JP2001070754A - Exhaust gas treatment apparatus for lean burn internal combustion engine - Google Patents

Exhaust gas treatment apparatus for lean burn internal combustion engine

Info

Publication number
JP2001070754A
JP2001070754A JP24798199A JP24798199A JP2001070754A JP 2001070754 A JP2001070754 A JP 2001070754A JP 24798199 A JP24798199 A JP 24798199A JP 24798199 A JP24798199 A JP 24798199A JP 2001070754 A JP2001070754 A JP 2001070754A
Authority
JP
Japan
Prior art keywords
catalyst
nox
exhaust gas
release
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24798199A
Other languages
Japanese (ja)
Other versions
JP4221125B2 (en
Inventor
Kojiro Okada
公二郎 岡田
Osamu Nakayama
修 中山
Yasuki Tamura
保樹 田村
Hiroyuki Nakajima
浩之 仲嶌
Naohito Yamada
尚人 山田
Keisuke Tashiro
圭介 田代
Kazuo Koga
一雄 古賀
Kinichi Iwachido
均一 岩知道
Takeshi Tanabe
健 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP24798199A priority Critical patent/JP4221125B2/en
Publication of JP2001070754A publication Critical patent/JP2001070754A/en
Application granted granted Critical
Publication of JP4221125B2 publication Critical patent/JP4221125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress H2S emission amount from a lean burn internal occlusion engine without deteriorating the treatment capability of a NOx-occlusion type catalyst. SOLUTION: In this exhaust gas treatment apparatus, nickel oxide is added in 10-35 g per 1 liter of a three-way catalyst (30b) installed as a H2S emission suppressing catalytic apparatus in the downstream side of a NOx occlusion type catalyst (30a) or a nickel oxide together with other H2S emission suppressing agent is added to the three-way catalyst (30b) in 30-300% by mole ratio to Ba added as an occluding agent to the NOx catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希薄燃焼内燃機関
の排気浄化装置に関し、特に、大気中への硫化水素(H
2S)の排出を抑制可能な排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for purifying exhaust gas of a lean burn internal combustion engine, and more particularly to a device for purifying hydrogen sulfide (H) into the atmosphere.
The present invention relates to an exhaust gas purification device capable of suppressing the emission of 2S).

【0002】[0002]

【関連する背景技術】リーン空燃比での機関運転中、燃
料ひいては排ガス中に含まれる硫黄成分(S成分)が排
気浄化装置内で酸素と反応して硫黄酸化物が生成され、
この硫黄酸化物が例えば硫酸塩として触媒に付着するこ
とが知られている。この付着物質は、触媒が高温かつリ
ッチ空燃比の排ガスに晒されるような機関運転中に二酸
化硫黄として脱離し放出されるが、この際、特に排気空
燃比のリッチ度合が大きい場合には、二酸化硫黄ととも
に硫化水素(H2S)が生成される。H2Sには異臭があ
るため、大気中へのH2Sの排出量が多くなると問題を
生じる。これに関連して、触媒にニッケルなどのH2
放出抑制剤を添加してH2S放出を抑制する技術が知ら
れている。例えば三元触媒を用いた排気浄化システムで
は、三元触媒に付着したS成分により生成されたH2
に対してH2S放出抑制剤としてニッケル酸化物を添加
するものがあり、この場合、通常、触媒容量1リットル
あたり5グラム程度添加される。
[Related Background Art] During operation of an engine at a lean air-fuel ratio, a sulfur component (S component) contained in fuel and eventually exhaust gas reacts with oxygen in an exhaust gas purification device to generate sulfur oxides.
It is known that this sulfur oxide adheres to the catalyst, for example, as a sulfate. This adhering substance is released and released as sulfur dioxide during engine operation in which the catalyst is exposed to exhaust gas having a high temperature and a rich air-fuel ratio. In this case, particularly when the degree of richness of the exhaust air-fuel ratio is large, carbon dioxide is emitted. Hydrogen sulfide (H 2 S) is produced together with sulfur. Since H 2 S has an unpleasant odor, a problem arises when the amount of H 2 S discharged into the atmosphere increases. In this connection, H 2 S such as nickel is added to the catalyst.
A technique for suppressing the release of H 2 S by adding a release inhibitor is known. For example, in an exhaust gas purification system using a three-way catalyst, H 2 S generated by the S component attached to the three-way catalyst is used.
In some cases, nickel oxide is added as an H 2 S release inhibitor, and in this case, usually about 5 grams per liter of catalyst capacity is added.

【0003】内燃機関とくに希薄燃焼内燃機関では、燃
費および排気特性の向上を企図して、できる限り広い機
関運転域でリーン燃焼運転が行われるが、このリーン燃
焼運転中に内燃機関から排出される窒素酸化物を三元触
媒によって充分に浄化できないことから、希薄燃焼内燃
機関の排気浄化装置には吸蔵型NOx触媒を装備したも
のがあり、この種の排気浄化装置を有した内燃機関にお
いてもH2S放出量を抑制することが望ましい。
[0003] In an internal combustion engine, particularly in a lean-burn internal combustion engine, a lean combustion operation is performed in an engine operating range as wide as possible in order to improve fuel efficiency and exhaust characteristics. Since nitrogen oxides cannot be sufficiently purified by the three-way catalyst, some exhaust purification devices of lean-burn internal combustion engines are equipped with a storage-type NOx catalyst. It is desirable to suppress the amount of 2 S release.

【0004】[0004]

【発明が解決しようとする課題】そこで、上記の公知技
術に徴して、H2S放出を抑制するべくニッケル酸化物
を添加してなる三元触媒を吸蔵型NOx触媒の下流側に
配置することが考えられるが、この種の公知技術の三元
触媒を配置しただけではS吸蔵量すなわちH2S生成量
が三元触媒より多い吸蔵型NOx触媒を有した排気浄化
装置からのH2S放出量を充分に抑制することは困難で
ある。
Therefore, according to the above-mentioned prior art, a three-way catalyst comprising nickel oxide added to suppress H 2 S emission is disposed downstream of the storage NOx catalyst. However, simply arranging this type of three-way catalyst of the known art releases H 2 S from an exhaust purification device having a storage type NOx catalyst in which the amount of S occlusion, that is, the amount of H 2 S generated is larger than that of the three-way catalyst. It is difficult to sufficiently control the amount.

【0005】また、三元触媒の下流に配されたNOx吸
蔵還元触媒にニッケルを添加してなる排気浄化装置が特
開平10−317946号公報に提案されているが、こ
の提案装置のようにNOx吸蔵剤といっしょにニッケル
を添加した場合にはNOx浄化能力が低下する場合があ
る。本発明は、NOx吸蔵触媒を有する排気浄化装置を
装備した希薄燃焼内燃機関からのH2S放出量を、NO
x吸蔵触媒の浄化能力を損なうことなしに、充分に抑制
可能な排気浄化装置を提供することを目的とする。
[0005] An exhaust gas purifying apparatus in which nickel is added to a NOx storage reduction catalyst disposed downstream of a three-way catalyst has been proposed in Japanese Patent Laid-Open Publication No. Hei 10-317946. When nickel is added together with the occluding agent, the NOx purification ability may decrease. The present invention relates to a method for measuring the amount of H 2 S released from a lean-burn internal combustion engine equipped with an exhaust purification device having a NOx storage catalyst by using NO.
An object of the present invention is to provide an exhaust gas purifying apparatus capable of sufficiently suppressing the purifying ability of the x storage catalyst without impairing it.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明に
係る排気浄化装置は、NOx吸蔵触媒装置の下流に設け
たH2S放出抑制触媒装置に対して1リットルあたり1
0ないし35グラムのニッケル酸化物を添加したことを
特徴とする。請求項1に記載の発明によれば、希薄燃焼
内燃機関がたとえばリーン燃焼運転状態にあるときに排
ガス中のNOxがNOx吸蔵触媒装置に吸蔵され、ま
た、排ガス中の硫黄成分(S成分)もNOx吸蔵触媒装
置に吸蔵される。このS成分の吸蔵量は、三元触媒の場
合に比べて大きい。そして、内燃機関がたとえば高負荷
域で運転されてNOx吸蔵触媒がリッチ空燃比かつ高温
の雰囲気に晒されると、NOx吸蔵触媒に吸蔵されてい
た多量のS成分が放出されてH2Sが生成される。NO
x吸蔵触媒装置の下流に設けられたH2S放出抑制触媒
装置には、上記従来公知の三元触媒の場合に比べて少な
くとも約2倍以上のニッケル酸化物が添加されているの
で、NOx吸蔵触媒から放出されたS成分から生成され
るH2Sは、H2S放出抑制触媒装置に吸蔵される。この
様に、本発明の排気浄化装置は、従来公知の三元触媒を
用いた排気浄化システムに比べてH2S放出抑制能力が
高いH2S放出抑制触媒装置を有し、排気浄化装置内で
多量のH2Sが生成された場合にも大気中へのH2Sの排
出が抑制され、H2Sの排出に伴う臭気の発生という問
題が解消または大幅に緩和される。また、NOx吸蔵触
媒装置自体にニッケルを添加してなる従来装置とは異な
り、本発明の排気浄化装置はNOx吸蔵触媒装置の下流
に配されたH2S放出抑制触媒装置にニッケル酸化物を
添加したものであり、NOx吸蔵触媒の浄化能力が低下
するおそれがない。更に、H2S放出抑制触媒装置への
ニッケル酸化物の添加量に対して好適な上限値が設定さ
れており、H2S放出抑制触媒装置自体のH2S放出抑制
機能以外の浄化能力も担保される。
According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus comprising: an H 2 S emission suppressing catalyst device provided downstream of a NOx storage catalytic device;
It is characterized by adding 0 to 35 grams of nickel oxide. According to the first aspect of the invention, when the lean burn internal combustion engine is in, for example, a lean combustion operation state, NOx in the exhaust gas is stored in the NOx storage catalyst device, and a sulfur component (S component) in the exhaust gas is also reduced. It is stored in the NOx storage catalyst device. The storage amount of the S component is larger than that of the three-way catalyst. When the internal combustion engine is operated, for example, in a high load range and the NOx storage catalyst is exposed to a rich air-fuel ratio and a high-temperature atmosphere, a large amount of the S component stored in the NOx storage catalyst is released to generate H 2 S. Is done. NO
Since the H 2 S emission suppression catalyst device provided downstream of the x storage catalyst device contains at least about twice as much nickel oxide as the conventional three-way catalyst, the NOx storage catalyst device has no NOx storage device. H 2 S generated from the S component released from the catalyst is occluded in the H 2 S release suppressing catalyst device. Thus, the exhaust gas purifying apparatus of the present invention has a H 2 S release control catalyst device is higher H 2 S release suppression capability as compared to the exhaust gas purification system using the conventional three-way catalyst, the exhaust gas purifying device Thus, even when a large amount of H 2 S is generated, the emission of H 2 S into the atmosphere is suppressed, and the problem of the generation of odor due to the emission of H 2 S is eliminated or greatly reduced. Also, unlike the conventional device in which nickel is added to the NOx storage catalyst device itself, the exhaust gas purification device of the present invention adds nickel oxide to the H 2 S emission suppression catalyst device arranged downstream of the NOx storage catalyst device. Therefore, there is no possibility that the purification ability of the NOx storage catalyst is reduced. Furthermore, H 2 and a suitable upper limit is set for the amount of nickel oxide in the S release control catalyst device, also H 2 S release control catalyst device purifying capability other than H 2 S release control function of itself Secured.

