JPH11292656A - Light weight aerated concrete excellent in resistance to carbonation - Google Patents

Light weight aerated concrete excellent in resistance to carbonation

Info

Publication number
JPH11292656A
JPH11292656A JP10070198A JP10070198A JPH11292656A JP H11292656 A JPH11292656 A JP H11292656A JP 10070198 A JP10070198 A JP 10070198A JP 10070198 A JP10070198 A JP 10070198A JP H11292656 A JPH11292656 A JP H11292656A
Authority
JP
Japan
Prior art keywords
raw material
carbonation
silicone oil
cellular concrete
light weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10070198A
Other languages
Japanese (ja)
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10070198A priority Critical patent/JPH11292656A/en
Publication of JPH11292656A publication Critical patent/JPH11292656A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/22Carbonation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide light weight aerated concrete excellent in resistance to carbonation. SOLUTION: When producing light weight aerated concrete by using a silicic acid-based raw material and a lime-based raw material as principal raw materials and by steam curing at high temperature and high pressure, silicone oil included in the mixing stage of raw materials is adsorpted in water- adsorpting sites of Tobermorite and CSH gel in the light weight aerated concrete of this invention.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は建築物の壁や屋根、
床などに使用される耐炭酸化性に優れた軽量気泡コンク
リートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the walls and roofs of buildings,
The present invention relates to lightweight cellular concrete excellent in carbonation resistance used for floors and the like.

【0002】[0002]

【従来の技術】軽量気泡コンクリートは珪石等の珪酸質
原料とセメントや生石灰等の石灰質原料を主原料とし、
これらの微粉末に水とアルミニウム粉末等の添加物を加
えてスラリー状とした後、アルミニウム粉末の反応によ
り発泡し、石灰質原料の反応により半硬化させ、所定寸
法に成形した後、オートクレーブによる高温高圧水蒸気
養生を行って製造されている。軽量気泡コンクリート
は、軽量で、耐火性、断熱性、施工性に優れているた
め、建築材料として広く使用されている。
2. Description of the Related Art Light-weight cellular concrete is mainly composed of siliceous raw materials such as silica stone and calcareous raw materials such as cement and quicklime.
After adding additives such as water and aluminum powder to these fine powders to form a slurry, they are foamed by the reaction of the aluminum powder, semi-cured by the reaction of the calcareous raw material, formed into predetermined dimensions, and then subjected to high-temperature and high-pressure by an autoclave. Manufactured by steam curing. Lightweight cellular concrete is widely used as a building material because it is lightweight and has excellent fire resistance, heat insulation properties, and workability.

【0003】しかし、軽量気泡コンクリートはコンクリ
ートに比べ多孔質であるため、空気中の二酸化炭素が内
部に拡散しやすく、炭酸化が進みやすい。軽量気泡コン
クリートは炭酸化が進むことにより収縮して、ひび割れ
が発生し、美観及び強度の上で問題となっている。
[0003] However, since lightweight cellular concrete is more porous than concrete, carbon dioxide in the air is easily diffused inside, and carbonation is likely to proceed. Light-weight cellular concrete shrinks due to the progress of carbonation, causing cracks, which is a problem in aesthetics and strength.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明の目的
は、従来に比べ耐炭酸化性に優れた軽量気泡コンクリー
トを提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lightweight cellular concrete having better carbonation resistance than the conventional one.

【0005】[0005]

【課題を解決するための手段】本発明は、珪酸質原料と
石灰質原料とを主原料とし、高温高圧下において水蒸気
養生して製造される軽量気泡コンクリートにおいて、原
料混合段階で混入されたシリコーンオイルが該軽量気泡
コンクリート中のトバモライト及びCSHゲルの水分吸
着サイトに吸着されていることを特徴とする耐炭酸化性
に優れた軽量気泡コンクリートである。原料混合段階と
は珪酸質原料と石灰質原料等を水と混合して、原料スラ
リーを調製する段階であり、シリコーンオイルは、上記
原料と一緒に添加して差し支えない。
SUMMARY OF THE INVENTION The present invention relates to a lightweight cellular concrete produced mainly from a siliceous raw material and a calcareous raw material and subjected to steam curing under high temperature and high pressure. Is adsorbed on the moisture adsorption sites of tobermorite and CSH gel in the lightweight cellular concrete, and is a lightweight cellular concrete excellent in carbonation resistance. The raw material mixing step is a step of preparing a raw material slurry by mixing a siliceous raw material and a calcareous raw material with water, and silicone oil may be added together with the raw material.

