JP2001072459A - Lightweight cellular concrete with high resistance to carbonation - Google Patents

Lightweight cellular concrete with high resistance to carbonation

Info

Publication number
JP2001072459A
JP2001072459A JP24537999A JP24537999A JP2001072459A JP 2001072459 A JP2001072459 A JP 2001072459A JP 24537999 A JP24537999 A JP 24537999A JP 24537999 A JP24537999 A JP 24537999A JP 2001072459 A JP2001072459 A JP 2001072459A
Authority
JP
Japan
Prior art keywords
carbonation
alc
cellular concrete
weight
lightweight cellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24537999A
Other languages
Japanese (ja)
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24537999A priority Critical patent/JP2001072459A/en
Priority to AU60066/99A priority patent/AU6006699A/en
Priority to EP99973406A priority patent/EP1055648A4/en
Priority to PCT/JP1999/005585 priority patent/WO2000035827A1/en
Publication of JP2001072459A publication Critical patent/JP2001072459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject cellular concrete to be used as the wall, roof, flooring, etc., of buildings. SOLUTION: This lightweight cellular concrete based on both siliceous and calcareous components contains 0.0005-10 wt.% of an organopolysiloxane having in one molecule at least one siloxane unit shown by R(CH3)SiO2/2, R(CH3)2SiO1/2, or RSiO3/2 (R is a >=2C alkyl group).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁、屋
根、床などに使用される耐炭酸化性に優れた軽量気泡コ
ンクリートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lightweight cellular concrete excellent in carbonation resistance used for walls, roofs, floors and the like of buildings.

【0002】[0002]

【従来の技術】軽量気泡コンクリート(以下、ALCと
記す)は、軽量で、耐火性・断熱性・施工性に優れてい
るため、建築材料として広く使用されている。
2. Description of the Related Art Light-weight cellular concrete (hereinafter referred to as ALC) is widely used as a building material because it is lightweight and has excellent fire resistance, heat insulation and workability.

【0003】ALCは次のようにして製造される。すな
わち、珪石などの珪酸質原料と、セメント・生石灰など
の石灰質原料とを主原料とし、これらの微粉末に水とア
ルミニウム粉末などの添加物とを加えてスラリー状す
る。このスラリーを、アルミニウム粉末の反応により発
泡させ、石灰質原料の反応により半硬化させて、所定寸
法に成形する。その後、オートクレーブによる高温高圧
水蒸気養生を行ってALCとする。
[0003] ALC is manufactured as follows. That is, a siliceous raw material such as silica stone and a calcareous raw material such as cement and quicklime are used as main raw materials, and water and an additive such as aluminum powder are added to these fine powders to form a slurry. The slurry is foamed by the reaction of the aluminum powder, semi-cured by the reaction of the calcareous raw material, and formed into a predetermined size. Thereafter, high-temperature and high-pressure steam curing is performed by an autoclave to obtain ALC.

【0004】このようにして製造されたALCは、珪酸
質成分および石灰質成分を主成分とし、主要構成鉱物が
トバモライトである。そして、気泡と細孔が全体積の約
8割を占める空隙の非常に多い微細構造を持ち、絶乾か
さ比重が約0.5程度である。
[0004] The ALC thus produced contains a siliceous component and a calcareous component as main components, and the main constituent mineral is tobermorite. It has a microstructure with very large voids, in which bubbles and pores occupy about 80% of the total volume, and has a specific gravity of about 0.5 in absolute dryness.

【0005】上記のようにALCは気泡と細孔が非常に
多いので、水分やガス(炭酸ガスなど)は容易にALC
内部へ浸入する。ALCの主要構成鉱物であるトバモラ
イトは、浸入した水分と炭酸ガスと反応し、シリカゲル
と炭酸カルシウムとに分解する。これが炭酸化である。
炭酸化は、炭酸化現象、すなわち強度の低下、ひび割れ
の発生などの劣化をALCに引き起こす。そこで、AL
Cの炭酸化を防止するか遅延させるために、(1)水分
や炭酸ガスの浸入を防ぐこと、(2)トバモライトに耐
炭酸化性を持たせることが求められる。根本的な対策と
なり得るので期待される上記(2)に対する手段は、種
々の研究にもかかわらず、工業的に有効なものが見出さ
れていない。そのため、上記(1)に対する手段、すな
わちALCの表面仕上げ(塗装など)がこれまで専ら用
いられていた。
[0005] As described above, ALC has a large number of bubbles and pores, so that moisture and gas (such as carbon dioxide) can be easily removed by ALC.
Infiltrate inside. Tobermorite, the main constituent mineral of ALC, reacts with the infiltrated water and carbon dioxide to decompose into silica gel and calcium carbonate. This is carbonation.
Carbonation causes ALC to undergo a carbonation phenomenon, that is, deterioration such as a decrease in strength and generation of cracks. So AL
In order to prevent or delay carbonation of C, it is required to (1) prevent the intrusion of moisture and carbon dioxide gas, and (2) to make tobermorite resistant to carbonation. As a means for the above (2), which can be a fundamental measure, no industrially effective means has been found despite various studies. Therefore, the means for the above (1), that is, the ALC surface finish (painting or the like) has been exclusively used until now.