【0007】請求項1に記載の発明において、好ましく
は、H2S放出抑制触媒装置は三元触媒装置であり、こ
の三元触媒装置には好ましくはその容量1リットルあた
り15ないし25グラムのニッケル酸化物が添加され
る。この好適態様によれば、三元触媒装置に対するニッ
ケル酸化物の添加量は従来技術の場合の少なくとも約3
倍以上であるので、NOx吸蔵触媒装置からのS成分の
放出時にH2Sが多量に生成された場合にも三元触媒装
置によるH2Sの吸蔵が確実に行われる。また、ニッケ
ル酸化物の添加量の上限値が、三元触媒装置の三元機能
がより確実に担保されるような値に設定され、排ガス中
の有害成分の浄化が三元触媒装置により充分に行われ
る。
[0007] In the present invention, preferably, the H 2 S emission suppressing catalyst device is a three-way catalyst device, and the three-way catalyst device preferably has 15 to 25 grams of nickel per liter of capacity. An oxide is added. According to this preferred embodiment, the amount of nickel oxide added to the three-way catalyst unit is at least about 3 in the prior art.
Since it is twice or more, even when a large amount of H 2 S is generated at the time of release of the S component from the NOx storage catalyst device, the three-way catalyst device reliably stores H 2 S. In addition, the upper limit of the amount of nickel oxide added is set to a value that ensures the three-way function of the three-way catalyst device more reliably, and the three-way catalyst device sufficiently purifies harmful components in exhaust gas. Done.

【0008】請求項2に記載の発明に係る排気浄化装置
は、NOx吸蔵触媒装置の下流にH 2S放出抑制触媒装
置を設け、NOx吸蔵触媒装置に添加された吸蔵剤に対
してモル比で30ないし300%のH2S放出抑制剤を
2S放出抑制触媒装置に添加したことを特徴とする。
好ましくは、吸蔵剤に対して例えばニッケル酸化物であ
ればモル比で50ないし100%のH2S放出抑制剤を
添加する。
[0008] The exhaust gas purifying apparatus according to the second aspect of the present invention.
Is H downstream of the NOx storage catalyst device. TwoS release control catalyst
The NOx storage catalyst device is equipped with a storage
30 to 300% HTwoS release inhibitor
HTwoIt is characterized in that it is added to the S release suppression catalyst device.
Preferably, the storage agent is, for example, nickel oxide.
50 to 100% H by mole ratioTwoS release inhibitor
Added.

【0009】請求項2に記載の発明によれば、NOx吸
蔵触媒から放出されたS成分から多量のH2Sが生成さ
れた場合にも大気中へのH2Sの放出が防止される。す
なわち、H2Sの生成量の最大値は主としてNOx吸蔵
触媒の硫黄分吸蔵能力に対応するNOx吸蔵触媒へのN
Ox吸蔵剤の添加量に応じて決まるが、本発明ではNO
x吸蔵剤の添加量に応じてH2S放出抑制触媒装置への
2S放出抑制剤の添加量の下限値が設定されており、
2S放出抑制触媒装置は多量のH2Sを吸蔵可能であ
る。その一方で、H2S放出抑制剤の添加量の上限値が
設定されており、H2S放出抑制触媒装置自体のH2S放
出抑制機能以外の浄化性能も担保される。
According to the invention described in claim 2, the release of H 2 S into the atmosphere is prevented even when the S component released from the NOx storage catalyst amounts of H 2 S generated. That is, the maximum value of the generation amount of H 2 S mainly depends on the amount of N 2 to the NOx storage catalyst corresponding to the sulfur content storage capacity of the NOx storage catalyst.
It depends on the amount of the Ox storage agent added, but in the present invention, NO
the lower limit of the amount of H 2 S release inhibitor to H 2 S release control catalyst device in accordance with the amount of x absorbent is set,
The H 2 S release suppressing catalyst device can store a large amount of H 2 S. On the other hand, the upper limit of the added amount of the H 2 S release inhibitor is set, and the purification performance other than the H 2 S release suppression function of the H 2 S release suppression catalyst device itself is ensured.

【0010】請求項1または2に記載の発明において、
好ましくは、排気浄化装置は、NOx吸蔵触媒装置によ
る硫黄成分の吸蔵量が所定量を上回るか或いはその虞が
あるときにNOx吸蔵触媒装置からの硫黄成分の放出を
促す硫黄成分放出制御(強制Sパージ)を行う制御手段
を有する。この好適態様によれば、NOx吸蔵触媒装置
の硫黄成分による被毒によってその浄化性能が低下した
ときに、硫黄成分放出制御を実施することにより浄化性
能を再生できる。
[0010] In the invention according to claim 1 or 2,
Preferably, the exhaust gas purification device includes a sulfur component release control (forcible S) that promotes the release of the sulfur component from the NOx storage catalyst device when the amount of storage of the sulfur component by the NOx storage catalyst device exceeds or is likely to exceed a predetermined amount. (Purge). According to this preferred aspect, when the purification performance of the NOx storage catalyst device is reduced due to the poisoning by the sulfur component, the purification performance can be regenerated by executing the sulfur component release control.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1実施形態によ
る排気浄化装置を装備した希薄燃焼内燃機関を説明す
る。本実施形態の希薄燃焼内燃機関は、吸気行程での燃
料噴射に加えて、圧縮行程や膨張行程での燃料噴射を必
要に応じて実施可能な筒内噴射型火花点火式直列4気筒
ガソリンエンジンから構成されている。この筒内噴射型
エンジンでの燃料噴射モードは、エンジン運転域の変化
に応じて種々に変化し、これに伴って混合気の空燃比が
超リーン空燃比からリッチ空燃比にわたって変化し、所
要のエンジン出力を発生しつつ燃費及び排気特性の向上
が図られる。この種の筒内噴射型エンジンは従来公知で
あり、以下、簡略に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lean-burn internal combustion engine equipped with an exhaust gas purifying apparatus according to a first embodiment of the present invention will be described below. The lean-burn internal combustion engine according to the present embodiment is an in-cylinder injection type spark ignition type in-line four-cylinder gasoline engine that can perform fuel injection during a compression stroke and an expansion stroke as needed in addition to fuel injection during an intake stroke. It is configured. The fuel injection mode of this in-cylinder injection engine varies in accordance with the change in the engine operating range, and the air-fuel ratio of the air-fuel mixture changes from the super-lean air-fuel ratio to the rich air-fuel ratio. Fuel efficiency and exhaust characteristics are improved while generating engine output. This type of in-cylinder injection engine is conventionally known, and will be briefly described below.

【0012】図1に示すように、エンジン1のシリンダ
ヘッド2には各気筒毎に点火プラグ4とともに電磁式の
燃料噴射弁6が取り付けられている。燃料噴射弁6は、
燃料タンク、低圧燃料ポンプおよび高圧燃料ポンプを有
した燃料供給装置(図示略)に燃料パイプを介して接続
され、燃料タンク内の燃料を燃料噴射弁6から燃焼室8
内に所望の燃圧で直接に噴射できるようになっている。
As shown in FIG. 1, an electromagnetic fuel injection valve 6 is mounted on a cylinder head 2 of an engine 1 together with a spark plug 4 for each cylinder. The fuel injection valve 6
A fuel supply device (not shown) having a fuel tank, a low-pressure fuel pump, and a high-pressure fuel pump is connected via a fuel pipe, and fuel in the fuel tank is supplied from a fuel injection valve 6 to a combustion chamber 8.
The fuel can be directly injected into the inside at a desired fuel pressure.

【0013】シリンダヘッド2には各気筒毎に略直立方
向に吸気ポートが形成され、各吸気ポートは吸気マニホ
ールド10の一端に連通している。吸気マニホールド1
0の他端側に設けられたスロットル弁11には、スロッ
トル開度θthを検出するスロットルセンサ11aが設け
られている。また、シリンダヘッド2には各気筒毎に略
水平方向に排気ポートが形成され、各排気ポートは排気
マニホールド12の一端に連通している。
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and each intake port communicates with one end of an intake manifold 10. Intake manifold 1
The throttle valve 11 provided on the other end side of the throttle valve 0 is provided with a throttle sensor 11a for detecting a throttle opening degree θth. An exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and each exhaust port communicates with one end of the exhaust manifold 12.