【0006】ここで使用するシリコーンオイルは、側鎖
がすべてメチル基であるポリジメチルシリコーン、側鎖
部分に水素や任意分子量のアルキル基、メトキシ基、フ
ェニル基、などを含む変性シリコーン、さらにこれらの
官能基を複合した変性シリコーン、のいずれにおいても
同様の効果が得られる。シリコーンオイルの重合度及び
分子量については原料段階で混入する場合に原料スラリ
ー中によく分散される範囲であれば、同様の効果が得ら
れる。シリコーンオイルの添加量については、0.01
重量%程度のごく微量の添加量でも耐炭酸化の効果は見
られるが、顕著に耐炭酸化効果が見られるのは0.1〜
10重量%の添加量である。シリコーンオイルの添加量
が0.1重量%未満であると耐炭酸化性を十分に引き出
すことができないし、10重量%より多いとトバモライ
トの結晶が生成阻害されるので好ましくない。
[0006] The silicone oil used here is polydimethyl silicone in which all side chains are methyl groups, modified silicone containing hydrogen, an alkyl group of any molecular weight, methoxy group, phenyl group, etc. in the side chain portion, A similar effect can be obtained with any of modified silicones having a functional group. With respect to the degree of polymerization and the molecular weight of the silicone oil, the same effects can be obtained as long as it is well dispersed in the raw material slurry when mixed at the raw material stage. About the addition amount of silicone oil, 0.01
Although the effect of carbonation resistance can be seen even with a very small addition amount of about% by weight, the carbonation resistance effect is remarkably observed at 0.1 to
It is an addition amount of 10% by weight. If the amount of the silicone oil is less than 0.1% by weight, the carbonation resistance cannot be sufficiently brought out, and if it is more than 10% by weight, the formation of tobermorite crystals is inhibited, which is not preferable.

【0007】本発明のシリコーンオイルを軽量気泡コン
クリート中のトバモライト及びCSHゲルの水分吸着サ
イトに選択的に吸着させる方法としては、オートクレー
ブ中における高温処理、もしくはオートクレーブ処理後
の高温処理が適当である。高温処理の方法としては10
0℃〜300℃程度で処理時間は1〜20時間程度が適
当である。実際の軽量気泡コンクリートの生産工程にお
いては、オートクレーブによる高温高圧水蒸気養生と同
時にシリコーンオイルの高温処理をする方法が都合が良
い。高温処理が100℃未満だったり、1時間未満であ
ったりすると、シリコーンオイルが水分吸着サイトに十
分に吸着されない。また300℃を越えたり、20時間
を越えたりする場合にはシリコーンオイルが分解して効
果を失うので好ましくない。
As a method for selectively adsorbing the silicone oil of the present invention to water adsorption sites of tobermorite and CSH gel in lightweight cellular concrete, a high temperature treatment in an autoclave or a high temperature treatment after the autoclave treatment is appropriate. The high-temperature treatment method is 10
It is appropriate that the treatment time is about 0 ° C. to 300 ° C. and about 1 to 20 hours. In the actual production process of lightweight cellular concrete, it is convenient to carry out high-temperature treatment of silicone oil at the same time as high-temperature and high-pressure steam curing using an autoclave. If the high-temperature treatment is performed at less than 100 ° C. or for less than 1 hour, the silicone oil is not sufficiently adsorbed on the moisture adsorption site. If the temperature exceeds 300 ° C. or exceeds 20 hours, the silicone oil is decomposed and loses its effect, which is not preferable.

【0008】シリコーンオイルがトバモライト及びCS
Hゲルの水分吸着サイトに選択的に吸着される原因につ
いてはよく分かっていないが、水分吸着サイトは主にシ
ラノール基の末端の−OH基であり、高温処理によって
シリコーンオイルの主鎖もしくは側鎖が部分的に断裂も
しくは分解し、この断列もしくは分解した部分がシラノ
ール基の末端に吸着すると考えている。
[0008] Silicone oil is tobermorite and CS
Although the cause of the selective adsorption to the water adsorption site of H gel is not well understood, the water adsorption site is mainly -OH group at the end of silanol group, and the main chain or side chain of silicone oil by high temperature treatment. Is partially broken or decomposed, and the broken or decomposed portion is considered to be adsorbed to the end of the silanol group.

