルガノポリシロキサンの添加量を0.0001〜
20重量%まで変化させ実験したところ、撥水性の発現
しない0.001重量%でも耐炭酸化性は発現すること
が分かった。
On the other hand, the carbonation reaction is caused not by liquid water but by surface-adsorbed water, and it is thought that the effective addition amount may be different due to a different mechanism of action. Therefore, the addition amount of the organopolysiloxane is set to 0.0001 to
When the experiment was carried out by changing the content to 20% by weight, it was found that the carbonation resistance was exhibited even at 0.001% by weight where no water repellency was exhibited.

【0011】[0011]

【実施例】以下、実施例により本発明をより詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0012】珪酸質原料として珪石40重量%、石灰質
原料として生石灰5重量%、セメント30重量%、石膏
5重量%、さらに繰り返し原料20重量%を混合し、こ
れらの主原料に水とアルミニウム粉末、界面活性剤を加
えて混練してスラリーを作成した。なお、水固体比は
0.6とした。該スラリーが石灰質原料の水和により硬
化した後、185℃、11気圧のオートクレーブにおい
て6時間高温高圧水蒸気養生を施した。
40% by weight of silica as a siliceous raw material, 5% by weight of quicklime, 30% by weight of cement, 5% by weight of gypsum, and 20% by weight of a repetitive raw material are mixed as calcareous raw materials. A surfactant was added and kneaded to prepare a slurry. The water solids ratio was 0.6. After the slurry was hardened by hydration of the calcareous raw material, it was subjected to high-temperature and high-pressure steam curing in an autoclave at 185 ° C. and 11 atm for 6 hours.

【0013】この原料スラリー混合時に、オルガノポリ
シロキサンの添加量を0.0001〜20重量%まで変
更させて添加したALCを作成した。また、比較として
オルガノポリシロキサンを全く添加しないALC(以
下、ブランクサンプルと略記する)も作成した。ここ
で、オルガノポリシロキサンは粘度が5、10、20、
50、100、200csの計6種類を用いた。
At the time of mixing the raw material slurry, an ALC was prepared in which the addition amount of the organopolysiloxane was changed from 0.0001 to 20% by weight. For comparison, an ALC (hereinafter, abbreviated as a blank sample) containing no organopolysiloxane was also prepared. Here, the organopolysiloxane has a viscosity of 5, 10, 20, or
A total of six types of 50, 100, and 200 cs were used.

【0014】各サンプルの耐炭酸化性を調べるため、1
0mm×40mm×80mmの大きさに成形し、促進炭
酸化試験を供した。試験条件は20℃、相対湿度90
%、炭酸ガス濃度3体積%の一定雰囲気下で20日間放
置した。各サンプルの炭酸化度は、以下の式によって算
出した。
To examine the carbonation resistance of each sample,
It was molded into a size of 0 mm × 40 mm × 80 mm and subjected to an accelerated carbonation test. The test conditions were 20 ° C. and 90% relative humidity.
% And a carbon dioxide gas concentration of 3% by volume in a constant atmosphere for 20 days. The degree of carbonation of each sample was calculated by the following equation.

【0015】炭酸化度(%)={(C−Co)/(Cm
ax−Co)}×100 ここで、CおよびCoは各試料および未炭酸化試料の炭
酸ガス結合量を熱分析によって600〜800℃の炭酸
ガス分解による重量減少量としてそれぞれ分析し、Cm
axは各試料中のカルシウム含有量を分析し、このカル
シウムがすべて炭酸カルシウムとなった場合の炭酸ガス
場合の炭酸ガス結合量とした。各サンプルの炭酸化度分
析結果をもとに、ブランクサンプルの炭酸化度を各サン
プルの炭酸化度で除した値を耐炭酸化指数として定義し
た。
Degree of carbonation (%) = {(C-Co) / (Cm
ax-Co)} × 100 Here, C and Co are analyzed by analyzing the amount of carbon dioxide binding of each sample and the uncarbonated sample as the weight loss due to decomposition of carbon dioxide at 600 to 800 ° C. by thermal analysis.
ax was obtained by analyzing the calcium content in each sample, and was defined as the amount of carbon dioxide binding in the case of carbon dioxide when all of the calcium became calcium carbonate. Based on the analysis results of the degree of carbonation of each sample, a value obtained by dividing the degree of carbonation of the blank sample by the degree of carbonation of each sample was defined as a carbonation resistance index.

【0016】耐炭酸化性と共に、ALCの基本的な物性
である圧縮強度、乾燥収縮率をJISA5416に準じ
て測定した。
In addition to the carbonation resistance, the basic physical properties of ALC such as compressive strength and dry shrinkage were measured in accordance with JIS A5416.

【0017】各サンプルのオルガノポリシロキサンの粘
度および添加量に対する耐炭酸化指数の測定結果を表1
に示す。
Table 1 shows the measurement results of the carbonation resistance index with respect to the viscosity and addition amount of the organopolysiloxane of each sample.
Shown in

【0018】[0018]