【0014】排気マニホールド12には排気管(排気通
路)14を介してマフラー(図示せず)が接続され、ま
た、排気管14には排気温度を検出する高温センサ16
が設けられている。本実施形態の排気浄化装置は、エン
ジン1に近接して排気管14内に配された小型の近接三
元触媒20と、排気管14内において近接三元触媒20
の下流に配された排気浄化触媒装置30とを有してい
る。排気浄化触媒装置30は、吸蔵型NOx触媒(NO
x吸蔵触媒装置)30aと、その下流に配された三元触
媒(H 2S放出抑制触媒装置)30bとを有している。
参照符号32は、三元触媒30bの下流に配されNOx
濃度を検出するNOxセンサ32を表す。
The exhaust manifold 12 has an exhaust pipe (exhaust passage).
A muffler (not shown) is connected to the
The exhaust pipe 14 has a high temperature sensor 16 for detecting the exhaust gas temperature.
Is provided. The exhaust gas purification device of the present embodiment
A small proximity device arranged in the exhaust pipe 14 close to the gin 1
Three-way catalyst 20 in the exhaust pipe 14
And an exhaust purification catalyst device 30 arranged downstream of the
You. The exhaust purification catalyst device 30 includes a storage NOx catalyst (NO
x storage catalyst device) 30a and a three-way contact arranged downstream thereof
Medium (H TwoSb catalyst 30b).
Reference numeral 32 denotes NOx which is disposed downstream of the three-way catalyst 30b.
This represents a NOx sensor 32 for detecting a concentration.

【0015】吸蔵型NOx触媒30aは、白金(P
t),ロジウム(Rh)等の貴金属からなる触媒種とバ
リウム(Ba)、カリウム(K)等のアルカリ金属やア
ルカリ土類金属からなるNOx吸蔵剤とを含むものであ
って、酸化雰囲気においてNOxを一旦硝酸塩X−NO
3として吸蔵する機能と、主としてCOの存在する還元
雰囲気中においてNOxをN2(窒素)等に還元させる
機能とを持つ。この吸蔵型NOx触媒30aには、NO
xのみならず、排ガス中に含まれる硫黄成分の酸化物S
Oxも硫酸バリウムBaSO4などの硫酸塩X−SO4
して吸蔵される。下記の反応式に示すように、この硫酸
塩X−SO4は、吸蔵型NOx触媒30aが還元雰囲気
に晒されたときにSO2となり、この際に硫化水素(H2
S)が生成される。
The storage type NOx catalyst 30a is made of platinum (P
t), a catalyst species comprising a noble metal such as rhodium (Rh) and a NOx storage agent comprising an alkali metal or an alkaline earth metal such as barium (Ba) or potassium (K), wherein NOx is contained in an oxidizing atmosphere. Once with nitrate X-NO
3 and a function of reducing NOx to N 2 (nitrogen) or the like mainly in a reducing atmosphere where CO is present. This storage type NOx catalyst 30a has NO
x as well as the oxide S of the sulfur component contained in the exhaust gas
Ox is also occluded as the sulphate X-SO 4, such as barium sulfate BaSO 4. As shown in the following reaction formula, this sulfate X-SO 4 becomes SO 2 when the storage NOx catalyst 30a is exposed to a reducing atmosphere, and at this time, hydrogen sulfide (H 2
S) is generated.

【0016】BaSO4+CO→BaCO3+SO2 SO2+H2→H2S+O2 NOx触媒30aに硫酸塩が付着しているとそのNOx
浄化効率が低下するので、硫酸塩の除去を企図して、一
般には、NOx触媒温度を上昇させると共に混合気をリ
ッチ化する所謂強制Sパージが周期的に実施されるが、
この際に異臭を放つH2Sが生成される。また、車両の
登坂路走行時や加速運転時のようにエンジン1が高負荷
域で運転される場合、エンジン1がリッチ空燃比で運転
されるとともにNOx触媒温度が上昇するので、硫酸塩
からSO2が脱離し放出され、これに伴ってH2Sが生成
される(自然Sパージ)。
BaSO 4 + CO → BaCO 3 + SO 2 SO 2 + H 2 → H 2 S + O 2 If sulfate adheres to the NOx catalyst 30a, the NOx is removed.
Since the purification efficiency is lowered, so-called forced S purge for increasing the NOx catalyst temperature and enriching the air-fuel mixture is generally performed periodically in an attempt to remove sulfate.
At this time, H 2 S emitting an off-flavor is generated. Further, when the engine 1 is operated in a high load range such as when the vehicle is traveling on an uphill road or during an acceleration operation, the engine 1 is operated at a rich air-fuel ratio and the NOx catalyst temperature rises. 2 is desorbed and released, and H 2 S is generated accordingly (natural S purge).

【0017】上記の反応式から明らかなように、H2
の生成量は、NOx触媒30aへの硫酸塩(S成分)の
付着量が増大するほど大きくなる。NOx触媒へのS成
分の付着量すなわち吸蔵量は、三元触媒の場合に比べて
多く、NOx触媒を備えた排気浄化装置では多量のH2
Sが生成される傾向がある。本実施形態では、強制Sパ
ージ中や自然Sパージ中における大気へのH2Sの放出
を抑制するべく、三元触媒30bに対してH2S放出抑
制剤としての酸化ニッケルを添加している。この酸化ニ
ッケルは、図2および下記の反応式に示すように、NO
x触媒30aから放出されたH2Sを硫化ニッケルに転
化させるように作用し、従って、酸化ニッケルを添加し
てなる三元触媒30bはH2Sを吸蔵する機能を奏する
ことになる。斯く吸蔵されたH2Sは、酸化雰囲気中で
酸素と反応して臭気の少ないSO2に転化し放出され
る。
As is apparent from the above reaction formula, H 2 S
Is increased as the amount of sulfate (S component) attached to the NOx catalyst 30a increases. Adhesion amount i.e. storage amount of S components in the NOx catalyst, a ternary number than in the case of the catalyst, a large amount of H 2 in the exhaust gas purification apparatus provided with a NOx catalyst
S tends to be generated. In the present embodiment, nickel oxide as an H 2 S release inhibitor is added to the three-way catalyst 30b in order to suppress the release of H 2 S into the atmosphere during the forced S purge or the natural S purge. . As shown in FIG. 2 and the following reaction formula, this nickel oxide
The x-catalyst 30a acts to convert H 2 S released from the catalyst 30a to nickel sulfide, and thus the three-way catalyst 30b to which nickel oxide is added has a function of storing H 2 S. The occluded H 2 S reacts with oxygen in an oxidizing atmosphere to be converted into SO 2 with low odor and is released.

【0018】H2S+NiO→NiS+O2 NiS+3/2*O2→NiO+SO2 上記の反応式から明らかなように、三元触媒30bへの
酸化ニッケルの添加量が多いほど、三元触媒30bのH
2S吸蔵能力が高まるが、一方では、三元触媒30bの
三元機能が低下する傾向がある。
H 2 S + NiO → NiS + O 2 NiS + 3/2 * O 2 → NiO + SO 2 As is apparent from the above reaction formula, the larger the amount of nickel oxide added to the three-way catalyst 30b, the higher the H of the three-way catalyst 30b.
Although the 2S storage capacity increases, the three-way function of the three-way catalyst 30b tends to decrease.

【0019】本実施形態では、NOx触媒30aからH
2Sが多量に放出された場合にもH2Sを吸蔵可能とする
ようなH2S吸蔵能力を担保するべく、酸化ニッケルの
添加量の下限値は、三元触媒30bの容量1リットルあ
たり10グラム以上、好ましくは15グラム以上の値に
定められる。また、三元触媒30bの三元機能の低下を
許容可能なものに留めるべく、酸化ニッケルの添加量の
上限値は、35グラム以下、好ましくは25グラム以下
の値に定められる。すなわち、三元触媒30bへの酸化
ニッケルの添加量は、三元触媒30bの容量1リットル
あたり10ないし35グラム、好ましくは15ないし2
5グラムの範囲内の値に設定される。なお、酸化ニッケ
ルに代えてニッケルを添加しても良く、この場合、ニッ
ケルの添加量の上下限値は、酸化ニッケル添加量の上下
限値に換算することにより求めることができる。
In this embodiment, the NOx catalyst 30a sends H
Even when the 2 S is large amount released in order to ensure the H 2 S adsorption capacity such as to allow occlude H 2 S, the lower limit of the addition amount of the nickel oxide, volume per liter of the three-way catalyst 30b It is set to a value of 10 grams or more, preferably 15 grams or more. Also, in order to keep the three-way function of the three-way catalyst 30b from deteriorating, the upper limit of the amount of nickel oxide added is set to 35 g or less, preferably 25 g or less. That is, the amount of nickel oxide added to the three-way catalyst 30b is 10 to 35 grams, preferably 15 to 2 grams per liter of the capacity of the three-way catalyst 30b.
Set to a value within the range of 5 grams. Note that nickel may be added in place of nickel oxide. In this case, the upper and lower limits of the amount of nickel added can be obtained by converting the upper and lower limits of the amount of nickel oxide added.

【0020】上記の酸化ニッケル添加量の設定に関連し
て、本発明者等は、酸化ニッケル換算で触媒容量1リッ
トルあたり0、5、10、15及び20グラムのニッケ
ルを添加してなる三元触媒のそれぞれについて、NOx
触媒を昇温させてNOx触媒からH2Sを放出させつつ
三元触媒下流の排ガス中のH2S濃度を計測する実験を
行った。図3は、時間経過に伴うNOx触媒温度の変化
およびH2S濃度の変化を、ニッケル添加量を異にする
三元触媒のそれぞれについて示す。また、図3の実験デ
ータに基づいて酸化ニッケル添加量とH2S濃度ピーク
値との関係を示す図4のグラフを作成した。
In connection with the above-mentioned setting of the amount of nickel oxide added, the present inventors have determined that a ternary catalyst obtained by adding 0, 5, 10, 15, and 20 grams of nickel per liter of catalyst volume in terms of nickel oxide. NOx for each of the catalysts
An experiment was conducted in which the temperature of the catalyst was raised to release H 2 S from the NOx catalyst while measuring the H 2 S concentration in the exhaust gas downstream of the three-way catalyst. FIG. 3 shows a change in NOx catalyst temperature and a change in H 2 S concentration over time for each of the three-way catalysts having different nickel addition amounts. In addition, a graph of FIG. 4 showing the relationship between the nickel oxide addition amount and the peak value of the H 2 S concentration was created based on the experimental data of FIG.