【0006】本発明者らは、様々な研究と試行錯誤の結
果、主原料の混合物スラリーに種々のオルガノポリシロ
キサンを添加する撥水性ALCが耐炭酸化性に優れてい
ることを発見した。耐炭酸化性に優れる原因はまだ明ら
かになっていないが、撥水性優れた全てのALCが必ず
しも耐炭酸化性に優れているとは限らない。従って、炭
酸化反応は水分の存在下において進行するため、オルガ
ノポリシロキサンがトバモライト表面の水分の存在状態
等に変化をもたらしていることが原因ではないかと考え
ている。
As a result of various studies and trial and error, the present inventors have found that a water-repellent ALC obtained by adding various organopolysiloxanes to a mixture slurry of a main raw material has excellent carbonation resistance. Although the cause of the excellent carbonation resistance has not been elucidated yet, not all ALCs having excellent water repellency are necessarily necessarily excellent in carbonation resistance. Therefore, since the carbonation reaction proceeds in the presence of water, it is considered that the cause may be that the organopolysiloxane changes the state of the presence of water on the tobermorite surface.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
事情に鑑み、耐炭酸化性に優れるALCを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ALC having excellent carbonation resistance in view of the above circumstances.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく、様々な研究と試行錯誤を行った結果、「種
々のオルガノポリシロキサンを少量添加したALCは、
撥水性が低下して吸水性が向上すると同時に、耐炭酸化
性に依然として優れる」ことを発見し本発明に到達し
た。
Means for Solving the Problems The present inventor has conducted various studies and trial and error in order to achieve the above object, and as a result, it has been found that "ALC containing a small amount of various organopolysiloxanes is
The water repellency is reduced and the water absorption is improved, and at the same time, the carbonation resistance is still excellent. "

【0009】すなわち、本発明の耐炭酸化性に優れるA
LCは、珪酸質成分および石灰質成分を主成分とするA
LCにおいて、R(CH3 )SiO2/2 、R(CH3
2 SiO1/2 またはRSiO3/2 (式中、Rは炭素原子
数(n)が少なくとも2のアルキル基(Cn 2n+1))
で表わされるシロキサン単位を1分子中に少なくとも1
個有するオルガノポリシロキサンを、0.0005〜1
0重量%含むことを特徴とする。
That is, A of the present invention which is excellent in carbonation resistance
LC is A having a siliceous component and a calcareous component as main components.
In LC, R (CH 3 ) SiO 2/2 , R (CH 3 )
2 SiO 1/2 or RSiO 3/2 (where R is an alkyl group having at least 2 carbon atoms (n) (C n H 2n + 1 ))
At least one siloxane unit represented by
Of organopolysiloxanes having a number of
It is characterized by containing 0% by weight.

【0010】[0010]

【発明の実施の形態】これまで、オルガノポリシロキサ
ンはALCや珪酸質建築材料に撥水性を付与するために
添加されている。撥水性の付与に関しては、特開昭55
−42272号のようにポリジメチルシロキサンを0.
2〜10重量%添加したり、特公平1−58148号の
ように、アルキル基を含むオルガノポリシロキサンを
0.05〜10重量%添加するなど、オルガノポリシロ
キサンの添加量は比較的多かった。これは、撥水性の発
現機構が材料と水との接触角をオルガノポリシロキサン
の添加により変化させ、多孔質であるALCや珪酸質建
築材料への毛細管現象による水の侵入を防ぐものであ
り、そのためにある程度の添加量が必要であったと考え
られる。
Heretofore, organopolysiloxanes have been added to impart water repellency to ALC and siliceous building materials. Regarding the provision of water repellency, see
No. 42272, polydimethylsiloxane was added to a solution of 0.
The addition amount of organopolysiloxane was relatively large, for example, addition of 2 to 10% by weight or addition of 0.05 to 10% by weight of an organopolysiloxane containing an alkyl group as disclosed in Japanese Patent Publication No. 1-58148. This is because the expression mechanism of water repellency changes the contact angle between the material and water by the addition of organopolysiloxane, preventing water from entering the porous ALC or siliceous building material by capillary action, It is considered that a certain amount of addition was necessary for that purpose.