【0009】トバモライト及びCSHゲルの水分吸着サ
イトにシリコーンオイルが選択的に吸着した軽量気泡コ
ンクリートの耐炭酸化性が向上する原因についてはよく
分かっていないが、トバモライト及びCSHゲルの炭酸
化は相対湿度に大きく影響を受け、相対湿度40%以下
では炭酸化の進行が極めて遅いことから、吸着したシリ
コーンオイルがトバモライト及びCSHゲル表面への水
分の吸着を妨げるためと考えている。
Although the cause of the improvement of the carbonation resistance of lightweight cellular concrete in which silicone oil is selectively adsorbed on the moisture adsorption sites of tobermorite and CSH gel is not well understood, the carbonation of tobermorite and CSH gel is relative humidity. It is thought that the adsorbed silicone oil hinders the adsorption of moisture to the tobermorite and CSH gel surfaces since the progress of carbonation is extremely slow at a relative humidity of 40% or less.

【0010】[0010]

【発明の実施の形態】このように、珪酸質原料と石灰質
原料とを主原料とし、高温高圧下において水蒸気養生し
て製造される軽量気泡コンクリートにおいて、原料混合
段階で混入されたシリコーンオイルが該軽量気泡コンク
リート中のトバモライト及びCSHゲルの水分吸着サイ
トに選択的に吸着することにより、耐炭酸化性に優れた
軽量気泡コンクリートとすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in a lightweight aerated concrete produced by using a siliceous raw material and a calcareous raw material as a main raw material and being steam-cured under a high temperature and a high pressure, the silicone oil mixed in the raw material mixing stage is used. By selectively adsorbing to water adsorption sites of tobermorite and CSH gel in lightweight cellular concrete, it is possible to obtain lightweight cellular concrete with excellent carbonation resistance.

【0011】[0011]

【実施例】以下、実施例に基づいて本発明をさらに説明
する。実施例及び比較例の促進炭酸化試験及び炭酸化
度、水蒸気吸着等温線の測定は次のように行った。
The present invention will be further described below with reference to examples. The accelerated carbonation test and the measurement of the degree of carbonation and the water vapor adsorption isotherm of the examples and comparative examples were performed as follows.

【0012】<促進炭酸化試験>実施例及び比較例で作
成した各試料を105℃の乾燥機中で絶乾にした後、2
0℃、相対湿度90%の恒温恒湿槽中で恒量となるまで
放置し、これを供試体とした。この供試体を20℃、相
対湿度90%、炭酸ガス濃度3%に設定した試験槽中で
30日間反応させた。試験槽中での反応日数が0,1
0,20,30日の供試体について炭酸化度の測定を行
った。
<Accelerated Carbonation Test> Each sample prepared in Examples and Comparative Examples was dried in a dryer at 105 ° C., and then dried.
The sample was allowed to stand in a thermo-hygrostat at 0 ° C. and 90% relative humidity until a constant weight was reached, and this was used as a specimen. The specimen was reacted for 30 days in a test tank set at 20 ° C., a relative humidity of 90%, and a carbon dioxide concentration of 3%. The number of reaction days in the test tank is 0.1
The carbonation degree of the test specimens on days 0, 20, and 30 was measured.

【0013】<炭酸化度測定>各供試体を微粉砕した
後、示差熱分析計により熱重量変化を測定した。トバモ
ライト及びCSHゲルの炭酸化により生成する炭酸カル
シウムは600℃〜800℃で分解して炭酸ガスを放出
するため、反応日数10,20,30日の各供試体につ
いて600〜800℃における吸熱ピークに対応する重
量減少量(Cx)を算出した。試験槽中での反応日数0
日の重量減少量(Co)を同様に算出した。また、各供
試体のCaO含有量を化学分析により求め、このCaO
含有量がすべて炭酸化された場合の炭酸ガス含有量をC
maxとした。炭酸化度(%)は[(Cx−Co)/
(Cmax−Co)×100]により求めた。
<Measurement of Degree of Carbonation> After each specimen was pulverized, a change in thermogravimetry was measured by a differential thermal analyzer. Calcium carbonate generated by carbonation of tobermorite and CSH gel decomposes at 600 ° C to 800 ° C and releases carbon dioxide gas. The corresponding weight loss (Cx) was calculated. No reaction days in test tank 0
The daily weight loss (Co) was similarly calculated. The CaO content of each specimen was determined by chemical analysis.
The carbon dioxide content when all the contents are carbonated is C
max. The degree of carbonation (%) is [(Cx-Co) /
(Cmax-Co) × 100].

【0014】<水蒸気吸着等温線>実施例及び比較例で
作成した各供試体を微粉砕した後、真空乾燥し、市販の
水蒸気吸着等温線測定装置(日本ベル(株)製BELS
ORP18)により測定した。
<Vapor adsorption isotherm> Each of the specimens prepared in Examples and Comparative Examples was finely pulverized, dried in vacuum, and a commercially available water vapor adsorption isotherm measuring device (BELS manufactured by Nippon Bell Co., Ltd.)
ORP18).