【0021】図3から分かるように、上記のニッケル添
加量領域にあってはニッケル添加量が大であるほどH2
S濃度が減少する。また、三元触媒に酸化ニッケルを触
媒容量1リットルあたり20グラム添加することによ
り、酸化ニッケル添加量が1リットルあたり5グラムの
場合に比べて、H2S濃度ピーク値を約4分の1まで低
減できることが図4から分かる。
As can be seen from FIG. 3, in the above nickel addition amount region, the larger the nickel addition amount, the higher the H 2 content.
The S concentration decreases. Further, by adding 20 g of nickel oxide per liter of catalyst capacity to the three-way catalyst, the H 2 S concentration peak value can be reduced to about one-fourth as compared with the case where the amount of nickel oxide added is 5 g per liter. It can be seen from FIG. 4 that it can be reduced.

【0022】上記のように構成された本実施形態の排気
浄化装置によれば、エンジン1の冷態始動時などにおい
ても近接三元触媒20が速やかに活性化されて排気浄化
が行われ、また、エンジン1のリーン燃焼運転時にはN
Ox触媒30aによりNOxが吸蔵される。更に、高負
荷域でのエンジン運転に伴う自然Sパージ時には、NO
x触媒30aから放出されるH2SがNiO添加の三元
触媒30bによりNiSの形で吸蔵されて大気中へのH
2Sの排出が抑制される。
According to the exhaust gas purifying apparatus of this embodiment configured as described above, even when the engine 1 is cold started, the close three-way catalyst 20 is quickly activated to purify the exhaust gas. , N during lean burn operation of the engine 1
NOx is stored by the Ox catalyst 30a. Further, at the time of natural S purge accompanying engine operation in a high load region, NO
H 2 S released from the x catalyst 30a is occluded in the form of NiS by the NiO-added three-way catalyst 30b, and H 2 S is released into the atmosphere.
2 S emission is suppressed.

【0023】本実施形態の排気浄化装置は、NOx触媒
30aの所要のNOx浄化効率を維持するべく、強制S
パージ(より一般的にはNOx触媒からのS成分の放出
を促す硫黄成分放出制御)を実施可能になっている。こ
の強制Sパージは、排気浄化装置の制御手段の制御下で
実施される。本実施形態では、エンジン1の運転制御を
司る電子コントロールユニット(ECU)40が、この
制御手段の機能を併有している。
The exhaust gas purifying apparatus according to the present embodiment is configured so that the forced Sx is maintained in order to maintain the required NOx purifying efficiency of the NOx catalyst 30a.
Purging (more generally, sulfur component release control for promoting release of the S component from the NOx catalyst) can be performed. This forced S purge is performed under the control of the control means of the exhaust gas purification device. In the present embodiment, an electronic control unit (ECU) 40 that controls the operation of the engine 1 has the function of the control means.

【0024】ECU40は、入出力装置、記憶装置(R
OM、RAM、不揮発性RAM等)、中央処理装置(C
PU)、タイマカウンタ等を備え、その入力側にはスロ
ットルセンサ11a、クランク角センサ13、高温セン
サ16、NOxセンサ32等の各種センサ類が接続さ
れ、その出力側には点火プラグ4や燃料噴射弁6等が接
続されている。
The ECU 40 includes an input / output device and a storage device (R
OM, RAM, nonvolatile RAM, etc.), central processing unit (C
PU), a timer counter, and the like. Various sensors such as a throttle sensor 11a, a crank angle sensor 13, a high temperature sensor 16, and a NOx sensor 32 are connected to the input side, and the ignition plug 4 and the fuel injection are connected to the output side. The valve 6 and the like are connected.

【0025】エンジン運転制御に関連して、ECU40
は、各種センサ類から入力した検出情報に基づいて燃料
噴射モードを選択すると共に燃料噴射量や点火時期など
を演算するようになっている。例えば、スロットルセン
サ11aからのスロットル開度情報θthとクランク角セ
ンサ13からのクランク角情報に基づいて検出したエン
ジン回転速度情報Neとに基づいてエンジン負荷に対応
する目標筒内圧(目標平均有効圧Pe)が求められ、こ
の目標平均有効圧Peとエンジン回転速度情報Neとに応
じて燃料噴射モードが設定される。そして、目標平均有
効圧Peとエンジン回転速度Neとから設定される目標空
燃比(目標A/F)に基づいて燃料噴射量が決定され
る。
In connection with engine operation control, the ECU 40
Is designed to select a fuel injection mode based on detection information input from various sensors and calculate a fuel injection amount, an ignition timing, and the like. For example, a target in-cylinder pressure (a target average effective pressure Pe) corresponding to the engine load based on the throttle opening information θth from the throttle sensor 11a and the engine rotation speed information Ne detected based on the crank angle information from the crank angle sensor 13 ) Is determined, and the fuel injection mode is set according to the target average effective pressure Pe and the engine rotation speed information Ne. Then, the fuel injection amount is determined based on a target air-fuel ratio (target A / F) set from the target average effective pressure Pe and the engine rotation speed Ne.

【0026】強制Sパージに関連して、ECU40は、
図5に示す強制Sパージ制御ルーチンを実施する。な
お、ECU40の制御下でNOxパージのための空燃比
制御が実施されるが、斯かる空燃比制御は従来公知であ
り、その説明を省略する。強制Sパージ制御ルーチンで
は、Sパージ条件が成立しているか否かが判別される
(ステップS1)。Sパージ条件は種々に設定可能であ
り、例えば、前回の強制Sパージが終了した時点からの
リーン燃焼運転の合計実行時間が所定時間に達したとき
にSパージ条件の成立を判別可能である。本実施形態で
は、NOx触媒30aに吸蔵されたSOxの推定量Qs
が所定量に達したときにSパージ条件の成立を判別する
ようにしている。
In connection with the forced S purge, the ECU 40
The forced S purge control routine shown in FIG. 5 is performed. Note that air-fuel ratio control for NOx purging is performed under the control of the ECU 40. Such air-fuel ratio control is conventionally known, and a description thereof will be omitted. In the forced S purge control routine, it is determined whether an S purge condition is satisfied (step S1). The S purge condition can be set in various ways. For example, it is possible to determine whether the S purge condition is satisfied when the total execution time of the lean combustion operation from the time when the previous forced S purge is completed reaches a predetermined time. In the present embodiment, the estimated amount Qs of SOx stored in the NOx catalyst 30a
Is determined when the S purge condition is satisfied.

【0027】このSパージ条件判別にあたり、推定SO
x吸蔵量Qsが例えば次式(1)から求められる。 Qs= Qs(n-1)+ΔQf・K−Rs …(1) K=K1・K2・K3 …(2) Rs=α・R1・R2・dT …(3) ここで、Qs(n-1)は推定SOx吸蔵量の前回値、ΔQf
は本制御ルーチンの実行周期当たりの燃料噴射積算量を
示す。
In determining the S purge condition, the estimated SO
The x storage amount Qs is obtained, for example, from the following equation (1). Qs = Qs (n−1) + ΔQf · K−Rs (1) K = K1 · K2 · K3 (2) Rs = α · R1 · R2 · dT (3) where Qs (n−1) Is the previous value of the estimated SOx occlusion amount, ΔQf
Indicates an integrated fuel injection amount per execution cycle of the control routine.

【0028】Kは、上記の式(2)から演算される補正
係数であり、空燃比A/F、燃料中のS含有量および触
媒温度Tcatのそれぞれに応じた被毒度合を表す3つの
S被毒係数K1、K2及びK3の積で表される。Rsは、制
御ルーチン実行周期当たりの放出S量を示し、上記の式
(3)から求められる。式(3)中、αは単位時間当た
りの放出率(設定値)であり、dTは燃料噴射制御ルー
チンの実行周期を示し、R1及びR2は、触媒温度Tcat
および空燃比A/Fのそれぞれに応じた放出能力係数を
示す。
K is a correction coefficient calculated from the above equation (2), and includes three S representing the degree of poisoning corresponding to the air-fuel ratio A / F, the S content in the fuel, and the catalyst temperature Tcat. It is expressed by the product of the poisoning coefficients K1, K2 and K3. Rs indicates the released S amount per control routine execution cycle, and is obtained from the above equation (3). In equation (3), α is a release rate (set value) per unit time, dT indicates an execution cycle of a fuel injection control routine, and R1 and R2 are catalyst temperatures Tcat.
And a release capacity coefficient corresponding to the air-fuel ratio A / F.

【0029】触媒温度Tcatは、高温センサ16により
検出された排気温度を温度差マップ(図示略)から読み
出した温度差で補正することにより求められる。温度差
マップは予め実験等により設定されるもので、この温度
差マップにおいて、触媒温度Tcatと排気温度との差
は、目標平均有効圧Peとエンジン回転速度情報Neとの
関数で与えられる。
The catalyst temperature Tcat is obtained by correcting the exhaust gas temperature detected by the high temperature sensor 16 with the temperature difference read from a temperature difference map (not shown). The temperature difference map is set in advance by an experiment or the like. In this temperature difference map, the difference between the catalyst temperature Tcat and the exhaust gas temperature is given as a function of the target average effective pressure Pe and the engine speed information Ne.

【0030】Sパージ条件の成立がステップS1で判別
された場合、Sパージモードが設定されると共にSパー
ジモード設定時点からの経過時間を計測するタイマがリ
セットされてから起動される(ステップS2)。そし
て、H2S放出速度すなわち時間に対するH2S濃度の増
加度合が所定値を上回っているか否かが判別される(ス
テップS3)。
If it is determined in step S1 that the S purge condition is satisfied, the S purge mode is set, and the timer for measuring the time elapsed from when the S purge mode is set is reset and then started (step S2). . Then, it is determined whether the H 2 S release rate, that is, the degree of increase of the H 2 S concentration with respect to time exceeds a predetermined value (step S3).