【表1】 ここで、耐炭酸化性については耐炭酸化指数が1.5以
上を可、2.0以上を適、これ以外を不適と判定する
と、全ての種類のオルガノポリシロキサン添加量が0.
001%以上で耐炭酸化性が十分である。特に、添加量
1〜2重量%では、炭酸化が全く進まないために、炭酸
化指数は無限大となった。ただし、17.5重量%以上
では、乾燥収縮率がJIS規格を外れるため、ALCと
して不適であることが分かった。つまり、オルガノポリ
シロキサンを0.001〜15重量%添加したものにつ
いて、通常のALCに比べて耐炭酸化性に優れるものが
得られた。これまでに試験に用いたオルガノポリシロキ
サンは全て添加量を制御すれば、目的のALCを得るこ
とができた。今回用いたのはALC等の珪酸質材料に通
常用いられる粘度範囲のオルガノポリシロキサンであ
り、通常用いられる範囲の粘度のオルガノポリシロキサ
ンであれば添加量を制御することにより、目的のALC
を得ることができる。
[Table 1] Here, regarding the carbonation resistance, if it is determined that the carbonation resistance index is 1.5 or higher, 2.0 or higher is suitable, and the other is inappropriate, the addition amount of all kinds of organopolysiloxane is 0.1.
001% or more is sufficient for carbonation resistance. In particular, at an addition amount of 1 to 2% by weight, carbonation did not proceed at all, and the carbonation index became infinite. However, when the content was 17.5% by weight or more, it was found that the drying shrinkage ratio was out of the JIS standard, so that it was not suitable as ALC. That is, when the organopolysiloxane was added in an amount of 0.001 to 15% by weight, a resin having more excellent carbonation resistance than ordinary ALC was obtained. The desired ALC could be obtained by controlling the amount of all the organopolysiloxanes used in the tests so far. This time, the organopolysiloxane having a viscosity range usually used for siliceous materials such as ALC is used. If the organopolysiloxane has a viscosity within the range normally used, the addition amount is controlled to obtain the desired ALC.
Can be obtained.

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明によ
れば、ALCの劣化の一つである炭酸化現象に関して、
耐炭酸化性に優れるために耐劣化・耐久性に優れるAL
Cを得ることができる。従って、ALC建築物の耐用年
数の延長、補修・改修の費用の低減を可能にし、ひいて
は産業廃棄物量の低減という社会的な要請にも応えるこ
とができる。
As described above in detail, according to the present invention, regarding the carbonation phenomenon which is one of the deteriorations of ALC,
AL with excellent resistance to deterioration and durability due to excellent carbonation resistance
C can be obtained. Therefore, it is possible to extend the service life of the ALC building, reduce the cost of repair and repair, and meet social demands for reducing the amount of industrial waste.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 珪酸質成分および石灰質成分を主成分と
する軽量気泡コンクリートにおいて、側鎖がすべてメチ
ル基であるジメチルポリシロキサンを0.001〜15
重量%含むことを特徴とする耐炭酸化性に優れた軽量気
泡コンクリート。
1. A lightweight cellular concrete mainly composed of a siliceous component and a calcareous component, wherein dimethylpolysiloxane having all methyl groups in the side chains is 0.001 to 15%.
Lightweight cellular concrete with excellent carbonation resistance characterized by containing by weight.
JP24538099A 1998-12-14 1999-08-31 Light-weight cellular concrete having excellent resistance to carbonation Pending JP2001072476A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24538099A JP2001072476A (en) 1999-08-31 1999-08-31 Light-weight cellular concrete having excellent resistance to carbonation
PCT/JP1999/005585 WO2000035827A1 (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance
EP99973406A EP1055648A4 (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance
AU60066/99A AU6006699A (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24538099A JP2001072476A (en) 1999-08-31 1999-08-31 Light-weight cellular concrete having excellent resistance to carbonation

Publications (1)

Publication Number Publication Date
JP2001072476A true JP2001072476A (en) 2001-03-21

Family

ID=17132809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24538099A Pending JP2001072476A (en) 1998-12-14 1999-08-31 Light-weight cellular concrete having excellent resistance to carbonation

Country Status (1)

Country Link
JP (1) JP2001072476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747660B1 (en) 2016-11-25 2017-06-15 박정연 Composition with water-holding capacity for waterproofing surface of bridge structures and method for waterproofing surface of bridge structures therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747660B1 (en) 2016-11-25 2017-06-15 박정연 Composition with water-holding capacity for waterproofing surface of bridge structures and method for waterproofing surface of bridge structures therewith

Similar Documents

Publication Publication Date Title
EA022962B1 (en) Lightweight gypsum product having enhanced water resistance
JPH0144673B2 (en)
KR100730787B1 (en) Polymer mortar composition having high permeability and preparing method thereof
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
Barnat-Hunek et al. Analysis of the physical properties of hydrophobised lightweight-aggregate mortars
KR102034611B1 (en) Manufacturing Method of Waterproof Foamed Concrete Block
CN111646750A (en) Anti-crack high-strength aerated building block
JP2001163683A (en) Lightweight cellular concrete excellent in carbonation resistance
JP2001072476A (en) Light-weight cellular concrete having excellent resistance to carbonation
Singh et al. Effect of density and porosity on the durability of flyash blended concrete
Bumanis et al. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete
KR100568933B1 (en) Composition of Lightweight / Foamed Concrete and Method of Making Same
JP2001072459A (en) Lightweight cellular concrete with high resistance to carbonation
JP2001172072A (en) Lightweight cellular concrete excellent in carbonization resistance
RU2243179C1 (en) Raw mixture for engineering insulating material
JP4481556B2 (en) Lightweight cellular concrete with excellent carbonation resistance
Morgan et al. Environmental (wet and dry) cycling of hydraulic lime mortars
JP2000119073A (en) Acid rain-resistant lightweight cellular concrete and its production
JP2000219558A (en) Lightweight aerated concrete excellent in carbonation resistance
JP2000178056A (en) Aerated lightweight concrete excellent in carbonization resistance
JP4827345B2 (en) Lightweight cellular concrete with excellent carbonation resistance and method for producing the same
JP2000086312A (en) Hydration-cured product
JPH11292656A (en) Light weight aerated concrete excellent in resistance to carbonation
PL202379B1 (en) Method of manufacture of leakproof concrete
JPH05310479A (en) Lightweight cellular concrete excellent in carbonatization resistance

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040722

A621 Written request for application examination

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331