【0015】[実施例1]珪石を41重量%、セメント
を30重量%、生石灰を6重量%、石膏を5重量%、繰
り返し原料を18重量%の粉体原料を混合し、水固体比
0.66とした後、粘度50csのポリジメチルシリコ
ーンを0.1重量%添加し、アルミニウム粉末を粉体原
料の外割で0.06重量%添加して原料スラリーとし、
よく攪拌、混合した。原料スラリーを発泡、硬化させ、
オートクレーブ養生した。
Example 1 41% by weight of silica stone, 30% by weight of cement, 6% by weight of quicklime, 5% by weight of gypsum, and 18% by weight of a repetitive raw material were mixed with a powder raw material having a water solids ratio of 0%. After that, 0.1% by weight of polydimethyl silicone having a viscosity of 50 cs was added, and 0.06% by weight of aluminum powder was added as an outer percentage of the powdery raw material to form a raw material slurry.
Stir well and mix. The raw slurry is foamed and cured,
Autoclaved.

【0016】[実施例2]実施例1と同様の原料スラリ
ーにポリジメチルシリコーンを1.0重量%添加した。
その他は実施例1と同様に行った。
Example 2 To the same raw material slurry as in Example 1, 1.0% by weight of polydimethyl silicone was added.
Others were performed similarly to Example 1.

【0017】[実施例3]実施例1と同様の原料スラリ
ーにポリジメチルシリコーンを10.0重量%添加し
た。その他は実施例1と同様に行った。
Example 3 To the same raw material slurry as in Example 1, 10.0% by weight of polydimethyl silicone was added. Others were performed similarly to Example 1.

【0018】[比較例1]実施例1と同様の原料スラリ
ーにポリジメチルシリコーンを添加しなかった。その他
は実施例1と同様に行った。
Comparative Example 1 Polydimethyl silicone was not added to the same raw material slurry as in Example 1. Others were performed similarly to Example 1.

【0019】実施例1〜3及び比較例1の促進炭酸化日
数と炭酸化度の関係を図1に、また各供試体の水蒸気吸
着等温線を図2に示す。
FIG. 1 shows the relationship between the number of accelerated carbonation days and the degree of carbonation in Examples 1 to 3 and Comparative Example 1, and FIG. 2 shows the water vapor adsorption isotherm of each specimen.

【0020】図1から、シリコーンオイルを添加してい
ない比較例1に比べ、実施例はいずれも炭酸化の進行が
遅く、耐炭酸化性に優れていることが分かる。また、実
施例1,2,3の順にシリコーンオイル添加量が多いほ
ど、炭酸化の進行は遅いことが分かる。
From FIG. 1, it can be seen that in each of the examples, the progress of carbonation was slower and the carbonation resistance was excellent, as compared with Comparative Example 1 in which no silicone oil was added. Further, it can be seen that the larger the amount of silicone oil added in the order of Examples 1, 2 and 3, the slower the progress of carbonation.

【0021】図2から、シリコーンオイルを添加してい
ない比較例1に比べ、実施例は水分の吸着量が小さいこ
とから、シリコーンオイルがトバモライト及びCSHゲ
ルの水分吸着サイトに選択的に吸着していることが分か
る。また、実施例1,2,3の順にシリコーンオイルの
添加量が多いほど、水分吸着量が小さく、シリコーンオ
イルの吸着が多いことが分かる。
From FIG. 2, it can be seen that since the amount of water adsorbed in the example is smaller than that in Comparative Example 1 in which no silicone oil was added, the silicone oil was selectively adsorbed on the water adsorption sites of tobermorite and CSH gel. You can see that there is. In addition, it can be seen that the larger the amount of silicone oil added in the order of Examples 1, 2, and 3, the smaller the amount of adsorbed moisture and the larger the amount of silicone oil adsorbed.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
れば、珪酸質原料と石灰質原料とを主原料とし、高温高
圧下において水蒸気養生して製造される軽量気泡コンク
リートにおいて、原料混合段階で混入されたシリコーン
オイルが該軽量気泡コンクリート中のトバモライト及び
CSHゲルの水分吸着サイトに選択的に吸着することを
特徴とする耐炭酸化性に優れた軽量気泡コンクリートと
することができる。
As described in detail above, according to the present invention, in a lightweight cellular concrete produced by using a siliceous raw material and a calcareous raw material as main raw materials and curing with steam at a high temperature and a high pressure, a raw material mixing step is performed. In this case, the silicone oil mixed in the step (1) is selectively adsorbed to the moisture adsorption sites of tobermorite and CSH gel in the lightweight cellular concrete, whereby lightweight cellular concrete excellent in carbonation resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】促進炭酸化試験結果を示す。FIG. 1 shows the results of an accelerated carbonation test.