【0031】H2S放出速度は、センサにより検出され
る実際のH2S放出速度情報から検出しても良いが、本
実施形態では、エンジン回転数Ne、目標平均有効圧P
e、1吸気行程あたりの吸入空気量A/N、車速、触媒
温度Tcat、排気温度、エンジン冷却水温などの関数で
表されるエンジン運転状態に応じてマップ(図示略)か
ら求めるようにしている。このため、各種エンジン運転
状態におけるH2S放出速度を求める実験が行われ、実
験結果に基づいてマップが予め作成される。
Although the H 2 S release speed may be detected from the actual H 2 S release speed information detected by the sensor, in the present embodiment, the engine speed Ne and the target average effective pressure P
e: An intake air amount A / N per intake stroke, vehicle speed, catalyst temperature Tcat, exhaust temperature, engine cooling water temperature, and the like are obtained from a map (not shown) according to an engine operating state represented by a function such as a function. . For this reason, an experiment for obtaining the H 2 S release speed in various engine operating states is performed, and a map is created in advance based on the experimental results.

【0032】H2S放出速度の判定のための所定値は、
排気管14の出口付近にいる人々にH2Sの臭気を感じ
させるようなH2S濃度の下限値に対応する値(以下、
限界値という)に設定される。この限界値は、特に車速
に応じて変化する。すなわち、車両走行時にはたとえ排
気管14からH2Sが放出されたとしてもH2Sは大気中
へ速やかに拡散され、臭気を感じる限界値は比較的高く
なる。一方、車両走行停止時にはH2Sは拡散し難く、
限界値は小さなものになる。従って、H2S放出速度の
所定値は車速に応じて設定することが好ましく、本実施
例では、車速の関数として表される限界値を予めマップ
化しておき、車速に応じて定まる限界値をマップから読
み出すようにしている。但し、H2S放出速度の所定値
を可変設定することは必須ではなく、固定値を用いても
良い。
The predetermined value for determining the H 2 S release rate is:
Value corresponding to the lower limit of the concentration of H 2 S, such as feel the odor of H 2 S to those on near the outlet of the exhaust pipe 14 (hereinafter,
Limit value). This limit value changes in particular according to the vehicle speed. That is, even when H 2 S is released from the exhaust pipe 14 during traveling of the vehicle, H 2 S is quickly diffused into the atmosphere, and the limit value at which odor is sensed is relatively high. On the other hand, when the vehicle stops running, H 2 S is hardly diffused,
The limits will be small. Therefore, the predetermined value of the H 2 S release speed is preferably set according to the vehicle speed. In the present embodiment, the limit value expressed as a function of the vehicle speed is mapped in advance, and the limit value determined according to the vehicle speed is determined. It reads from the map. However, it is not essential to variably set the predetermined value of the H 2 S release rate, and a fixed value may be used.

【0033】一般に、Sパージモード設定直後にあって
は、H2S放出速度は所定値を上回らず、ステップS3
での判別結果は否定(No)になる。この場合、Sパー
ジ運転が行われる(ステップS4)。Sパージ運転で
は、吸蔵型NOx触媒30aを還元雰囲気に晒すべく、
目標A/Fを所定のリッチ空燃比(例えば12)に設定
してリッチ空燃比運転を実施し、排気空燃比をリッチ空
燃比とする。また、点火時期を遅角させて排気ガス温度
を上昇させ、これによりNOx触媒30aを昇温させ
る。この様なリッチ空燃比でのエンジン運転により、燃
料の不完全燃焼が起こり、硫黄酸化物SOxの除去に必
要な一酸化炭素炭化水素が多量に発生してNOx触媒3
0aに供給され、点火時期の遅角制御による排気温度上
昇に伴うNOx触媒温度の上昇と相まって、Sパージを
促進する。
Generally, immediately after the S purge mode is set, the H 2 S release speed does not exceed the predetermined value, and the flow proceeds to step S3.
Is negative (No). In this case, the S purge operation is performed (Step S4). In the S purge operation, in order to expose the storage NOx catalyst 30a to a reducing atmosphere,
The target A / F is set to a predetermined rich air-fuel ratio (for example, 12) to perform the rich air-fuel ratio operation, and the exhaust air-fuel ratio is set to the rich air-fuel ratio. Further, the ignition timing is retarded to increase the exhaust gas temperature, thereby raising the temperature of the NOx catalyst 30a. When the engine is operated at such a rich air-fuel ratio, incomplete combustion of the fuel occurs, and a large amount of carbon monoxide hydrocarbon required for removing the sulfur oxide SOx is generated.
0a, the S purge is promoted in combination with a rise in the NOx catalyst temperature accompanying a rise in exhaust gas temperature due to ignition timing retard control.

【0034】Sパージの進行によってSOxの放出が進
むと、リッチ空燃比の下でH2Sが生成されるが、NO
x触媒30aの下流に設けた三元触媒30bに添加され
ている酸化ニッケルにより、H2Sが硫化ニッケルに転
化される(図2参照)。この様に、H2Sが三元触媒3
0bに吸蔵されるので、大気中へ放出される排ガス中の
2S濃度が低減される。
When the release of SOx proceeds due to the progress of the S purge, H 2 S is generated under a rich air-fuel ratio.
The nickel oxide added to the three-way catalyst 30b provided downstream of the x catalyst 30a converts H 2 S into nickel sulfide (see FIG. 2). In this way, H 2 S is converted to three-way catalyst 3
Since the ozone is stored in Ob, the H 2 S concentration in the exhaust gas released into the atmosphere is reduced.

【0035】Sパージ運転に係るステップS4に続い
て、ステップS2で起動されたタイマによる経時時間を
参照して、Sパージモードが所定時間にわたって維持さ
れたか否かが判定される(ステップS5)。Sパージ維
持時間が所定時間に満たなければ、NOx触媒30bか
らのS成分除去が充分に行われていないと判断してステ
ップS3に戻る。尚、Sパージ運転の終了の判定は、推
定SOx吸蔵量Qsが所定量以下となることを条件とし
て判定してもよい。
Subsequent to step S4 relating to the S purge operation, it is determined whether or not the S purge mode has been maintained for a predetermined time by referring to the elapsed time of the timer started in step S2 (step S5). If the S purge maintaining time does not reach the predetermined time, it is determined that the S component has not been sufficiently removed from the NOx catalyst 30b, and the process returns to step S3. Note that the determination of the end of the S purge operation may be performed on the condition that the estimated SOx storage amount Qs is equal to or less than a predetermined amount.

【0036】上記のようにNOx触媒30aでのS成分
の還元に伴って発生するH2Sは三元触媒30bに吸蔵
されるが、NOx触媒30aに吸蔵されていたS成分量
が多いなどの理由で、Sパージ運転中にH2S放出速度
が一時的に高まることがある。この場合、H2S放出速
度が所定速度を上回ったことがステップS3で判別され
ると、H2S放出速度を低減するべく、Sパージ運転か
らSパージ抑制運転への切換えが行われる(ステップS
6)。
As described above, H 2 S generated as a result of the reduction of the S component in the NOx catalyst 30a is stored in the three-way catalyst 30b, but the amount of the S component stored in the NOx catalyst 30a is large. For this reason, the H 2 S release rate may temporarily increase during the S purge operation. In this case, if it is determined in step S3 that the H 2 S release speed has exceeded the predetermined speed, switching from the S purge operation to the S purge suppression operation is performed to reduce the H 2 S release speed (step S3). S
6).

【0037】このSパージ抑制運転では、目標A/Fが
理論空燃比を境として変調される。すなわち、図6に示
すように、目標A/Fは、所定周期Tcycle毎に、リッ
チ側の第1目標A/Fまたはリーン側の第2目標A/F
に交互に設定される。ここで、第1及び第2目標A/F
は、Sパージ抑制運転中における目標A/Fの平均値を
Sパージを促進可能な値(例えばスライトリッチである
約14.3或いはリッチ側の約12)とするような値に
それぞれ設定される。
In this S purge suppression operation, the target A / F is modulated with the stoichiometric air-fuel ratio as a boundary. That is, as shown in FIG. 6, the target A / F is set to the rich first target A / F or the lean second target A / F every predetermined cycle Tcycle.
Are set alternately. Here, the first and second target A / F
Is set to a value that sets the average value of the target A / F during the S purge suppression operation to a value that can promote the S purge (for example, about 14.3 which is a slight rich or about 12 on the rich side). .

【0038】このSパージ抑制運転は、三元触媒30b
に添加された酸化ニッケルのH2S吸蔵・放出機能を最
大限に活用することを企図したものである。すなわち、
リッチ空燃比運転(還元雰囲気)での酸化ニッケルによ
るH2S吸蔵作用(H2S+NiO→NiS+O2)が飽
和する前にリッチ空燃比運転からリーン空燃比運転(酸
化雰囲気)へ切換え、三元触媒30bに硫化ニッケルの
形で吸蔵されたH2Sを臭気の少ないSO2に転化するも
のである(NiS+3/2*O2→NiO+SO2)。
This S purge suppression operation is performed by the three-way catalyst 30b.
The purpose of the present invention is to make the most of the H 2 S storage / release function of nickel oxide added to steel. That is,
Before the H 2 S occlusion action (H 2 S + NiO → NiS + O 2 ) by nickel oxide in the rich air-fuel ratio operation (reducing atmosphere) is saturated, the operation mode is switched from the rich air-fuel ratio operation to the lean air-fuel ratio operation (oxidizing atmosphere), and the three-way catalyst is used. 30b converts H 2 S stored in the form of nickel sulfide into SO 2 with low odor (NiS + 3/2 * O 2 → NiO + SO 2 ).