【0011】一方、炭酸化の反応の場となるのは液体の
水ではなく表面吸着水であり、作用機構が異なるため
に、有効な添加量は異なるのではないかと考えた。そこ
で、オルガノポリシロキサンの添加量を0.0001〜
15重量%まで変化させ実験したところ、撥水性の発現
しない0.0005重量%でも耐炭酸化性は発現するこ
とが分かった。
On the other hand, the site of the carbonation reaction is not the liquid water but the surface adsorbed water, and it is thought that the effective amount of addition may be different because the action mechanism is different. Therefore, the addition amount of the organopolysiloxane is set to 0.0001 to
The experiment was carried out with the content changed to 15% by weight, and it was found that the carbonation resistance was exhibited even at 0.0005% by weight where no water repellency was exhibited.

【0012】[0012]

【実施例】以下、実施例により本発明をより詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0013】珪酸質原料として、珪石40重量%、石灰
質原料として生石灰5重量%、セメント30重量%、石
膏5重量%、さらに繰り返し原料20重量%を混合し、
これらの主原料に水とアルミニウム粉末、界面活性剤を
加えて混練してスラリーを作成した。なお、水固体比は
0.6とした。該スラリーが石灰質原料の水和により硬
化した後、185℃、11気圧のオートクレーブにおい
て、6時間高温高圧水蒸気養生を施した。
As a siliceous raw material, 40% by weight of silica stone, as a calcareous raw material, 5% by weight of quick lime, 30% by weight of cement, 5% by weight of gypsum, and 20% by weight of a repeating material are mixed.
A slurry was prepared by adding water, aluminum powder and a surfactant to these main raw materials and kneading them. The water solids ratio was 0.6. After the slurry was hardened by hydration of the calcareous raw material, it was subjected to high-temperature and high-pressure steam curing for 6 hours in an autoclave at 185 ° C. and 11 atm.

【0014】この原料スラリー混合時に、アルキル基を
含むオルガノポリシロキサンの添加量を0.0001〜
15重量%まで変化させて添加したALCを作成した。
また、比較としてオルガノポリシロキサンを全く添加し
ないALC(以下、ブランクサンプルと略記する)も作
成した。ここで、アルキル基を含むオルガノポリシロキ
サンとして、表1に示す計6種類を試した。
At the time of mixing the raw material slurry, the addition amount of the organopolysiloxane containing an alkyl group is set to 0.0001 to
An ALC was added varying up to 15% by weight.
For comparison, an ALC (hereinafter, abbreviated as a blank sample) containing no organopolysiloxane was also prepared. Here, a total of six types shown in Table 1 were tried as organopolysiloxanes containing an alkyl group.

【0015】[0015]

【表1】 各サンプルの耐炭酸化性を調べるため、10mm×40
mm×80mmの大きさに成形し、促進炭酸化試験に供
した。試験条件は20℃、相対湿度90%、炭酸ガス濃
度3体積%の一定雰囲気下で20日間放置した。各サン
プルの炭酸化度は、以下の式によって算出した。
[Table 1] 10 mm × 40 to examine the carbonation resistance of each sample
It was formed into a size of mm × 80 mm and subjected to an accelerated carbonation test. The test was performed under a constant atmosphere of 20 ° C., a relative humidity of 90% and a carbon dioxide gas concentration of 3% by volume for 20 days. The degree of carbonation of each sample was calculated by the following equation.