【図2】水蒸気吸着等温線を示す。FIG. 2 shows a water vapor adsorption isotherm.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 111:23 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C04B 111: 23

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 珪酸質原料と石灰質原料とを主原料と
し、高温高圧下において水蒸気養生して製造される軽量
気泡コンクリートにおいて、原料混合段階で混入された
シリコーンオイルが該軽量気泡コンクリート中のトバモ
ライト及びCSHゲルの水分吸着サイトに吸着されてい
ることを特徴とする耐炭酸化性に優れた軽量気泡コンク
リート。
1. A lightweight cellular concrete produced mainly from a siliceous raw material and a calcareous raw material by steam curing under high temperature and high pressure, wherein the silicone oil mixed in the raw material mixing stage contains tobermorite in the lightweight cellular concrete. And lightweight cellular concrete excellent in carbonation resistance characterized in that it is adsorbed on the moisture adsorption site of CSH gel.
JP10070198A 1998-04-13 1998-04-13 Light weight aerated concrete excellent in resistance to carbonation Pending JPH11292656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10070198A JPH11292656A (en) 1998-04-13 1998-04-13 Light weight aerated concrete excellent in resistance to carbonation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10070198A JPH11292656A (en) 1998-04-13 1998-04-13 Light weight aerated concrete excellent in resistance to carbonation

Publications (1)

Publication Number Publication Date
JPH11292656A true JPH11292656A (en) 1999-10-26

Family

ID=14281021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10070198A Pending JPH11292656A (en) 1998-04-13 1998-04-13 Light weight aerated concrete excellent in resistance to carbonation

Country Status (1)

Country Link
JP (1) JPH11292656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035827A1 (en) * 1998-12-14 2000-06-22 Sumitomo Metal Mining Co., Ltd. Light-weight cellular concrete with excellent carbonatization resistance
JP2007177586A (en) * 2005-12-28 2007-07-12 Takenaka Komuten Co Ltd Carbon dioxide fixing retaining wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035827A1 (en) * 1998-12-14 2000-06-22 Sumitomo Metal Mining Co., Ltd. Light-weight cellular concrete with excellent carbonatization resistance
JP2007177586A (en) * 2005-12-28 2007-07-12 Takenaka Komuten Co Ltd Carbon dioxide fixing retaining wall

Similar Documents

Publication Publication Date Title
Pan et al. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing
Morsy et al. Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay
JP2013519616A (en) Hydraulic lime composition
Kani et al. Investigating shrinkage changes of natural pozzolan based geopolymer cement paste
CN110294611A (en) A kind of room temperature weak base ground polymers excited cement soil and its preparation process
Saraya Study the pozzolanic activity of fresh basalt
JPH11292656A (en) Light weight aerated concrete excellent in resistance to carbonation
Loganina et al. Additive based on aluminosilicates for lime dry mortar mixes
CN115432982A (en) Preparation method of novel aerated concrete
JP2001163683A (en) Lightweight cellular concrete excellent in carbonation resistance
CN104402377A (en) Plastering gypsum special for autoclaved aerated concrete products
JP3212586B1 (en) Humidity control building materials
JP3212587B1 (en) Humidity control building materials
CN112358265A (en) Foam concrete with waste aerated concrete as raw material and preparation method thereof
CN117735946B (en) Magnesium oxychloride low-carbon gel material with excellent carbonization resistance and preparation method thereof
Vejmelková et al. Properties of innovative renders on a lime basis for the renovation of historical buildings
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JP4430286B2 (en) Method for producing lightweight cellular concrete with high condensation resistance
CN114988838B (en) Gypsum self-leveling mortar and preparation method thereof
JPH05310479A (en) Lightweight cellular concrete excellent in carbonatization resistance
Wu et al. The influences of CSH on the carbonation resistance of cement blended with supplementary cementitious materials
JP2001172072A (en) Lightweight cellular concrete excellent in carbonization resistance
JP2001072476A (en) Light-weight cellular concrete having excellent resistance to carbonation
JP4827345B2 (en) Lightweight cellular concrete with excellent carbonation resistance and method for producing the same
JP2001072458A (en) Formaldehyde-absorbing wall material