【0039】なお、リッチ空燃比とリーン空燃比の間で
空燃比を所定周期で切り替える上記のA/F変調に代え
て、所定のリッチ化時間にわたるリッチ空燃比運転と所
定のリーン化時間にわたるリーン空燃比運転とを交互に
実施するようにしても良い。この場合、三元触媒30b
に添加された酸化ニッケルによるS成分捕捉作用が飽和
する飽和時間、および、硫化ニッケルの形で捕捉したS
成分をSO2として放出するのに要する放出時間が、エ
ンジン運転状態などに応じて変化することを勘案して、
リッチ化時間およびリーン化時間のそれぞれをエンジン
運転状態などに応じて決まる飽和時間および放出時間に
等しい値に設定することが好ましいが、リッチ化時間お
よびリーン化時間を固定値に設定してもH2S抑制効果
を得ることができる。
Note that, instead of the above-described A / F modulation in which the air-fuel ratio is switched at a predetermined cycle between the rich air-fuel ratio and the lean air-fuel ratio, the rich air-fuel ratio operation over a predetermined rich time and the lean operation over a predetermined lean time are performed. The air-fuel ratio operation may be performed alternately. In this case, the three-way catalyst 30b
Time at which the S component trapping action of the nickel oxide added to the metal is saturated, and the amount of sulfur trapped in the form of nickel sulfide
Considering that the release time required to release the component as SO 2 varies depending on the engine operating conditions, etc.,
It is preferable that each of the enrichment time and the leaning time is set to a value equal to the saturation time and the release time determined according to the engine operating state and the like, but even if the enrichment time and the leaning time are set to fixed values, H 2 S suppression effect can be obtained.

【0040】図7は、点火時期の遅角制御によるNOx
触媒30aの温度上昇に伴う三元触媒30b下流の排ガ
ス中のH2S濃度の変化を、空燃比を一定値14.3に
維持した場合および平均空燃比が値14.3となるよう
なA/F変調を行った場合について示す。図7からわか
るように、一定の空燃比での機関運転の場合に比べて、
機関運転中に空燃比をリッチ側とリーン側との間で周期
的に切り替えるA/F変調を行うことにより、空燃比が
同等であるにもかかわらず、H2Sの放出が抑制される
ことが分かる。
FIG. 7 shows NOx by ignition timing retard control.
The change in the concentration of H 2 S in the exhaust gas downstream of the three-way catalyst 30b due to the temperature rise of the catalyst 30a is measured when the air-fuel ratio is maintained at a constant value of 14.3 and when the average air-fuel ratio becomes a value of 14.3. The case where / F modulation is performed will be described. As can be seen from FIG. 7, compared to the case of engine operation at a constant air-fuel ratio,
By performing A / F modulation that periodically switches the air-fuel ratio between the rich side and the lean side during engine operation, the emission of H 2 S is suppressed despite the air-fuel ratio being equal. I understand.

【0041】ステップS6でのSパージ抑制運転が実施
されると、排ガス中のH2S濃度が減少し、従って、H2
S放出速度も減少する。ステップS6に続くステップS
5ではSパージモード設定時点から所定時間が経過した
か否かが判別され、この判別結果が否定であれば、ステ
ップS3に戻る。この様にして、Sパージモード設定時
点から所定時間が経過するまでは、H2S放出速度が所
定値を上回るか否かに応じて、Sパージ運転またはSパ
ージ抑制運転が選択的に実施される。
[0041] When the S purge suppression operation at step S6 is performed, reduces the concentration of H 2 S in the flue gas, therefore, H 2
The S release rate also decreases. Step S following step S6
In 5, it is determined whether or not a predetermined time has elapsed since the setting of the S purge mode. If the determination result is negative, the process returns to step S3. In this manner, the S purge operation or the S purge suppression operation is selectively performed until the predetermined time elapses from the setting of the S purge mode, depending on whether the H 2 S release speed exceeds the predetermined value. You.

【0042】そして、Sパージモード設定時点から所定
時間が経過したことがステップS5で判別されると、N
Ox触媒30aに吸蔵されていたS成分の放出、すなわ
ちNOx触媒30aの浄化能力の再生が充分に行われた
と判断され、Sパージモードが解除され(ステップS
7)、強制Sパージ制御が終了する。以下、本発明の第
2実施形態による排気浄化装置を説明する。
If it is determined in step S5 that a predetermined time has elapsed from the time when the S purge mode was set, N
It is determined that the release of the S component stored in the Ox catalyst 30a, that is, the regeneration capability of the NOx catalyst 30a has been sufficiently performed, and the S purge mode is released (step S).
7), the forced S purge control ends. Hereinafter, an exhaust emission control device according to a second embodiment of the present invention will be described.

【0043】この排気浄化装置の基本構成は第1実施形
態のものと同一であるが、三元触媒30bに対する酸化
ニッケル(H2S放出抑制剤)の添加量を三元触媒30
bの容量に応じて定めた第1実施形態のものに比べて、
三元触媒30bへのH2S放出抑制剤の添加量を、NO
x触媒30aへのNOx吸蔵剤の添加量に応じて定める
点が異なる。
The basic structure of this exhaust gas purification apparatus is the same as that of the first embodiment, but the amount of nickel oxide (H 2 S release inhibitor) added to the three-way catalyst 30b is reduced.
Compared to the first embodiment determined according to the capacity of b,
The amount of the H 2 S release inhibitor added to the three-way catalyst 30b was
The difference is that it is determined according to the addition amount of the NOx storage agent to the x catalyst 30a.

【0044】第1実施形態についての説明から明らかな
ように、NOx触媒30aによるS成分吸蔵量(H2
の生成量)の最大値は主として NOx触媒30aへの
NOx吸蔵剤(たとえばBa、K)の添加量によって定
まり、また、三元触媒30bによるH2S吸蔵能力は、
三元触媒30bへのH2S放出抑制剤(たとえば酸化ニ
ッケル)の添加量によって定まる。換言すれば、三元触
媒30bへのH2S放出抑制剤の添加量の下限値は、N
Ox触媒30aへのNOx吸蔵剤の添加量に応じて定め
ることができる。
As is clear from the description of the first embodiment, the amount of S component occluded by the NOx catalyst 30a (H 2 S
Is determined mainly by the amount of the NOx storage agent (eg, Ba, K) added to the NOx catalyst 30a, and the H 2 S storage capacity of the three-way catalyst 30b is
It is determined by the amount of the H 2 S release inhibitor (for example, nickel oxide) added to the three-way catalyst 30b. In other words, the lower limit of the amount of the H 2 S release inhibitor added to the three-way catalyst 30b is N
It can be determined according to the amount of the NOx storage agent added to the Ox catalyst 30a.

【0045】上記の観点から、本実施形態では、三元触
媒30bへの酸化ニッケルの添加量の下限値を、NOx
触媒30aへのNOx吸蔵剤、すなわちBaおよびKの
合計の添加量に対してモル比(H2S放出抑制剤のモル
量/NOx吸蔵剤合計のモル量)で30%以上、好まし
くは50%以上の値に設定している。また、三元触媒3
0bへの酸化ニッケルの添加量が過大である場合に三元
触媒30bの三元機能が損なわれることから、三元触媒
30bへの酸化ニッケルの添加量の上限値を、NOx触
媒30aへのBaおよびKの合計の添加量に対してモル
比で300%以下、好ましくは100%以下の値になる
ように設定している。
In view of the above, in the present embodiment, the lower limit of the amount of nickel oxide added to the three-way catalyst 30b is set to NOx
The molar ratio (molar amount of H 2 S release inhibitor / molar amount of total NOx storage agent) is 30% or more, preferably 50%, based on the total amount of the NOx storage agent, ie, Ba and K, added to the catalyst 30a. It is set to the above value. In addition, three-way catalyst 3
If the amount of nickel oxide added to the three-way catalyst 30b is excessive, the three-way function of the three-way catalyst 30b is impaired. Therefore, the upper limit of the amount of nickel oxide added to the three-way catalyst 30b is set to the value of Ba to the NOx catalyst 30a. The molar ratio is set so as to be 300% or less, preferably 100% or less, based on the total amount of K and K added.

【0046】本実施形態の排気浄化装置の構成および作
用は、第1実施形態のものと略同一であるので、その説
明を省略する。なお、本実施形態では、H2S放出抑制
剤として酸化ニッケルを用いたが、Pd、Mn、Fe、
Zn、Co、Cuなどを用いても良い。H2S放出抑制
剤の好適な添加量としては、添加剤の種類によってH2
S放出抑制が異なるため好適添加量も異なるが、例えば
Mnの場合はNOx吸蔵剤添加量に対するモル比で10
0%から200%が好適であり、Fe、Znその他の場
合は150%から300%が好適である。
The configuration and operation of the exhaust gas purifying apparatus according to the present embodiment are substantially the same as those of the first embodiment, so that the description thereof will be omitted. In this embodiment, nickel oxide is used as the H 2 S release inhibitor, but Pd, Mn, Fe,
Zn, Co, Cu, or the like may be used. Suitable amount of H 2 S release inhibitors, H 2 depending on the type of additive
Since the amount of S release is different, the preferred amount of addition is also different.
0% to 200% is preferable, and in the case of Fe, Zn and the like, 150% to 300% is preferable.