【0016】炭酸化度(%)={(C−Co)/(Cm
ax−Co)}×100 ここで、C及びCoは各試料および未炭酸化試料の炭酸
ガス結合量を熱分析によって600〜800℃の炭酸ガ
ス分解による重量減少量としてそれぞれ分析し、Cma
xは各試料中のカルシウム含有量を分析し、このカルシ
ウムがすべて炭酸カルシウムとなった場合の炭酸ガス結
合量とした。各サンプルの炭酸化度分析結果をもとに、
ブランクサンプルの炭酸化度を各サンプルの炭酸化度で
除した値を炭酸化指数と定義した。
Degree of carbonation (%) = C (C-Co) / (Cm
ax-Co)} × 100 Here, C and Co are analyzed by analyzing the amount of carbon dioxide binding of each sample and the uncarbonated sample as a weight loss due to decomposition of carbon dioxide at 600 to 800 ° C. by thermal analysis, respectively.
“x” was obtained by analyzing the calcium content in each sample, and was defined as a carbon dioxide gas binding amount when all the calcium was converted into calcium carbonate. Based on the carbonation degree analysis results of each sample,
The value obtained by dividing the carbonation degree of the blank sample by the carbonation degree of each sample was defined as the carbonation index.

【0017】耐炭酸化性と共に、ALCの基本的な物性
である圧縮強度、乾燥収縮率をJISA5416に準じ
て測定した。
In addition to the carbonation resistance, the basic physical properties of ALC such as compressive strength and dry shrinkage were measured in accordance with JIS A5416.

【0018】各サンプルのオルガノポリシロキサンの種
類および添加量に対する耐炭酸化指数の測定結果を表2
に示す。
Table 2 shows the measurement results of the carbonation resistance index with respect to the type and addition amount of the organopolysiloxane of each sample.
Shown in

【0019】[0019]

【表2】 ここで、耐炭酸化性については、耐炭酸化指数が1.5
以上を可、2.0以上を適、これ以外を不適と判定する
と、全てのオルガノポリシロキサン添加量が0.000
5重量%以上で耐炭酸化性が十分にある。
[Table 2] Here, regarding the carbonation resistance, the carbonation resistance index is 1.5.
When it was judged that the above was acceptable, that 2.0 or more was appropriate, and that the others were inappropriate, all the organopolysiloxane addition amounts were 0.000.
When the content is 5% by weight or more, the carbonation resistance is sufficient.

【0020】特に、添加量1〜2重量%では、炭酸化が
全く進まないために、炭酸化指数は無限大となった。た
だし、12重量%以上では、乾燥収縮率がJIS規格を
外れるため、ALCとして不適であることが分かった。
つまり、オルガノポリシロキサンを0.0005〜10
重量%添加したものについて、通常のALCに比べて耐
炭酸化性に優れるものが得られた。
In particular, when the addition amount was 1 to 2% by weight, carbonation did not proceed at all, and the carbonation index became infinite. However, when the content was 12% by weight or more, the drying shrinkage ratio was out of the JIS standard, and thus it was found to be inappropriate as ALC.
That is, 0.0005 to 10
With respect to those added by weight%, those having excellent carbonation resistance as compared with ordinary ALC were obtained.