【0047】本発明は、上記実施形態のものに限定され
ず、種々に変形可能である。すなわち、第1及び第2実
施形態では、排気浄化装置を、近接三元触媒とその下流
に配された排気浄化触媒装置とで構成すると共に、排気
浄化触媒装置のNOx触媒の下流に三元触媒をH2S放
出抑制触媒として設けたが、本発明は、NOx吸蔵触媒
装置とその下流に設けたH2S放出抑制触媒装置とを含
むものであれば良く、例えば、NOx吸蔵触媒の上流お
よび下流のそれぞれに三元触媒を配置しても良く、2つ
のNOx吸蔵触媒の下流に三元触媒を設けても良い。後
者の場合、上流側NOx触媒の容量と下流側NOx触媒
の容量との比率が1.2:1ないし1.8:1の範囲に
入るように、すなわち、下流側NOx触媒を上流側のも
のに比べて小容量にすることにより、通常は上流側NO
x触媒により排気熱が奪われて下流側NOx触媒の温度
が上昇し難くなるという難点があるが、下流側NOx触
媒は小容量であるため少ない排気熱でも温度が上がりや
すく、この難点を解消できる。また、H2S放出抑制触
媒は三元触媒以外の触媒で構成可能であり、ニッケルや
その酸化物などのH2S放出抑制剤を主たる触媒種とし
て含む触媒をH2S放出抑制触媒として使用可能であ
る。
The present invention is not limited to the above embodiment, but can be variously modified. That is, in the first and second embodiments, the exhaust gas purification device is constituted by the close three-way catalyst and the exhaust gas purification catalyst device arranged downstream thereof, and the three-way catalyst is disposed downstream of the NOx catalyst of the exhaust gas purification catalyst device. Is provided as a H 2 S emission suppression catalyst, but the present invention may be any as long as it includes a NOx storage catalyst device and an H 2 S emission suppression catalyst device provided downstream of the NOx storage catalyst device. A three-way catalyst may be provided on each of the downstream sides, or a three-way catalyst may be provided on the downstream side of the two NOx storage catalysts. In the latter case, the ratio of the capacity of the upstream NOx catalyst to the capacity of the downstream NOx catalyst falls within the range of 1.2: 1 to 1.8: 1, that is, the downstream NOx catalyst is the upstream one. By making the capacity smaller than that of
Although the exhaust heat is deprived by the x catalyst, the temperature of the downstream NOx catalyst hardly rises. However, since the downstream NOx catalyst has a small capacity, the temperature easily rises even with a small amount of exhaust heat, and this disadvantage can be solved. . Further, the H 2 S release suppressing catalyst can be constituted by a catalyst other than the three-way catalyst, and a catalyst containing an H 2 S release suppressing agent such as nickel or its oxide as a main catalyst species is used as the H 2 S release suppressing catalyst. It is possible.

【0048】第1及び第2実施形態の排気浄化装置で
は、NOx触媒30aからの硫黄成分の放出を促す硫黄
成分放出制御(強制Sパージ)を実施するようにした
が、本発明の排気浄化装置は自然SパージによるH2
の放出を抑制可能であることから、本発明で強制Sパー
ジを実施することは必須ではない。また、実施形態で
は、強制Sパージ中にH2S放出速度が所定値を上回っ
たときにSパージ抑制運転を行ってH2Sの放出を抑制
するようにしたが、Sパージ抑制運転の実施は本発明に
おいて必須ではない。すなわち、H2S放出抑制剤を多
量に添加したH2S放出抑制触媒をNOx触媒の下流に
設けてなる本発明によれば、Sパージ抑制運転を実施し
なくとも強制Sパージ中のH2S排出量を低減できる。
In the exhaust gas purifying apparatuses of the first and second embodiments, the sulfur component release control (forced S purge) for promoting the release of the sulfur component from the NOx catalyst 30a is performed. Is H 2 S by natural S purge
It is not essential to carry out the forced S purge in the present invention, since the release of methane can be suppressed. In the embodiment, when the H 2 S release speed exceeds a predetermined value during the forced S purge, the S purge suppression operation is performed to suppress the release of H 2 S. Is not essential in the present invention. That is, according to H 2 S release control catalyst the H 2 S release inhibitor was added in large amounts to the present invention formed by providing downstream of the NOx catalyst, H in force S purge without performing the S purge suppression operation 2 S emission can be reduced.

【0049】本発明において硫黄成分放出制御(強制S
パージ)を行う場合、強制Sパージのための制御手段
は、実施形態のように、希薄燃焼内燃機関に供給される
混合気の空燃比をリッチ空燃比に制御する空燃比制御手
段とNOx吸蔵触媒装置を昇温させる昇温制御手段とか
ら構成可能であるが、これに限定されず、空燃比制御手
段または昇温制御手段の一方からなる制御手段を構成で
きる。
In the present invention, sulfur component release control (forced S
When performing the purge, the control means for the forced S purge includes, as in the embodiment, an air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the lean burn internal combustion engine to a rich air-fuel ratio, and a NOx storage catalyst. It can be configured with a temperature raising control means for raising the temperature of the apparatus, but is not limited to this, and a control means including one of the air-fuel ratio control means and the temperature raising control means can be configured.

【0050】昇温制御手段は、実施形態のように、点火
時期を遅角させる点火時期制御手段からなる構成として
も良いが、これに限定されない。例えば、筒内噴射式の
希薄燃焼内燃機関の場合には主たる燃料噴射に加えて膨
張行程で追加燃料噴射を行わせる燃料噴射制御手段によ
り昇温制御手段を構成可能である。また、昇温制御手段
は、NOx吸蔵触媒装置の温度が、その活性温度よりも
高く且つNOx吸蔵触媒装置に吸蔵された硫黄成分の脱
離に適した温度またはそれよりも低い設定温度以上にな
ったときに、NOx吸蔵触媒装置をアシスト的にさらに
昇温するものでも良い。
The temperature raising control means may be constituted by an ignition timing control means for retarding the ignition timing as in the embodiment, but is not limited to this. For example, in the case of an in-cylinder injection lean-burn internal combustion engine, the temperature increase control means can be constituted by fuel injection control means for performing additional fuel injection in the expansion stroke in addition to main fuel injection. Further, the temperature rise control means determines that the temperature of the NOx storage catalyst device is higher than its activation temperature and equal to or higher than a temperature suitable for desorbing the sulfur component stored in the NOx storage catalyst device or a lower temperature than the set temperature. In such a case, the temperature of the NOx storage catalyst device may be further increased in an assisted manner.

【0051】制御手段を備えた排気浄化装置によれば、
NOx吸蔵触媒装置による硫黄成分(S成分)の吸蔵量
が増大したときに硫黄成分放出制御が行われ、この結
果、NOx吸蔵触媒装置がリッチ空燃比およびまたは高
温の雰囲気に晒され、NOx吸蔵触媒装置からのS成分
の放出が促され、所要のNOx浄化効率が維持される。
また、制御手段は、触媒再生情報または硫黄成分による
被毒情報に応動するものでも良く、例えば、触媒再生情
報に基づいて所定期間内における触媒再生頻度(硫黄成
分の脱離が行われる頻度)が所定頻度よりも少ないこと
が判別されたとき、或いは、被毒情報から推定される被
毒量が所定値よりも大きいときに硫黄成分放出制御を行
う。被毒情報は、希薄燃焼内燃機関の燃料消費量や運転
時間(車両走行距離)から、または排ガス中のNOx濃
度を検出するNOxセンサの出力から求めることができ
る。
According to the exhaust gas purifying apparatus provided with the control means,
When the amount of sulfur component (S component) stored by the NOx storage catalyst device increases, sulfur component release control is performed. As a result, the NOx storage catalyst device is exposed to a rich air-fuel ratio and / or a high-temperature atmosphere, and the NOx storage catalyst is exposed. The release of the S component from the device is promoted, and the required NOx purification efficiency is maintained.
Further, the control means may respond to the catalyst regeneration information or the poisoning information due to the sulfur component. For example, based on the catalyst regeneration information, the catalyst regeneration frequency (frequency at which the sulfur component is desorbed) within a predetermined period is determined. When it is determined that the frequency is less than the predetermined frequency, or when the poisoning amount estimated from the poisoning information is larger than the predetermined value, the sulfur component release control is performed. The poisoning information can be obtained from the fuel consumption of the lean burn internal combustion engine and the operating time (vehicle traveling distance), or from the output of a NOx sensor that detects the NOx concentration in exhaust gas.

【0052】[0052]

【発明の効果】本発明の排気浄化装置は、NOx吸蔵触
媒装置の下流に設けたH2S放出抑制触媒装置に対して
1リットルあたり10ないし35グラムのニッケル酸化
物を添加し、或いは、NOx吸蔵触媒装置に添加された
吸蔵剤に対してモル比で30ないし300%のH2S放
出抑制剤をH2S放出抑制触媒装置に添加したので、N
Ox吸蔵触媒を有する排気浄化装置を装備した希薄燃焼
内燃機関からのH2S放出量を、NOx吸蔵触媒の浄化
能力を損なうことなしに、充分に抑制できる。
According to the exhaust gas purifying apparatus of the present invention, 10 to 35 grams of nickel oxide is added per liter to the H 2 S emission suppressing catalytic device provided downstream of the NOx storing catalytic device, or NOx Since the H 2 S release inhibitor in a molar ratio of 30 to 300% with respect to the storage agent added to the storage catalyst device was added to the H 2 S release suppression catalyst device,
The amount of H 2 S released from a lean burn internal combustion engine equipped with an exhaust purification device having an Ox storage catalyst can be sufficiently suppressed without impairing the purification performance of the NOx storage catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態による排気浄化装置を装
備した希薄燃焼内燃機関の概略図である。
FIG. 1 is a schematic view of a lean burn internal combustion engine equipped with an exhaust gas purification device according to a first embodiment of the present invention.

【図2】図1に示した排気浄化装置の三元触媒に添加さ
れた酸化ニッケルによるH2S放出抑制作用を示す図で
ある。
FIG. 2 is a diagram showing an H 2 S emission suppression effect of nickel oxide added to a three-way catalyst of the exhaust gas purification device shown in FIG.

【図3】三元触媒温度の時間変化およびH2S濃度の時
間変化をニッケル添加量を異にする三元触媒のそれぞれ
について示す図である。
FIG. 3 is a diagram showing the time change of the three-way catalyst temperature and the time change of the H 2 S concentration for each of the three-way catalysts having different nickel addition amounts.

【図4】酸化ニッケル添加量とH2S濃度ピーク値との
関係を示す図である。
FIG. 4 is a graph showing the relationship between the amount of nickel oxide added and the peak value of the H 2 S concentration.