【0021】これまでに試験に用いたアルキル基を含む
オルガノポリシロキサンは全て添加量を制御すれば、目
的のALCを得ることができた。ただし、アルキル基を
含むオルガノポリシロキサンの種類は無限に作成するこ
とができるため、全ての種類について試験により確かめ
ることは不可能である。しかし、今回用いたのは、AL
C等の珪酸質材料に通常用いられる範囲のアルキル基を
含むオルガノポリシロキサンであり、通常用いられる範
囲のアルキル基を含むオルガノポリシロキサンであれ
ば、添加量を制御することにより、目的のALCを得る
ことができる。
The desired ALC could be obtained by controlling the amounts of all the organopolysiloxanes containing alkyl groups used in the tests so far. However, since the types of organopolysiloxane containing an alkyl group can be produced indefinitely, it is impossible to confirm all types by tests. However, we used AL
C is an organopolysiloxane containing an alkyl group in a range usually used for siliceous materials such as C. If the organopolysiloxane contains an alkyl group in a range usually used, the desired ALC can be obtained by controlling the amount of addition. Obtainable.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
れば、ALCの劣化の一つである炭酸化現象に関して、
耐炭酸化性に優れるために耐劣化・耐久性に優れるAL
Cを得ることができる。従って、ALC建築物の耐用年
数の延長、補修・改修の費用の低減を可能にし、ひいて
は産業廃棄物量の低減という社会的な要請にも応えるこ
とができる。
As described above in detail, according to the present invention, regarding the carbonation phenomenon which is one of the deteriorations of ALC,
AL with excellent resistance to deterioration and durability due to excellent carbonation resistance
C can be obtained. Therefore, it is possible to extend the service life of the ALC building, reduce the cost of repair and repair, and meet social demands for reducing the amount of industrial waste.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 珪酸質成分および石灰質成分を主成分と
する軽量気泡コンクリートにおいて、R(CH3 )Si
2/2 、R(CH3 2 SiO1/2 またはRSiO3/2
(式中、Rは炭素原子数が少なくとも2のアルキル基)
で表わされるシロキサン単位を1分子中に少なくとも1
個有するオルガノポリシロキサンを、0.0005〜1
0重量%含むことを特徴とする耐炭酸化性に優れた軽量
気泡コンクリート。
1. A lightweight cellular concrete mainly composed of a siliceous component and a calcareous component, wherein R (CH 3 ) Si
O 2/2 , R (CH 3 ) 2 SiO 1/2 or RSiO 3/2
(Wherein, R is an alkyl group having at least 2 carbon atoms)
At least one siloxane unit represented by
Of organopolysiloxanes having a number of
A lightweight cellular concrete excellent in carbonation resistance characterized by containing 0% by weight.
JP24537999A 1998-12-14 1999-08-31 Lightweight cellular concrete with high resistance to carbonation Pending JP2001072459A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24537999A JP2001072459A (en) 1999-08-31 1999-08-31 Lightweight cellular concrete with high resistance to carbonation
AU60066/99A AU6006699A (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance
EP99973406A EP1055648A4 (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance
PCT/JP1999/005585 WO2000035827A1 (en) 1998-12-14 1999-10-08 Light-weight cellular concrete with excellent carbonatization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24537999A JP2001072459A (en) 1999-08-31 1999-08-31 Lightweight cellular concrete with high resistance to carbonation

Publications (1)

Publication Number Publication Date
JP2001072459A true JP2001072459A (en) 2001-03-21

Family

ID=17132794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24537999A Pending JP2001072459A (en) 1998-12-14 1999-08-31 Lightweight cellular concrete with high resistance to carbonation

Country Status (1)

Country Link
JP (1) JP2001072459A (en)

Similar Documents

Publication Publication Date Title
WO2012091688A1 (en) Waterproofing composition
CN108164222A (en) Cement-based grouting material and grout and mortar
JPH0144673B2 (en)
Khatib et al. Early age porosity and pore size distribution of cement paste with flue gas desulphurisation (FGD) waste
Kargol et al. Properties and performance of silane: blended cement systems
Barnat-Hunek et al. Analysis of the physical properties of hydrophobised lightweight-aggregate mortars
Baranova et al. Structural and heat-insulating foam concrete of non-autoclaved hardening based on microsilica
JP2001163683A (en) Lightweight cellular concrete excellent in carbonation resistance
JP2001072459A (en) Lightweight cellular concrete with high resistance to carbonation
JP2011026146A (en) Method for producing autoclaved lightweight cellular concrete
JP2001072476A (en) Light-weight cellular concrete having excellent resistance to carbonation
JP2001172072A (en) Lightweight cellular concrete excellent in carbonization resistance
JP2000219579A (en) Lightweight aerated concrete excellent in carbonation resistance
JP2000219558A (en) Lightweight aerated concrete excellent in carbonation resistance
WO2000035827A1 (en) Light-weight cellular concrete with excellent carbonatization resistance
Grabowska et al. The effect of silanes as integral hydrophobic admixture on the physical properties of cement based materials
Akinkurolere et al. Water Absorption, Sorptivity and Permeability Properties of Concrete Containing Chemical and Mineral Admixtures
JP4827345B2 (en) Lightweight cellular concrete with excellent carbonation resistance and method for producing the same
JP2000119073A (en) Acid rain-resistant lightweight cellular concrete and its production
JPH11131804A (en) Method for suppressing carbonation of lightweight concrete
JP2013043799A (en) Autoclaved lightweight concrete
JP4812362B2 (en) Cementitious material with gamma belite that has improved carbonation ability in real environment
JP2000178056A (en) Aerated lightweight concrete excellent in carbonization resistance
RU2783964C2 (en) Mortar based on hydrated lime
JP4481556B2 (en) Lightweight cellular concrete with excellent carbonation resistance

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421