【図5】図1に示した電子制御ユニットにより実施され
る強制Sパージ制御ルーチンのフローチャートである。
FIG. 5 is a flowchart of a forced S purge control routine executed by the electronic control unit shown in FIG. 1;

【図6】図5の制御ルーチンで実施されるSパージ抑制
運転のためのA/F変調における目標A/Fの時間的変
化を示す図である。
FIG. 6 is a diagram showing a temporal change of a target A / F in A / F modulation for an S purge suppression operation performed in the control routine of FIG. 5;

【図7】触媒温度上昇に伴う排ガス中のH2S濃度の時
間変化を、一定空燃比での機関運転およびA/F変調を
伴う機関運転の双方について示す図である。
FIG. 7 is a diagram showing a temporal change in H 2 S concentration in exhaust gas with a rise in catalyst temperature for both engine operation at a constant air-fuel ratio and engine operation with A / F modulation.

【符号の説明】[Explanation of symbols]

1 エンジン(希薄燃焼内燃機関) 14 排気管(排気通路) 30 排気浄化触媒装置 30a NOx触媒(NOx吸蔵触媒装置) 30b 三元触媒(H2S放出抑制触媒装置)1 engine (a lean burn internal combustion engine) 14 exhaust pipe (exhaust passage) 30 exhaust purification catalyst device 30a NOx catalyst (NOx storage catalytic device) 30b three-way catalyst (H 2 S release control catalyst device)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 保樹 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 仲嶌 浩之 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 山田 尚人 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 田代 圭介 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 古賀 一雄 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 岩知道 均一 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 田辺 健 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G091 AA02 AA13 AA17 AA24 AA28 AB03 AB06 AB08 AB09 AB11 BA11 BA14 BA15 BA19 BA20 BA33 BA39 CB02 CB03 CB05 CB07 DB06 DB10 DB13 EA01 EA07 EA17 EA30 EA31 EA33 EA38 EA39 FA06 FA14 FB03 FB10 FB12 FC04 FC05 FC08 GB01W GB02W GB02Y GB03W GB03Y GB05W GB06W GB07W GB10W HA03 HA12 HA18 HA36 HA37 HA47 4D048 AA03 AA06 BA14X BA15X BA16Y BA28Y BA30X BA31Y BA33X BA36Y BA37Y BA38X BA41X CA01 CC32 CC38 CC46 EA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuki Tamura 5-33-8 Shiba, Minato-ku, Tokyo Inside Mitsubishi Motors Corporation (72) Inventor Hiroyuki Nakashima 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation (72) Inventor Naoto Yamada 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation (72) Keisuke Tashiro 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Automobile Industry Co., Ltd. (72) Kazuo Koga 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Co., Ltd. (72) Uniform Iwachido Uniform 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Within Industrial Co., Ltd. (72) Inventor Ken Tanabe 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Industrial Co., Ltd. F-term (reference) 3G091 AA02 AA13 AA17 AA24 AA28 AB03 AB06 AB08 AB09 AB11 BA11 BA14 BA15 BA19 BA20 BA33 BA39 CB02 CB03 CB05 CB07 DB06 DB10 DB13 EA01 EA07 EA17 EA30 EA31 EA33 EA38 EA39 FA06 FA14 FB03 FB10 FB12 FC04 FC05 FC08 GB01W GB02W GB02Y GB03W18A03 GB03AGB04A04 BA15X BA16Y BA28Y BA30X BA31Y BA33X BA36Y BA37Y BA38X BA41X CA01 CC32 CC38 CC46 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希薄燃焼内燃機関の排気通路に設けられ
排気空燃比がリーン空燃比であるときに排ガス中のNO
xを吸蔵するNOx吸蔵触媒装置と、 上記NOx吸蔵触媒装置の下流に設けられ1リットルあ
たり10ないし35グラムのニッケル酸化物が添加され
た硫化水素放出抑制触媒装置とを備えることを特徴とす
る希薄燃焼内燃機関の排気浄化装置。
1. An exhaust gas control system that is provided in an exhaust passage of a lean burn internal combustion engine and includes NO in exhaust gas when the exhaust air-fuel ratio is a lean air-fuel ratio.
a NOx storage catalyst device for storing x, and a hydrogen sulfide release suppression catalyst device provided downstream of the NOx storage catalyst device and containing 10 to 35 grams of nickel oxide per liter. Exhaust purification device for combustion internal combustion engine.
【請求項2】 希薄燃焼内燃機関の排気通路に設けられ
排気空燃比がリーン空燃比のときに排ガス中のNOxを
吸蔵する吸蔵剤が添加されたNOx吸蔵触媒装置と、 上記NOx吸蔵触媒装置の下流に設けられるとともに上
記吸蔵剤に対してモル比で30ないし300%の硫化水
素放出抑制剤が添加された硫化水素放出抑制触媒装置と
を備えることを特徴とする希薄燃焼内燃機関の排気浄化
装置。
2. A NOx storage catalyst device provided in an exhaust passage of a lean burn internal combustion engine, to which a storage agent for storing NOx in exhaust gas is added when the exhaust air-fuel ratio is a lean air-fuel ratio; An exhaust purification device for a lean-burn internal combustion engine, further comprising a hydrogen sulfide emission suppression catalyst device provided downstream and having a hydrogen sulfide emission inhibitor added in a molar ratio of 30 to 300% with respect to the occluding agent. .
JP24798199A 1999-09-01 1999-09-01 Exhaust gas purification device for lean combustion internal combustion engine Expired - Lifetime JP4221125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24798199A JP4221125B2 (en) 1999-09-01 1999-09-01 Exhaust gas purification device for lean combustion internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24798199A JP4221125B2 (en) 1999-09-01 1999-09-01 Exhaust gas purification device for lean combustion internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001070754A true JP2001070754A (en) 2001-03-21
JP4221125B2 JP4221125B2 (en) 2009-02-12

Family

ID=17171431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24798199A Expired - Lifetime JP4221125B2 (en) 1999-09-01 1999-09-01 Exhaust gas purification device for lean combustion internal combustion engine

Country Status (1)

Country Link
JP (1) JP4221125B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303176A (en) * 2001-04-06 2002-10-18 Toyota Central Res & Dev Lab Inc Method of regenerating exhaust emission controlling catalyst and method of controlling exhaust emission
JP2005214200A (en) * 2004-01-28 2005-08-11 Ford Global Technologies Llc System and method for removing hydrogen sulfide from emission stream
JP2005211899A (en) * 2004-01-28 2005-08-11 Ford Global Technologies Llc Method for removing hydrogen sulfide from emission stream
WO2006059470A1 (en) * 2004-11-30 2006-06-08 Isuzu Motors Limited Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
WO2007145178A1 (en) 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
JP2009082880A (en) * 2007-10-02 2009-04-23 Mazda Motor Corp Exhaust gas cleaning catalyst apparatus
JP2010513788A (en) * 2006-12-21 2010-04-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Device with lean burn IC internal combustion engine and exhaust system therefor
US7795174B2 (en) 2005-05-26 2010-09-14 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
JP2013053583A (en) * 2011-09-05 2013-03-21 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
WO2014080220A1 (en) 2012-11-22 2014-05-30 Johnson Matthey Public Limited Company Zoned catalyst on monolithic substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303176A (en) * 2001-04-06 2002-10-18 Toyota Central Res & Dev Lab Inc Method of regenerating exhaust emission controlling catalyst and method of controlling exhaust emission
JP4496453B2 (en) * 2001-04-06 2010-07-07 株式会社豊田中央研究所 Exhaust gas purification catalyst regeneration method and exhaust gas control method
JP2005214200A (en) * 2004-01-28 2005-08-11 Ford Global Technologies Llc System and method for removing hydrogen sulfide from emission stream
JP2005211899A (en) * 2004-01-28 2005-08-11 Ford Global Technologies Llc Method for removing hydrogen sulfide from emission stream
US7669410B2 (en) 2004-11-30 2010-03-02 Isuzu Motors Limited Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
WO2006059470A1 (en) * 2004-11-30 2006-06-08 Isuzu Motors Limited Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
US7795174B2 (en) 2005-05-26 2010-09-14 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
WO2007145178A1 (en) 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
JP2010513788A (en) * 2006-12-21 2010-04-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Device with lean burn IC internal combustion engine and exhaust system therefor
JP2009082880A (en) * 2007-10-02 2009-04-23 Mazda Motor Corp Exhaust gas cleaning catalyst apparatus
JP2013053583A (en) * 2011-09-05 2013-03-21 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
WO2014080220A1 (en) 2012-11-22 2014-05-30 Johnson Matthey Public Limited Company Zoned catalyst on monolithic substrate
US9611773B2 (en) 2012-11-22 2017-04-04 Johnson Matthey Public Limited Company Zoned catalysed substrate monolith

Also Published As

Publication number Publication date
JP4221125B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
EP1065351B1 (en) Exhaust gas purifying apparatus of internal combustion engine
EP1087119B1 (en) Exhaust emission control device of internal combustion engines
JP3702924B2 (en) Exhaust purification device
JP2001070754A (en) Exhaust gas treatment apparatus for lean burn internal combustion engine
JP3832550B2 (en) Exhaust gas purification device for internal combustion engine
JP3702937B2 (en) Exhaust gas purification device for internal combustion engine
JP4193334B2 (en) Exhaust gas purification device for internal combustion engine
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP2008190461A (en) Exhaust emission control device and desulfurization method of exhaust emission control device
KR100529751B1 (en) Exhaust purification system of internal comb u stion engine
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP3997740B2 (en) Exhaust gas purification device for internal combustion engine
JP3358485B2 (en) Exhaust purification system for lean burn internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP2000192811A (en) Exhaust emission control device for internal combustion engine
JP3334632B2 (en) Exhaust gas purification device for internal combustion engine
JP2002256858A (en) Exhaust emission control device for internal combustion engine
JP4061817B2 (en) Exhaust gas purification device for internal combustion engine
JP2001115829A (en) Exhaust emission control device for internal combustion engine
JP3972620B2 (en) Exhaust gas purification device for internal combustion engine
JP2002097939A (en) Exhaust emission control device for internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP2005330848A (en) Catalyst degradation estimating device
JP4174952B2 (en) Exhaust gas purification device for internal combustion engine
JP4000435B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060629

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4221125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

EXPY Cancellation because of completion of term